Cross Sections for Coherent Elastic and Inelastic Neutrino-Nucleus Scattering
Abstract
:1. Introduction
2. Formalism
2.1. CENS Cross Section
2.2. Inelastic Cross Sections
3. Results and Discussion
Constraining Ar
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Freedman, D.Z. Coherent Neutrino Nucleus Scattering as a Probe of the Weak Neutral Current. Phys. Rev. D 1974, 9, 1389. [Google Scholar] [CrossRef]
- Akimov, D. et al. [COHERENT Collaboration] Observation of Coherent Elastic Neutrino-Nucleus Scattering. Science 2017, 357, 1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akimov, D. et al. [COHERENT Collaboration] COHERENT Collaboration data release from the first observation of coherent elastic neutrino-nucleus scattering. arXiv 2018, arXiv:1804.09459. [Google Scholar]
- Akimov, D. et al. [COHERENT Collaboration] First Constraint on Coherent Elastic Neutrino-Nucleus Scattering in Argon. Phys. Rev. D 2019, 100, 115020. [Google Scholar] [CrossRef] [Green Version]
- Akimov, D. et al. [COHERENT Collaboration] First Measurement of Coherent Elastic Neutrino-Nucleus Scattering on Argon. Phys. Rev. Lett. 2021, 126, 012002. [Google Scholar] [CrossRef] [PubMed]
- Akimov, D. et al. [COHERENT Collaboration] Measurement of the Coherent Elastic Neutrino-Nucleus Scattering Cross Section on CsI by COHERENT. Phys. Rev. Lett. 2022, 129, 081801. [Google Scholar] [CrossRef]
- Liao, J.; Marfatia, D. Repulsive baryonic interactions and lattice QCD observables at imaginary chemical potential. Phys. Lett. B 2017, 775, 47–54. [Google Scholar] [CrossRef]
- Dent, J.B.; Dutta, B.; Liao, S.; Newstead, J.L.; Strigari, L.E.; Walker, J.W. Accelerator and reactor complementarity in coherent neutrino-nucleus scattering. Phys. Rev. D 2018, 97, 035009. [Google Scholar] [CrossRef] [Green Version]
- Aristizabal Sierra, D.; Rojas, N.; Tytgat, M. Neutrino non-standard interactions and dark matter searches with multi-ton scale detectors. J. High Energy Phys. 2018, 2018, 197. [Google Scholar] [CrossRef] [Green Version]
- Denton, P.B.; Farzan, Y.; Shoemaker, I.M. Testing large non-standard neutrino interactions with arbitrary mediator mass after COHERENT data. J. High Energy Phys. 2018, 2018, 37. [Google Scholar] [CrossRef] [Green Version]
- Kosmas, T.; Papoulias, D.; Tortola, M.; Valle, J. Probing light sterile neutrino signatures at reactor and Spallation Neutron Source neutrino experiments. Phys. Rev. D 2017, 96, 063013. [Google Scholar] [CrossRef] [Green Version]
- Blanco, C.; Hooper, D.; Machado, P. Constraining Sterile Neutrino Interpretations of the LSND and MiniBooNE Anomalies with Coherent Neutrino Scattering Experiments. arXiv 2019, arXiv:1901.08094. [Google Scholar] [CrossRef]
- Aristizabal Sierra, D.; De Romeri, V.; Rojas, N. CP violating effects in coherent elastic neutrino-nucleus scattering processes. J. High Energy Phys. 2019, 9, 69. [Google Scholar] [CrossRef] [Green Version]
- Cadeddu, M.; Giunti, C.; Li, Y.; Zhang, Y. Average CsI Neutron Density Distribution from COHERENT Data. Phys. Rev. Lett. 2018, 120, 072501. [Google Scholar] [CrossRef] [Green Version]
- Ciuffoli, E.; Evslin, J.; Fu, Q.; Tang, J. P-wave contributions to B→ψππ decays in the perturbative QCD approach. Phys. Rev. D 2018, 97, 113003. [Google Scholar] [CrossRef] [Green Version]
