Lepton–Nucleus Interactions within Microscopic Approaches
Abstract
:1. Introduction
2. Methodology
2.1. Nuclear Hamiltonian and Current Operator
3. Quantum Monte Carlo Approaches
3.1. Green’s Function Monte Carlo Calculations of Electroweak Responses
3.1.1. Relativistic Corrections
4. Extended Factorization Scheme
4.1. One-Body Currents
4.2. Two-Body Currents
5. Spectral Function
6. GFMC and SF Comparisons
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Patsyuk, M.; Hen, O.; Piasetzky, E. Exclusive studies on short range correlations in nuclei. EPJ Web Conf. 2019, 204, 01016. [Google Scholar] [CrossRef]
- Fomin, N.; Higinbotham, D.; Sargsian, M.; Solvignon, P. New Results on Short-Range Correlations in Nuclei. Ann. Rev. Nucl. Part. Sci. 2017, 67, 129–159. [Google Scholar] [CrossRef] [Green Version]
- Korover, I.; Denniston, A.W.; Kiral, A.; Schmidt, A.; Lovato, A.; Rocco, N.; Nikolakopoulos, A.; Weinstein, L.B.; Piasetzky, E.; Hen, O. First Observation of Large Missing-Momentum (e,e’p) Cross-Section Scaling and the onset of Correlated-Pair Dominance in Nuclei. arXiv 2022, arXiv:2209.01492. [Google Scholar]
- Abud, A.A.; Abi, B.; Acciarri, R.; Acero, M.A.; Adames, M.R.; Adamov, G.; Adamowski, M.; Adams, D.; Adinolfi, M.; Adriano, C.; et al. Snowmass Neutrino Frontier: DUNE Physics Summary. arXiv 2022, arXiv:2203.06100. [Google Scholar]
- Waroquier, M.; Heyde, K.; Wenes, G. An effective Skyrme-type interaction for nuclear structure calculations: (I). Ground-state properties. Nucl. Phys. A 1983, 404, 269–297. [Google Scholar] [CrossRef]
- Horowitz, C.; Serot, B.D. Self-consistent hartree description of finite nuclei in a relativistic quantum field theory. Nucl. Phys. A 1981, 368, 503–528. [Google Scholar] [CrossRef]
- Sharma, M.; Nagarajan, M.; Ring, P. Rho meson coupling in the relativistic mean field theory and description of exotic nuclei. Phys. Lett. B 1993, 312, 377–381. [Google Scholar] [CrossRef]
- Bender, M.; Heenen, P.H.; Reinhard, P.G. Self-consistent mean-field models for nuclear structure. Rev. Mod. Phys. 2003, 75, 121–180. [Google Scholar] [CrossRef]
- Franco-Patino, J.M.; González-Jiménez, R.; Dolan, S.; Barbaro, M.B.; Caballero, J.A.; Megias, G.D.; Udias, J.M. Final state interactions in semi-inclusive neutrino-nucleus scattering: Applications to the T2K and MINERνA experiments. Phys. Rev. D 2022, 106, 113005. [Google Scholar] [CrossRef]
- Amaro, J.E.; Barbaro, M.B.; Caballero, J.A.; González-Jiménez, R.; Megias, G.D.; Ruiz Simo, I. Electron- versus neutrino-nucleus scattering. J. Phys. G 2020, 47, 124001. [Google Scholar] [CrossRef]
- Amaro, J.E.; Barbaro, M.B.; Caballero, J.A.; Donnelly, T.W.; Gonzalez-Jimenez, R.; Megias, G.D.; Simo, I.R. Neutrino-nucleus scattering in the SuSA model. Eur. Phys. J. Spec. Top. 2021, 230, 4321–4338. [Google Scholar] [CrossRef]
- González-Jiménez, R.; Nikolakopoulos, A.; Jachowicz, N.; Udías, J.M. Nuclear effects in electron-nucleus and neutrino-nucleus scattering within a relativistic quantum mechanical framework. Phys. Rev. C 2019, 100, 045501. [Google Scholar] [CrossRef]
- Pandey, V.; Jachowicz, N.; Martini, M.; González-Jiménez, R.; Ryckebusch, J.; Van Cuyck, T.; Van Dessel, N. Impact of low-energy nuclear excitations on neutrino-nucleus scattering at MiniBooNE and T2K kinematics. Phys. Rev. C 2016, 94, 054609. [Google Scholar] [CrossRef] [Green Version]
- Bourguille, B.; Nieves, J.; Sánchez, F. Inclusive and exclusive neutrino-nucleus cross sections and the reconstruction of the interaction kinematics. J. High Energy Phys. 2021, 2021, 4. [Google Scholar] [CrossRef]
- Maieron, C.; Martínez, M.C.; Caballero, J.A.; Udías, J.M. Nuclear model effects in charged-current neutrino-nucleus quasielastic scattering. Phys. Rev. C 2003, 68, 048501. [Google Scholar] [CrossRef]