- Aristizabal Sierra, D.; Liao, J.; Marfatia, D. Impact of form factor uncertainties on interpretations of coherent elastic neutrino-nucleus scattering data. J. High Energy Phys. 2019, 2019, 141. [Google Scholar] [CrossRef] [Green Version]
- Papoulias, D.; Kosmas, T.; Sahu, R.; Kota, V.; Hota, M. Constraining nuclear physics parameters with current and future COHERENT data. Phys. Lett. B 2020, 800, 135133. [Google Scholar] [CrossRef]
- Aguilar-Arevalo, A.A. et al. [CCM Collaboration] First dark matter search results from Coherent CAPTAIN-Mills. Phys. Rev. D 2022, 106, 012001. [Google Scholar] [CrossRef]
- Coloma, P.; Esteban, I.; Gonzalez-Garcia, M.C.; Menendez, J. Determining the nuclear neutron distribution from Coherent Elastic neutrino-Nucleus Scattering: Current results and future prospects. J. High Energy Phys. 2020, 2020, 30. [Google Scholar] [CrossRef]
- Aguilar-Arevalo, A.; Bertou, X.; Bonifazi, C.; Butner, M.; Cancelo, G.; Vázquez, A.C.; Vergara, B.C.; Chavez, C.R.; Da Motta, H.; D’Olivo, J.C.; et al. Results of the engineering run of the Coherent Neutrino Nucleus Interaction Experiment (CONNIE). JINST 2016, 11, P07024. [Google Scholar] [CrossRef] [Green Version]
- Agnolet, G. et al. [MINER Collaboration] Background studies for the MINER Coherent Neutrino Scattering reactor experiment. Nucl. Instrum. Meth. A 2017, 853, 53. [Google Scholar] [CrossRef] [Green Version]
- Belov, V.; Brudanin, V.; Egorov, V.; Filosofov, D.; Fomina, M.; Gurov, Y.; Korotkova, L.; Lubashevskiy, A.; Medvedev, D.; Pritula, R.; et al. The νGeN experiment at the Kalinin Nuclear Power Plant. J. Instrum. 2015, 10, P12011. [Google Scholar] [CrossRef]
- Strauss, R.; Rothe, J.; Angloher, G.; Bento, A.; Gütlein, A.; Hauff, D.; Kluck, H.; Mancuso, M.; Oberauer, L.; Petricca, F.; et al. The ν-cleus experiment: A gram-scale fiducial-volume cryogenic detector for the first detection of coherent neutrino-nucleus scattering. Eur. Phys. J. C 2017, 77, 506. [Google Scholar] [CrossRef] [Green Version]
- Billard, J.; Carr, R.; Dawson, J.; Figueroa-Feliciano, E.; Formaggio, J.A.; Gascon, J.; Heine, S.T.; De Jesus, M.; Johnston, J.; Lasserre, T.; et al. Coherent neutrino scattering with low temperature bolometers at Chooz reactor complex. J. Phys. G 2017, 44, 105101. [Google Scholar] [CrossRef] [Green Version]
- Wong, H.T. Neutrino-nucleus coherent scattering and dark matter searches with sub-keV germanium detector. Nucl. Phys. A 2010, 844, 229c–233c. [Google Scholar] [CrossRef]
- Choi, J.J.; Jeon, E.J.; Kim, J.Y.; Kim, K.W.; Kim, S.H.; Kim, S.K.; Kim, Y.D.; Ko, Y.J.; Koh, B.C.; Ha, C.; et al. Exploring coherent elastic neutrino-nucleus scattering using reactor electron antineutrinos in the NEON experiment. Eur. Phys. J. C 2023, 83, 226. [Google Scholar] [CrossRef]
- Akindele, O.A.; Berryman, J.M.; Bowden, N.S.; Carr, R.; Conant, A.J.; Huber, P.; Langford, T.J.; Link, J.M.; Littlejohn, B.R.; Fernandez-Moroni, G.; et al. High Energy Physics Opportunities Using Reactor Antineutrinos. arXiv 2022, arXiv:2203.07214. https://arxiv.org/abs/2203.07214. [Google Scholar]
- Hofstadter, R. Electron Scattering and Nuclear Structure. Rev. Mod. Phys. 1956, 28, 214. [Google Scholar] [CrossRef]
- De Vries, H.; De Jager, C.W.; De Vries, C. Nuclear charge-density-distribution parameters from elastic electron scattering. Atom. Data Nucl. Data Tabl. 1987, 36, 495. [Google Scholar] [CrossRef]