- Dolan, S.; Megias, G.D.; Bolognesi, S. Implementation of the SuSAv2-meson exchange current 1p1h and 2p2h models in GENIE and analysis of nuclear effects in T2K measurements. Phys. Rev. D 2020, 101, 033003. [Google Scholar] [CrossRef] [Green Version]
- Van Cuyck, T.; Jachowicz, N.; González-Jiménez, R.; Martini, M.; Pandey, V.; Ryckebusch, J.; Van Dessel, N. Influence of short-range correlations in neutrino-nucleus scattering. Phys. Rev. C 2016, 94, 024611. [Google Scholar] [CrossRef] [Green Version]
- Martini, M.; Ericson, M.; Chanfray, G. Investigation of the MicroBooNE neutrino cross sections on argon. Phys. Rev. C 2022, 106, 015503. [Google Scholar] [CrossRef]
- Jachowicz, N.; Van Dessel, N.; Nikolakopoulos, A. Low-energy neutrino scattering in experiment and astrophysics. J. Phys. G 2019, 46, 084003. [Google Scholar] [CrossRef] [Green Version]
- Amaro, J.E.; Barbaro, M.B.; Caballero, J.A.; Donnelly, T.W.; Udias, J.M. Final-state interactions and superscaling in the semi-relativistic approach to quasielastic electron and neutrino scattering. Phys. Rev. C 2007, 75, 034613. [Google Scholar] [CrossRef] [Green Version]
- Korover, I.; Pybus, J.R.; Schmidt, A.; Hauenstein, F.; Duer, M.; Hen, O.; Piasetzky, E.; Weinstein, L.B.; Higinbotham, D.W.; Adhikari, S.; et al. 12C(e,e’pN) measurements of short range correlations in the tensor-to-scalar interaction transition region. Phys. Lett. B 2021, 820, 136523. [Google Scholar] [CrossRef]
- Benhar, O. Scale dependence of the nucleon–nucleon potential. Int. J. Mod. Phys. E 2021, 30, 2130009. [Google Scholar] [CrossRef]
- Lovato, A.; Bombaci, I.; Logoteta, D.; Piarulli, M.; Wiringa, R.B. Benchmark calculations of infinite neutron matter with realistic two- and three-nucleon potentials. Phys. Rev. C 2022, 105, 055808. [Google Scholar] [CrossRef]
- Carlson, J.; Gandolfi, S.; Pederiva, F.; Pieper, S.C.; Schiavilla, R.; Schmidt, K.E.; Wiringa, R.B. Quantum Monte Carlo methods for nuclear physics. Rev. Mod. Phys. 2015, 87, 1067. [Google Scholar] [CrossRef] [Green Version]
- Lovato, A.; Gandolfi, S.; Butler, R.; Carlson, J.; Lusk, E.; Pieper, S.C.; Schiavilla, R. Charge Form Factor and Sum Rules of Electromagnetic Response Functions in 12C. Phys. Rev. Lett. 2013, 111, 092501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovato, A.; Gandolfi, S.; Carlson, J.; Pieper, S.C.; Schiavilla, R. Neutral weak current two-body contributions in inclusive scattering from 12C. Phys. Rev. Lett. 2014, 112, 182502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovato, A.; Gandolfi, S.; Carlson, J.; Pieper, S.C.; Schiavilla, R. Electromagnetic response of 12C: A first-principles calculation. Phys. Rev. Lett. 2016, 117, 082501. [Google Scholar] [CrossRef] [Green Version]
- Lovato, A.; Carlson, J.; Gandolfi, S.; Rocco, N.; Schiavilla, R. Ab initio study of (νℓ,ℓ−) and (νℓ,ℓ+) inclusive scattering in 12C: Confronting the MiniBooNE and T2K CCQE data. Phys. Rev. X 2020, 10, 031068. [Google Scholar] [CrossRef]
- Bryan, R. Maximum entropy analysis of oversampled data problems. Eur. Biophys. J. 1990, 18, 165–174. [Google Scholar] [CrossRef]
- Jarrell, M.; Gubernatis, J.E. Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data. Phys. Rep. 1996, 269, 133–195. [Google Scholar] [CrossRef] [Green Version]
- Raghavan, K.; Balaprakash, P.; Lovato, A.; Rocco, N.; Wild, S.M. Machine learning-based inversion of nuclear responses. Phys. Rev. C 2021, 103, 035502. [Google Scholar] [CrossRef]
- Shen, G.; Marcucci, L.E.; Carlson, J.; Gandolfi, S.; Schiavilla, R. Inclusive neutrino scattering off deuteron from threshold to GeV energies. Phys. Rev. C 2012, 86, 035503. [Google Scholar] [CrossRef] [Green Version]
- Rocco, N.; Leidemann, W.; Lovato, A.; Orlandini, G. Relativistic effects in ab initio electron-nucleus scattering. Phys. Rev. C 2018, 97, 055501. [Google Scholar] [CrossRef] [Green Version]
- Nikolakopoulos, A.; Lovato, A.; Rocco, N. Relativistic effects in Green’s function Monte Carlo calculations of neutrino-nucleus scattering. arXiv 2023, arXiv:2304.11772. [Google Scholar]
- Rocco, N.; Barbieri, C.; Benhar, O.; De Pace, A.; Lovato, A. Neutrino-Nucleus Cross Section within the Extended Factorization Scheme. Phys. Rev. C 2019, 99, 025502. [Google Scholar] [CrossRef] [Green Version]
- Rocco, N.; Lovato, A.; Benhar, O. Comparison of the electromagnetic responses of 12C obtained from the Green’s function Monte Carlo and spectral function approaches. Phys. Rev. C 2016, 94, 065501. [Google Scholar] [CrossRef] [Green Version]
- Simons, D.; Steinberg, N.; Lovato, A.; Meurice, Y.; Rocco, N.; Wagman, M. Form factor and model dependence in neutrino-nucleus cross section predictions. arXiv 2022, arXiv:2210.02455. [Google Scholar]
- Kleykamp, J.; Akhter, S.; Dar, Z.A.; Ansari, V.; Ascencio, M.V.; Athar, M.S.; Bashyal, A.; Bercellie, A.; Betancourt, M.; Bodek, A.; et al. Simultaneous measurement of muon neutrino quasielastic-like cross sections on CH, C, water, Fe, and Pb as a function of muon kinematics at MINERvA. arXiv 2023, arXiv:2301.02272. [Google Scholar]
- Engel, J. Approximate treatment of lepton distortion in charged current neutrino scattering from nuclei. Phys. Rev. C 1998, 57, 2004–2009. [Google Scholar] [CrossRef] [Green Version]
- Jachowicz, N.; Nikolakopoulos, A. Nuclear medium effects in neutrino- and antineutrino-nucleus scattering. Eur. Phys. J. Spec. Top. 2021, 230, 4339–4356. [Google Scholar] [CrossRef]
- Nakamura, S.; Sato, T.; Ando, S.; Park, T.S.; Myhrer, F.; Gudkov, V.P.; Kubodera, K. Neutrino deuteron reactions at solar neutrino energies. Nucl. Phys. A 2002, 707, 561–576. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, K. Review of particle physics. J. Phys. G 2010, 37, 075021. [Google Scholar] [CrossRef] [Green Version]
- Wiringa, R.B.; Stoks, V.G.J.; Schiavilla, R. An Accurate nucleon-nucleon potential with charge independence breaking. Phys. Rev. C 1995, 51, 38–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pieper, S.C. The Illinois Extension to the Fujita-Miyazawa Three Nucleon Force. AIP Conf. Proc. 2008, 1011, 143–152. [Google Scholar] [CrossRef]
- Weinberg, S. Nuclear forces from chiral Lagrangians. Phys. Lett. B 1990, 251, 288–292. [Google Scholar] [CrossRef]
- Weinberg, S. Effective chiral Lagrangians for nucleon—Pion interactions and nuclear forces. Nucl. Phys. B 1991, 363, 3–18. [Google Scholar] [CrossRef]
- Van Kolck, U.L. Soft Physics: Applications of Effective Chiral Lagrangians to Nuclear Physics and Quark Models. Ph.D. Thesis, University of Texas, Austin, TX, USA, 1993. [Google Scholar]
- Ordonez, C.; van Kolck, U. Chiral lagrangians and nuclear forces. Phys. Lett. B 1992, 291, 459–464. [Google Scholar] [CrossRef]
- Ordonez, C.; Ray, L.; van Kolck, U. The Two nucleon potential from chiral Lagrangians. Phys. Rev. C 1996, 53, 2086–2105. [Google Scholar] [CrossRef] [Green Version]
- Bernard, V.; Kaiser, N.; Meissner, U.G. Chiral dynamics in nucleons and nuclei. Int. J. Mod. Phys. E 1995, 4, 193–346. [Google Scholar] [CrossRef] [Green Version]
- Epelbaum, E.; Hammer, H.W.; Meissner, U.G. Modern Theory of Nuclear Forces. Rev. Mod. Phys. 2009, 81, 1773–1825. [Google Scholar] [CrossRef]
- Epelbaum, E. Nuclear forces from chiral effective field theory. Prog. Part. Nucl. Phys. 2012, 67, 343–347. [Google Scholar] [CrossRef]
- Epelbaum, E.; Krebs, H.; Meißner, U.G. Improved chiral nucleon-nucleon potential up to next-to-next-to-next-to-leading order. Eur. Phys. J. A 2015, 51, 53. [Google Scholar] [CrossRef] [Green Version]
- Entem, D.R.; Machleidt, R. Accurate charge dependent nucleon nucleon potential at fourth order of chiral perturbation theory. Phys. Rev. C 2003, 68, 041001. [Google Scholar] [CrossRef] [Green Version]
- Machleidt, R.; Entem, D.R. Chiral effective field theory and nuclear forces. Phys. Rep. 2011, 503, 1–75. [Google Scholar] [CrossRef] [Green Version]