- Fricke, G.; Bernhardt, C.; Heilig, K.; Schaller, L.A.; Schellenberg, L.; Shera, E.B.; de Jager, C.W. Nuclear Ground State Charge Radii from Electromagnetic Interactions. Atom. Data Nucl. Data Tabl. 1995, 60, 177. [Google Scholar] [CrossRef] [Green Version]
- Angeli, I.; Marinova, K. Table of experimental nuclear ground state charge radii: An update. Atom. Data Nucl. Data Tabl. 2013, 99, 69. [Google Scholar] [CrossRef]
- Thiel, M.; Sfienti, C.; Piekarewicz, J.; Horowitz, C.; Vanderhaeghen, M. Neutron skins of atomic nuclei: Per aspera ad astra. J. Phys. G 2019, 46, 093003. [Google Scholar] [CrossRef] [Green Version]
- Donnelly, T.; Dubach, J.; Sick, I. Isospin dependences in parity-violating electron scattering. Nucl. Phys. A 1989, 503, 589. [Google Scholar] [CrossRef]
- Abrahamyan, S. et al. [PREX Collaboration] New Measurements of the Transverse Beam Asymmetry for Elastic Electron Scattering from Selected Nuclei. Phys. Rev. Lett. 2012, 108, 112502. [Google Scholar]
- Horowitz, C.J.; Ahmed, Z.; Jen, C.M.; Rakhman, A.; Souder, P.A.; Dalton, M.M.; Liyanage, N.; Paschke, K.D.; Saenboonruang, K.; Silwal, R.; et al. Weak charge form factor and radius of 208Pb through parity violation in electron scattering. Phys. Rev. C 2012, 85, 032501. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.S. Electroweak probe of neutron skins of nuclei. Ann. Phys. 2020, 412, 168012. [Google Scholar] [CrossRef]
- Patton, K.; Engel, J.; McLaughlin, G.C.; Schunck, N. Neutrino-nucleus coherent scattering as a probe of neutron density distributions. Phys. Rev. C 2012, 86, 024612. [Google Scholar] [CrossRef] [Green Version]
- Klein, S.; Nystrand, J. Exclusive vector meson production in relativistic heavy ion collisions. Phys. Rev. C 1999, 60, 014903. [Google Scholar] [CrossRef] [Green Version]
- Helm, R.H. Inelastic and Elastic Scattering of 187-Mev Electrons from Selected Even-Even Nuclei. Phys. Rev. 1956, 104, 1466. [Google Scholar] [CrossRef]
- Payne, C.G.; Bacca, S.; Hagen, G.; Jiang, W.; Papenbrock, T. Coherent elastic neutrino-nucleus scattering on from first principles. Phys. Rev. C 2019, 100, 061304. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Hernandez, J.A.; Piekarewicz, J. Electroweak probes of ground state densities. Phys. Rev. C 2019, 100, 054301. [Google Scholar] [CrossRef] [Green Version]
- Co’, G.; Anguiano, M.; Lallena, A. Nuclear structure uncertainties in coherent elastic neutrino-nucleus scattering. J. Cosmol. Astropart. Phys. 2020, 4, 44. [Google Scholar]
- Hoferichter, M.; Menéndez, J.; Schwenk, A. Coherent elastic neutrino-nucleus scattering: EFT analysis and nuclear responses. Phys. Rev. D 2020, 102, 074018. [Google Scholar] [CrossRef]
- Tomalak, O.; Machado, P.; Pandey, V.; Plestid, R. Flavor-dependent radiative corrections in coherent elastic neutrino-nucleus scattering. J. High Energy Phys. 2021, 2021, 097. [Google Scholar] [CrossRef]
- Tanabashi, M. et al. [Particle Data Group] Review of Particle Physics. Phys. Rev. D 2018, 98, 030001. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, M.; Aristizabal Sierra, D.; Dutta, B.; Strigari, L.E. Coherent Elastic Neutrino-Nucleus Scattering with directional detectors. arXiv 2020, arXiv:2003.11510. [Google Scholar] [CrossRef]