- Ekström, A.; Jansen, G.R.; Wendt, K.A.; Hagen, G.; Papenbrock, T.; Carlsson, B.D.; Forssén, C.; Hjorth-Jensen, M.; Navrátil, P.; Nazarewicz, W. Accurate nuclear radii and binding energies from a chiral interaction. Phys. Rev. C 2015, 91, 051301. [Google Scholar] [CrossRef] [Green Version]
- Entem, D.R.; Kaiser, N.; Machleidt, R.; Nosyk, Y. Dominant contributions to the nucleon-nucleon interaction at sixth order of chiral perturbation theory. Phys. Rev. C 2015, 92, 064001. [Google Scholar] [CrossRef] [Green Version]
- Epelbaum, E. Nuclear Chiral EFT in the Precision Era. arXiv 2016, arXiv:1510.07036. [Google Scholar]
- Reinert, P.; Krebs, H.; Epelbaum, E. Semilocal momentum-space regularized chiral two-nucleon potentials up to fifth order. Eur. Phys. J. A 2018, 54, 86. [Google Scholar] [CrossRef] [Green Version]
- Wesolowski, S.; Svensson, I.; Ekström, A.; Forssén, C.; Furnstahl, R.J.; Melendez, J.A.; Phillips, D.R. Rigorous constraints on three-nucleon forces in chiral effective field theory from fast and accurate calculations of few-body observables. Phys. Rev. C 2021, 104, 064001. [Google Scholar] [CrossRef]
- Girlanda, L.; Filandri, E.; Kievsky, A.; Marcucci, L.E.; Viviani, M. Effect of the N3LO three-nucleon contact interaction on p-d scattering observables. Phys. Rev. C 2023, 107, L061001. [Google Scholar] [CrossRef]
- Marcucci, L.E.; Viviani, M.; Schiavilla, R.; Kievsky, A.; Rosati, S. Electromagnetic structure of A=2 and 3 nuclei and the nuclear current operator. Phys. Rev. C 2005, 72, 014001. [Google Scholar] [CrossRef] [Green Version]
- Gell-Mann, M. Conserved and partially conserved currents in the theory of weak interactions. In Proceedings of the 10th International Conference on High Energy Physics, Rochester, NY, USA, 25 August–1 September 1960; pp. 508–513. [Google Scholar]
- Patrignani, C.; Agashe, K.; Aielli, G.; Amsler, C.; Antonelli, M.; Asner, D.M.; Baer, H.; Banerjee, S.; Barnett, R.M.; Basaglia, T.; et al. Review of Particle Physics. Chin. Phys. C 2016, 40, 100001. [Google Scholar] [CrossRef] [Green Version]
- Nieves, J.; Ruiz Simo, I.; Vicente Vacas, M.J. The nucleon axial mass and the MiniBooNE Quasielastic Neutrino-Nucleus Scattering problem. Phys. Lett. B 2012, 707, 72–75. [Google Scholar] [CrossRef] [Green Version]
- Hill, R.J. The Modern description of semileptonic meson form factors. arXiv 2006, arXiv:hep-ph/0606023. [Google Scholar]
- Hill, R.J.; Paz, G. Model independent extraction of the proton charge radius from electron scattering. Phys. Rev. D 2010, 82, 113005. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, B.; Hill, R.J.; Paz, G. Model independent determination of the axial mass parameter in quasielastic neutrino-nucleon scattering. Phys. Rev. D 2011, 84, 073006. [Google Scholar] [CrossRef] [Green Version]
- Meyer, A.S.; Betancourt, M.; Gran, R.; Hill, R.J. Deuterium target data for precision neutrino-nucleus cross sections. Phys. Rev. D 2016, 93, 113015. [Google Scholar] [CrossRef] [Green Version]
- Bali, G.S.; Barca, L.; Collins, S.; Gruber, M.; Löffler, M.; Schäfer, A.; Söldner, W.; Wein, P.; Weishäupl, S.; Wurm, T. Nucleon axial structure from lattice QCD. J. High Energy Phys. 2020, 5, 126. [Google Scholar] [CrossRef]
- Park, S.; Gupta, R.; Yoon, B.; Mondal, S.; Bhattacharya, T.; Jang, Y.C.; Joó, B.; Winter, F. Precision nucleon charges and form factors using (2+1)-flavor lattice QCD. Phys. Rev. D 2022, 105, 054505. [Google Scholar] [CrossRef]
- Djukanovic, D.; von Hippel, G.; Koponen, J.; Meyer, H.B.; Ottnad, K.; Schulz, T.; Wittig, H. The isovector axial form factor of the nucleon from lattice QCD. Phys. Rev. D 2022, 106, 074503. [Google Scholar] [CrossRef]
- Aguilar-Arevalo, A.A.; Anderson, C.E.; Bazarko, A.O.; Brice, S.J.; Brown, B.C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J.M.; Cox, D.C.; et al. First Measurement of the Muon Neutrino Charged Current Quasielastic Double Differential Cross Section. Phys. Rev. D 2010, 81, 092005. [Google Scholar] [CrossRef] [Green Version]
- Bernard, V.; Elouadrhiri, L.; Meissner, U.G. Axial structure of the nucleon: Topical Review. J. Phys. G 2002, 28, R1–R35. [Google Scholar] [CrossRef] [Green Version]
- Meyer, A.S.; Walker-Loud, A.; Wilkinson, C. Status of Lattice QCD Determination of Nucleon Form Factors and their Relevance for the Few-GeV Neutrino Program. Annu. Rev. Nucl. Part. Sci. 2022, 72, 205–232. [Google Scholar] [CrossRef]
- Bodek, A.; Avvakumov, S.; Bradford, R.; Budd, H.S. Vector and Axial Nucleon Form Factors:A Duality Constrained Parameterization. Eur. Phys. J. C 2008, 53, 349–354. [Google Scholar] [CrossRef] [Green Version]
- Carlson, J.; Schiavilla, R. Structure and Dynamics of Few Nucleon Systems. Rev. Mod. Phys. 1998, 70, 743–842. [Google Scholar] [CrossRef] [Green Version]
- Pastore, S.; Schiavilla, R.; Goity, J.L. Electromagnetic two-body currents of one- and two-pion range. Phys. Rev. C 2008, 78, 064002. [Google Scholar] [CrossRef] [Green Version]
- Pastore, S.; Girlanda, L.; Schiavilla, R.; Viviani, M.; Wiringa, R.B. Electromagnetic Currents and Magnetic Moments in (chi)EFT. Phys. Rev. C 2009, 80, 034004. [Google Scholar] [CrossRef]
- Pastore, S.; Girlanda, L.; Schiavilla, R.; Viviani, M. The two-nucleon electromagnetic charge operator in chiral effective field theory (χEFT) up to one loop. Phys. Rev. C 2011, 84, 024001. [Google Scholar] [CrossRef] [Green Version]
- Kolling, S.; Epelbaum, E.; Krebs, H.; Meissner, U.G. Two-pion exchange electromagnetic current in chiral effective field theory using the method of unitary transformation. Phys. Rev. C 2009, 80, 045502. [Google Scholar] [CrossRef] [Green Version]
- Kolling, S.; Epelbaum, E.; Krebs, H.; Meissner, U.G. Two-nucleon electromagnetic current in chiral effective field theory: One-pion exchange and short-range contributions. Phys. Rev. C 2011, 84, 054008. [Google Scholar] [CrossRef]
- Baroni, A.; Schiavilla, R. Inclusive neutrino scattering off the deuteron at low energies in chiral effective field theory. Phys. Rev. C 2017, 96, 014002. [Google Scholar] [CrossRef] [Green Version]
- Baroni, A.; Schiavilla, R.; Marcucci, L.E.; Girlanda, L.; Kievsky, A.; Lovato, A.; Pastore, S.; Piarulli, M.; Pieper, S.C.; Viviani, M.; et al. Local chiral interactions, the tritium Gamow-Teller matrix element, and the three-nucleon contact term. Phys. Rev. C 2018, 98, 044003. [Google Scholar] [CrossRef] [Green Version]
- Dekker, M.J.; Brussaard, P.J.; Tjon, J.A. Relativistic meson exchange and isobar currents in electron scattering: Noninteracting Fermi gas analysis. Phys. Rev. C 1994, 49, 2650–2670. [Google Scholar] [CrossRef]
- Schiavilla, R.; Pandharipande, V.R.; Riska, D.O. Magnetic form factors of the trinucleons. Phys. Rev. C 1989, 40, 2294–2309. [Google Scholar] [CrossRef]
- Berg, H.; Arnold, W.; Huttel, E.; Krause, H.H.; Ulbricht, J.; Clausnitzer, G. Differential cross section, analyzing power and phase shifts for p - 3 He elastic scattering below 1.0 MeV. Nucl. Phys. A 1980, 334, 21–34. [Google Scholar] [CrossRef]
- Lonardoni, D.; Lovato, A.; Pieper, S.C.; Wiringa, R.B. Variational calculation of the ground state of closed-shell nuclei up to A=40. Phys. Rev. C 2017, 96, 024326. [Google Scholar] [CrossRef] [Green Version]
- Wiringa, R.B.; Pieper, S.C.; Carlson, J.; Pandharipande, V.R. Quantum Monte Carlo calculations of A = 8 nuclei. Phys. Rev. C 2000, 62, 014001. [Google Scholar] [CrossRef] [Green Version]
- Pudliner, B.S.; Pandharipande, V.R.; Carlson, J.; Pieper, S.C.; Wiringa, R.B. Quantum Monte Carlo calculations of nuclei with A <= 7. Phys. Rev. C 1997, 56, 1720–1750. [Google Scholar] [CrossRef] [Green Version]
- Piarulli, M. Studies of Two-Nucleon Interactions and Few-Body Electromagnetic Structure in Chiral Effective Field Theory. Ph.D. Thesis, Old Dominion University, Norfolk, VA, USA, 2015. [Google Scholar] [CrossRef]