- Van Dessel, N.; Jachowicz, N.; Nikolakopoulos, A. Forbidden transitions in neutral- and charged-current interactions between low-energy neutrinos and argon. Phys. Rev. C 2019, 100, 055503. [Google Scholar] [CrossRef] [Green Version]
- Ryckebusch, J.; Waroquier, M.; Heyde, K.; Moreau, J.; Ryckbosch, D. An RPA model for the description of one-nucleon emission processes and application to 16O(γ, N) reactions. Nucl. Phys. A 1988, 476, 237. [Google Scholar] [CrossRef]
- Ryckebusch, J.; Heyde, K.; Van Neck, D.; Waroquier, M. Aspects of the final-state interaction and long-range correlations in quasi-elastic (e, e’p) and (e, e’n) reactions. Nucl. Phys. A 1989, 503, 694. [Google Scholar] [CrossRef]
- Jachowicz, N.; Rombouts, S.; Heyde, K.; Ryckebusch, J. Cross sections for neutral-current neutrino-nucleus interactions: Applications for 12C and 16O. Phys. Rev. C 1999, 59, 3246. [Google Scholar] [CrossRef] [Green Version]
- Jachowicz, N.; Heyde, K.; Ryckebusch, J.; Rombouts, S. Continuum random phase approximation approach to charged-current neutrino-nucleus scattering. Phys. Rev. C 2002, 65, 025501. [Google Scholar] [CrossRef]
- Jachowicz, N.; Heyde, K.; Ryckebusch, J. Cross sections for neutral-current neutrino scattering on 208 Pb. Phys. Rev. C 2002, 66, 055501. [Google Scholar] [CrossRef]
- Jachowicz, N.; Vantournhout, K.; Ryckebusch, J.; Heyde, K. Identifying Neutrinos and Antineutrinos in Neutral-Current ScatteringReactions. Phys. Rev. Lett. 2004, 93, 082501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jachowicz, N.; McLaughlin, G. Reconstructing supernova-neutrino spectra using low-energy beta beams. Phys. Rev. Lett. 2006, 96, 172301. [Google Scholar] [CrossRef] [Green Version]
- Pandey, V.; Jachowicz, N.; Ryckebusch, J.; Van Cuyck, T.; Cosyn, W. Quasielastic contribution to antineutrino-nucleus scattering. Phys. Rev. C 2014, 89, 024601. [Google Scholar] [CrossRef] [Green Version]
- Pandey, V.; Jachowicz, N.; Van Cuyck, T.; Ryckebusch, J.; Martini, M. Low-energy excitations and quasielastic contribution to electron-nucleus and neutrino-nucleus scattering in the continuum random-phase approximation. Phys. Rev. C 2015, 92, 024606. [Google Scholar] [CrossRef] [Green Version]
- Pandey, V.; Jachowicz, N.; Martini, M.; González-Jiménez, R.; Ryckebusch, J.; Van Cuyck, T.; Van Dessel, N. Impact of low-energy nuclear excitations on neutrino-nucleus scattering at MiniBooNE and T2K kinematics. Phys. Rev. C 2016, 94, 054609. [Google Scholar] [CrossRef] [Green Version]
- Van Dessel, N.; Jachowicz, N.; González-Jiménez, R.; Pandey, V.; Van Cuyck, T. A dependence of quasielastic charged-current neutrino-nucleus cross sections. Phys. Rev. C 2018, 97, 044616. [Google Scholar] [CrossRef] [Green Version]
- Nikolakopoulos, A.; Jachowicz, N.; Van Dessel, N.; Niewczas, K.; González-Jiménez, R.; Udías, J.M.; Pandey, V. Electron versus muon neutrino induced cross sections in charged current quasielastic processes. Phys. Rev. Lett. 2019, 123, 052501. [Google Scholar] [CrossRef]
- Van Dessel, N.; Nikolakopoulos, A.; Jachowicz, N. Lepton kinematics in low-energy neutrino-argon interactions. Phys. Rev. C 2020, 101, 045502. [Google Scholar] [CrossRef] [Green Version]
- Nikolakopoulos, A.; Pandey, V.; Spitz, J.; Jachowicz, N. Modeling quasielastic interactions of monoenergetic kaon decay-at-rest neutrinos. arXiv 2020, arXiv:2010.05794. [Google Scholar] [CrossRef]