- Piarulli, M.; Girlanda, L.; Schiavilla, R.; Kievsky, A.; Lovato, A.; Marcucci, L.E.; Pieper, S.C.; Viviani, M.; Wiringa, R.B. Local chiral potentials with Δ-intermediate states and the structure of light nuclei. Phys. Rev. C 2016, 94, 054007. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, K.E.; Fantoni, S. A quantum Monte Carlo method for nucleon systems. Phys. Lett. B 1999, 446, 99–103. [Google Scholar] [CrossRef]
- Lovato, A.; Gandolfi, S.; Carlson, J.; Pieper, S.C.; Schiavilla, R. Electromagnetic and neutral-weak response functions of 4He and 12C. Phys. Rev. C 2015, 91, 062501. [Google Scholar] [CrossRef] [Green Version]
- Lovato, A.; Gandolfi, S.; Carlson, J.; Lusk, E.; Pieper, S.C.; Schiavilla, R. Quantum Monte Carlo calculation of neutral-current ν−12C inclusive quasielastic scattering. Phys. Rev. C 2018, 97, 022502. [Google Scholar] [CrossRef] [Green Version]
- Bryan, R.; Gersten, A. Possible time-reversal noninvariance in nuclear forces. Phys. Rev. Lett. 1971, 26, 1000–1004, Erratum in Phys. Rev. Lett. 1971, 27, 1102–1102. [Google Scholar] [CrossRef]
- Chernykh, M.; Feldmeier, H.; Neff, T.; von Neumann-Cosel, P.; Richter, A. Pair decay width of the Hoyle state and carbon production in stars. Phys. Rev. Lett. 2010, 105, 022501. [Google Scholar] [CrossRef] [Green Version]
- Efros, V.D.; Leidemann, W.; Orlandini, G.; Tomusiak, E.L. Improved (e,e’) response functions at intermediate momentum transfers: The He-3 case. Phys. Rev. C 2005, 72, 011002. [Google Scholar] [CrossRef]
- Efros, V.D.; Leidemann, W.; Orlandini, G.; Tomusiak, E.L. Improved transverse (e,e-prime) response function of He-3 at intermediate momentum transfers. Phys. Rev. C 2010, 81, 034001. [Google Scholar] [CrossRef]
- Yuan, L.P.; Efros, V.D.; Leidemann, W.; Tomusiak, E.L. Transverse electron scattering response function of 3He with Δ-isobar degrees of freedom. Phys. Rev. C 2010, 82, 054003. [Google Scholar] [CrossRef] [Green Version]
- Efros, V.D.; Leidemann, W.; Orlandini, G.; Tomusiak, E.L. Frame dependence of 3He transverse (e,e’) response functions at intermediate momentum transfers. Phys. Rev. C 2011, 83, 057001. [Google Scholar] [CrossRef] [Green Version]
- Yuan, L.; Leidemann, W.; Efros, V.D.; Orlandini, G.; Tomusiak, E.L. Transverse electron scattering response function of 3He in the quasi-elastic peak region and beyond with Δ isobar degrees of freedom. Phys. Lett. B 2011, 706, 90–93. [Google Scholar] [CrossRef] [Green Version]
- Benhar, O.; Lovato, A.; Rocco, N. Contribution of two-particle–two-hole final states to the nuclear response. Phys. Rev. C 2015, 92, 024602. [Google Scholar] [CrossRef] [Green Version]
- Rocco, N.; Lovato, A.; Benhar, O. Unified description of electron-nucleus scattering within the spectral function formalism. Phys. Rev. Lett. 2016, 116, 192501. [Google Scholar] [CrossRef] [Green Version]
- Ruiz Simo, I.; Amaro, J.E.; Barbaro, M.B.; De Pace, A.; Caballero, J.A.; Donnelly, T.W. Relativistic model of 2p-2h meson exchange currents in (anti)neutrino scattering. J. Phys. G 2017, 44, 065105. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, E.; Nieves, J.; Valverde, M. Weak Pion Production off the Nucleon. Phys. Rev. D 2007, 76, 033005. [Google Scholar] [CrossRef] [Green Version]
- Rocco, N.; Nakamura, S.X.; Lee, T.S.H.; Lovato, A. Electroweak Pion-Production on Nuclei within the Extended Factorization Scheme. Phys. Rev. C 2019, 100, 045503. [Google Scholar] [CrossRef] [Green Version]
- Lalakulich, O.; Paschos, E.A.; Piranishvili, G. Resonance production by neutrinos: The Second resonance region. Phys. Rev. D 2006, 74, 014009. [Google Scholar] [CrossRef] [Green Version]
- Paschos, E.A.; Yu, J.Y.; Sakuda, M. Neutrino production of resonances. Phys. Rev. D 2004, 69, 014013. [Google Scholar] [CrossRef] [Green Version]
- De Pace, A.; Nardi, M.; Alberico, W.M.; Donnelly, T.W.; Molinari, A. The 2p - 2h electromagnetic response in the quasielastic peak and beyond. Nucl. Phys. A 2003, 726, 303–326. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.s.h. Meson Exchange Hamiltonian For NN Scattering up to 1-GeV and Delta Nucleus Dynamics. Phys. Rev. Lett. 1983, 50, 1571–1574. [Google Scholar] [CrossRef]
- Lee, T.S.H. Meson Theory of Nucleon Nucleon Scattering up to 2-GeV. Phys. Rev. C 1984, 29, 195–203. [Google Scholar] [CrossRef]
- Lee, T.S.H.; Matsuyama, A. Theory of Mesonic and Dibaryonic excitations in the PI N N System: Derivation OF PI N N scattering equations. Phys. Rev. C 1985, 32, 516–530. [Google Scholar] [CrossRef]
- Lee, T.S.H.; Matsuyama, A. Unitary Meson Exchange πNN Models: NN and πD Elastic Scattering. Phys. Rev. C 1987, 36, 1459–1471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabrocini, A. Inclusive transverse response of nuclear matter. Phys. Rev. C 1997, 55, 338–348. [Google Scholar] [CrossRef] [Green Version]
- Franco-Munoz, T.; González-Jiménez, R.; Udías, J.M. Effects of two-body currents in the one-particle one-hole electromagnetic responses within a relativistic mean-field model. arXiv 2022, arXiv:2203.09996. [Google Scholar]
- Egiyan, K.S.; Dashyan, N.B.; Sargsian, M.M.; Strikman, M.I.; Weinstein, L.B.; Adams, G.; Ambrozewicz, P.; Anghinolfi, M.; Asavapibhop, B.; Asryan, G.; et al. Measurement of 2- and 3-nucleon short range correlation probabilities in nuclei. Phys. Rev. Lett. 2006, 96, 082501. [Google Scholar] [CrossRef] [Green Version]
- Weiss, R.; Denniston, A.W.; Pybus, J.R.; Hen, O.; Piasetzky, E.; Schmidt, A.; Weinstein, L.B.; Barnea, N. Extracting the number of short-range correlated nucleon pairs from inclusive electron scattering data. Phys. Rev. C 2021, 103, L031301. [Google Scholar] [CrossRef]
- Hen, O.; Sargsian, M.; Weinstein, L.B.; Piasetzky, E.; Hakobyan, H.; Higinbotham, D.W.; Braverman, M.; Brooks, W.K.; Gilad, S.; Adhikari, K.P.; et al. Momentum sharing in imbalanced Fermi systems. Science 2014, 346, 614–617. [Google Scholar] [CrossRef] [Green Version]
- Shneor, R.; Monaghan, P.; Subedi, R.; Anderson, B.D.; Aniol, K.; Annand, J.; Arrington, J.; Benaoum, H.; Benmokhtar, F.; Bertin, P.Y.; et al. Investigation of proton-proton short-range correlations via the C-12(e, e-prime pp) reaction. Phys. Rev. Lett. 2007, 99, 072501. [Google Scholar] [CrossRef] [Green Version]
- Benhar, O.; Fabrocini, A.; Fantoni, S.; Sick, I. Spectral function of finite nuclei and scattering of GeV electrons. Nucl. Phys. A 1994, 579, 493–517. [Google Scholar] [CrossRef]
- Benhar, O.; Fabrocini, A.; Fantoni, S. The Nucleon Spectral Function in Nuclear Matter. Nucl. Phys. A 1989, 505, 267–299. [Google Scholar] [CrossRef]
- Van Neck, D.; Dieperink, A.E.L.; Moya de Guerra, E. Spectral function for finite nuclei in the local-density approximation. Phys. Rev. C 1995, 51, 1800–1808. [Google Scholar] [CrossRef] [Green Version]
- Dickhoff, W.H.; Barbieri, C. Selfconsistent Green’s function method for nuclei and nuclear matter. Prog. Part. Nucl. Phys. 2004, 52, 377–496. [Google Scholar] [CrossRef] [Green Version]
- Barbieri, C.; Carbone, A. Self-consistent Green’s function approaches. Lect. Notes Phys. 2017, 936, 571–644. [Google Scholar] [CrossRef] [Green Version]
- Barbieri, C.; Rocco, N.; Somà, V. Lepton Scattering from 40Ar and Ti in the Quasielastic Peak Region. Phys. Rev. C 2019, 100, 062501. [Google Scholar] [CrossRef] [Green Version]
- Rocco, N. Ab initio Calculations of Lepton-Nucleus Scattering. Front. Phys. 2020, 8, 116. [Google Scholar] [CrossRef]
- Mecca, A.; Cravo, E.; Deltuva, A.; Crespo, R.; Cowley, A.A.; Arriaga, A.; Wiringa, R.B.; Noro, T. Interplay of dynamical and structure effects in the observables for 12 C(p,2p) near 400 MeV with polarized and unpolarized beams. Phys. Lett. B 2019, 798, 134989. [Google Scholar] [CrossRef]
- Green’s Function Monte Carlo Results for One-Nucleon Overlaps. Available online: https://www.phy.anl.gov/theory/research/overlap_gfmc/index.html (accessed on 25 July 2023).