- Tohyama, M. Application of extended random-phase approximation with ground-state correlations to collective excitations of 16O. J. Phys. Conf. Ser. 2014, 529, 012026. [Google Scholar] [CrossRef]
- Papoulias, D.; Kosmas, T.; Kuno, Y. Recent Probes of Standard and Non-standard Neutrino Physics With Nuclei. Front. Phys. 2019, 7, 191. [Google Scholar] [CrossRef]
- Antonello, M. et al. [MicroBooNE, LAr1-ND and ICARUS-WA104 Collaboration] A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam. arXiv 2015, arXiv:1503.01520. [Google Scholar]
- Abi, B. et al. [DUNE Collaboration] Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics. arXiv 2020, arXiv:2002.03005. [Google Scholar]
- Amaudruz, P. et al. [DEAP-3600 Collaboration] First Results from the DEAP-3600 Dark Matter Search with Argon at SNOLAB. Phys. Rev. Lett. 2018, 121, 071801. [Google Scholar] [CrossRef] [Green Version]
- Agnes, P. et al. [DarkSide Collaboration] Low-Mass Dark Matter Search with the DarkSide-50 Experiment. Phys. Rev. Lett. 2018, 121, 081307. [Google Scholar] [CrossRef] [Green Version]
- Calvo, J. et al. [ArDM Collaboration] Backgrounds and pulse shape discrimination in the ArDM liquid argon TPC. J. Cosmol. Astropart. Phys. 2017, 3, 3. [Google Scholar]
- Hime, A. [MiniCLEAN Collaboration]. The MiniCLEAN Dark Matter Experiment. arXiv 2011, arXiv:1110.1005. [Google Scholar]
- Ottermann, C.R.; Schmitt, C.H.; Simon, G.G.; Borkowski, F.; Walther, V.H. Elastic electron scattering from 40Ar. Nucl. Phys. A 1982, 379, 396. [Google Scholar] [CrossRef]
- Duda, G.; Kemper, A.; Gondolo, P. Model Independent Form Factors for Spin Independent Neutralino-Nucleon Scattering from Elastic Electron Scattering Data. J. Cosmol. Astropart. Phys. 2007, 4, 12. [Google Scholar] [CrossRef]
- Lewin, J.; Smith, P. Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil. Astropart. Phys. 1996, 6, 87–112. [Google Scholar] [CrossRef] [Green Version]
i | (MeV) | # N | |||
---|---|---|---|---|---|
p | 1 | −43.7029 | 1.00 | 2 | |
p | 2 | −31.4496 | 1.00 | 4 | |
p | 3 | −27.3921 | 1.00 | 2 | |
p | 4 | −17.7027 | 1.00 | 6 | |
p | 5 | −12.0822 | 1.00 | 2 | |
p | 6 | −10.9243 | 0.50 | 2 | |
n | 1 | −48.3047 | 1.00 | 2 | |
n | 2 | −35.2020 | 1.00 | 4 | |
n | 3 | −31.0247 | 1.00 | 2 | |
n | 4 | −21.1035 | 1.00 | 6 | |
n | 5 | −16.1116 | 1.00 | 2 | |
n | 6 | −14.0266 | 1.00 | 4 | |
n | 7 | −7.2108 | 0.25 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Dessel, N.; Pandey, V.; Ray, H.; Jachowicz, N. Cross Sections for Coherent Elastic and Inelastic Neutrino-Nucleus Scattering. Universe 2023, 9, 207. https://doi.org/10.3390/universe9050207
Van Dessel N, Pandey V, Ray H, Jachowicz N. Cross Sections for Coherent Elastic and Inelastic Neutrino-Nucleus Scattering. Universe. 2023; 9(5):207. https://doi.org/10.3390/universe9050207
Chicago/Turabian StyleVan Dessel, Nils, Vishvas Pandey, Heather Ray, and Natalie Jachowicz. 2023. "Cross Sections for Coherent Elastic and Inelastic Neutrino-Nucleus Scattering" Universe 9, no. 5: 207. https://doi.org/10.3390/universe9050207
APA StyleVan Dessel, N., Pandey, V., Ray, H., & Jachowicz, N. (2023). Cross Sections for Coherent Elastic and Inelastic Neutrino-Nucleus Scattering. Universe, 9(5), 207. https://doi.org/10.3390/universe9050207