- Two-Nucleon Momentum Distributions. Available online: https://www.phy.anl.gov/theory/research/momenta2/ (accessed on 25 July 2023).
- Aguilar-Arevalo, A.A. The MiniBooNE Experiment. eConf 2004, C0406271, MONP01. [Google Scholar]
- Available online: http://t2k-experiment.org (accessed on 25 July 2023).
- Valencia, E.; Jena, D.; Akbar, F.; Aliaga, L.; Andrade, D.A.; Ascencio, M.V.; Bashyal, A.; Bellantoni, L.; Bercellie, A.; Bodek, A.; et al. Constraint of the MINERνA medium energy neutrino flux using neutrino-electron elastic scattering. Phys. Rev. D 2019, 100, 092001. [Google Scholar] [CrossRef] [Green Version]
- González-Jiménez, R.; Megias, G.D.; Barbaro, M.B.; Caballero, J.A.; Donnelly, T.W. Extensions of superscaling from relativistic mean field theory: The SuSAv2 model. Phys. Rev. C 2014, 90, 035501. [Google Scholar] [CrossRef] [Green Version]
- Pandey, V.; Jachowicz, N.; Van Cuyck, T.; Ryckebusch, J.; Martini, M. Low-energy excitations and quasielastic contribution to electron-nucleus and neutrino-nucleus scattering in the continuum random-phase approximation. Phys. Rev. C 2015, 92, 024606. [Google Scholar] [CrossRef] [Green Version]
- Dolan, S.; Nikolakopoulos, A.; Page, O.; Gardiner, S.; Jachowicz, N.; Pandey, V. Implementation of the continuum random phase approximation model in the GENIE generator and an analysis of nuclear effects in low-energy transfer neutrino interactions. Phys. Rev. D 2022, 106, 073001. [Google Scholar] [CrossRef]
- Sealock, R.M.; Giovanetti, K.L.; Thornton, S.T.; Meziani, Z.E.; Rondon-Aramayo, O.A.; Auffret, S.; Chen, J.P.; Christian, D.G.; Day, D.B.; McCarthy, J.S.; et al. Electroexcitation Of The Delta (1232) In Nuclei. Phys. Rev. Lett. 1989, 62, 1350–1353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barreau, P.; Bernheim, M.; Duclos, J.; Finn, J.M.; Meziani, Z.; Morgenstern, J.; Mougey, J.; Royer, D.; Saghai, B.; Tarnowski, D.; et al. Deep Inelastic Electron Scattering From Carbon. Nucl. Phys. 1983, A402, 515–540. [Google Scholar] [CrossRef]
- Benhar, O.; Day, D.; Sick, I. An Archive for quasi-elastic electron-nucleus scattering data. arXiv 2006, arXiv:nucl-ex/0603032. [Google Scholar]
- Rocco, N.; Alvarez-Ruso, L.; Lovato, A.; Nieves, J. Electromagnetic scaling functions within the Green’s function Monte Carlo approach. Phys. Rev. C 2017, 96, 015504. [Google Scholar] [CrossRef] [Green Version]
- Sobczyk, J.E.; Acharya, B.; Bacca, S.; Hagen, G. Coulomb sum rule for 4He and 16O from coupled-cluster theory. Phys. Rev. C 2020, 102, 064312. [Google Scholar] [CrossRef]
- Sobczyk, J.E.; Acharya, B.; Bacca, S.; Hagen, G. Ab initio computation of the longitudinal response function in 40Ca. Phys. Rev. Lett. 2021, 127, 072501. [Google Scholar] [CrossRef]
- Pastore, S.; Carlson, J.; Gandolfi, S.; Schiavilla, R.; Wiringa, R.B. Quasielastic lepton scattering and back-to-back nucleons in the short-time approximation. Phys. Rev. C 2020, 101, 044612. [Google Scholar] [CrossRef] [Green Version]
- Andreoli, L.; Carlson, J.; Lovato, A.; Pastore, S.; Rocco, N.; Wiringa, R.B. Electron scattering on A=3 nuclei from quantum Monte Carlo based approaches. Phys. Rev. C 2022, 105, 014002. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lovato, A.; Nikolakopoulos, A.; Rocco, N.; Steinberg, N. Lepton–Nucleus Interactions within Microscopic Approaches. Universe 2023, 9, 367. https://doi.org/10.3390/universe9080367
Lovato A, Nikolakopoulos A, Rocco N, Steinberg N. Lepton–Nucleus Interactions within Microscopic Approaches. Universe. 2023; 9(8):367. https://doi.org/10.3390/universe9080367
Chicago/Turabian StyleLovato, Alessandro, Alexis Nikolakopoulos, Noemi Rocco, and Noah Steinberg. 2023. "Lepton–Nucleus Interactions within Microscopic Approaches" Universe 9, no. 8: 367. https://doi.org/10.3390/universe9080367
APA StyleLovato, A., Nikolakopoulos, A., Rocco, N., & Steinberg, N. (2023). Lepton–Nucleus Interactions within Microscopic Approaches. Universe, 9(8), 367. https://doi.org/10.3390/universe9080367