Properties of Hot Nuclear Matter
Abstract
:1. Introduction
2. Nuclear Hamiltonian
2.1. Renormalisation of the Nucleon–Nucleon Interaction
2.2. The CBF Effective Interaction
3. Many-Body Perturbation Theory at Finite Temperature
3.1. Perturbative Expansion
3.2. Thermodynamic Consistency
4. Equilibrium Properties of Hot Nuclear Matter
5. Thermal Effects on Nuclear Matter Properties
Charge-Neutral -Stable Matter at Finite Temperature
6. Bulk Viscosity of Neutron Star Matter
6.1. Dissipative Processes in Fluids
6.2. Bulk Viscosity of -Stable Matter
6.3. Calculation of the Bulk Viscosity Coefficient
7. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
1 | In this article, we adopt the system of natural units, in which , and, unless otherwise specified, neglect the small proton–neutron mass difference. |
References
- Baiotti, L.; Rezzolla, L. Binary neutron star mergers: A review of Einstein’s richest laboratory. Rep. Prog. Phys. 2017, 80, 096901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raithel, C.A.; Paschalidis, V.; Özel, F. Realistic finite-temperature effects in neutron star merger simulations. Phys. Rev. D 2021, 104, 063016. [Google Scholar] [CrossRef]
- Figura, A.; Lu, J.J.; Burgio, G.F.; Li, Z.H.; Schulze, H.J. Hybrid equation of state approach in binary neutron-star merger simulations. Phys. Rev. D 2020, 102, 043006. [Google Scholar] [CrossRef]
- Figura, A.; Li, F.; Lu, J.J.; Burgio, G.F.; Li, Z.H.; Schulze, H.J. Binary neutron star merger simulations with hot microscopic equations of state. Phys. Rev. D 2021, 103, 083012. [Google Scholar] [CrossRef]
- Hammond, P.; Hawke, I.; Andersson, N. Thermal aspects of neutron star mergers. Phys. Rev. D 2021, 104, 103006. [Google Scholar] [CrossRef]
- Alford, M.G.; Bovard, L.; Hanauske, M.; Rezzolla, L.; Schwenzer, K. Viscous Dissipation and Heat Conduction in Binary Neutron-Star Mergers. Phys. Rev. Lett. 2018, 120, 041101. [Google Scholar] [CrossRef] [Green Version]
- Camelio, G.; Lovato, A.; Gualtieri, L.; Benhar, O.; Pons, J.A.; Ferrari, V. Evolution of a proto-neutron star with a nuclear many-body equation of state: Neutrino luminosity and gravitational wave frequencies. Phys. Rev. D 2017, 96, 043015. [Google Scholar] [CrossRef] [Green Version]
- Prakash, M.; Bombaci, I.; Prakash, M.; Ellis, P.J.; Lattimer, J.M.; Knorren, R. Composition and structure of protoneutron stars. Phys. Rep. 1997, 280, 1–77. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, J.D.; Ott, C.D.; O’Connor, E.P.; Kiuchi, K.; Roberts, L.; Duez, M. The influence of thermal pressure on equilibrium models of hypermassive neutron star merger remnants. Astrophys. J. 2014, 790, 19. [Google Scholar] [CrossRef]
- Lu, J.J.; Li, Z.H.; Burgio, G.F.; Figura, A.; Schulze, H.J. Hot neutron stars with microscopic equations of state. Phys. Rev. C 2019, 100, 054335. [Google Scholar] [CrossRef] [Green Version]
- Kanzawa, H.; Oyamatsu, K.; Sumiyoshi, K.; Takano, M. Variational calculation for the equation of state of nuclear matter at finite temperatures. Nucl. Phys. A 2007, 791, 232. [Google Scholar] [CrossRef] [Green Version]
- Benhar, O.; Lovato, A. Perturbation theory of nuclear matter with a microscopic effective interaction. Phys. Rev. C 2017, 96, 054301. [Google Scholar] [CrossRef] [Green Version]
- Benhar, O.; Lovato, A.; Camelio, G. Modeling Neutron Star Matter in the Age of Multimessenger Astrophysics. Astrophys. J. 2022, 959, 52. [Google Scholar] [CrossRef]
- Tonetto, L.; Benhar, O. Thermal effects on nuclear matter properties. Phys. Rev. D 2022, 106, 103020. [Google Scholar] [CrossRef]
- Wiringa, R.B.; Stoks, V.G.J.; Schiavilla, R. An Accurate nucleon-nucleon potential with charge independence breaking. Phys. Rev. C 1995, 51, 38–51. [Google Scholar] [CrossRef] [Green Version]
- Carlson, J.; Pandharipande, V.R.; Wiringa, R.B. Three-nucleon interaction in 3-, 4- and ∞-body systems. Nucl. Phys. A 1983, 401, 59. [Google Scholar] [CrossRef]
- Pudliner, B.S.; Pandharipande, V.R.; Carlson, J.; Wiringa, R.B. Quantum Monte Carlo calculations of A ≤ 6 nuclei. Phys. Rev. Lett. 1995, 74, 4396. [Google Scholar] [CrossRef] [Green Version]
- Carlson, J.; Gandolfi, S.; Pederiva, F.; Pieper, S.C.; Schiavilla, R.; Schmidt, K.E.; Wiringa, R.B. Quantum Monte Carlo methods for nuclear physics. Rev. Mod. Phys. 2015, 87, 1067. [Google Scholar] [CrossRef] [Green Version]
- Clark, J.W. Variational theory of nuclear matter. Prog. Part. Nucl. Phys. 1979, 2, 89. [Google Scholar] [CrossRef]
- Fantoni, S.; Fabrocini, A. Correlated Basis Function Theory for Fermion Systems. In Microscopic Quantum Many-Body Theories and Their Applications; Jesùs Navarro, J., Polls, A., Eds.; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 1998; Volume 501, p. 119. [Google Scholar] [CrossRef]
- Cowell, S.; Pandharipande, V.R. Quenching of weak interactions in nucleon matter. Phys. Rev. C 2003, 67, 035504. [Google Scholar] [CrossRef] [Green Version]
- Cowell, S.T.; Pandharipande, V.R. Neutrino mean free paths in cold symmetric nuclear matter. Phys. Rev. C 2004, 70, 035801. [Google Scholar] [CrossRef]
- Benhar, O.; Valli, M. Shear viscosity of neutron matter from realistic nucleon-nucleon interactions. Phys. Rev. Lett. 2007, 99, 232501. [Google Scholar] [CrossRef] [Green Version]
- Lovato, A.; Losa, C.; Benhar, O. Weak response of cold symmetric nuclear matter at three-body cluster level. Nucl. Phys. A 2013, 901, 22. [Google Scholar] [CrossRef] [Green Version]
- Lovato, A.; Benhar, O.; Gandolfi, S.; Losa, C. Neutral-current interactions of low-energy neutrinos in dense neutron matter. Phys. Rev. C 2014, 89, 025804. [Google Scholar] [CrossRef] [Green Version]
- Wiringa, R.B.; Pieper, S.C. Evolution of nuclear spectra with nuclear forces. Phys. Rev. Lett. 2002, 89, 182501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujita, J.; Miyazawa, H. Pion Theory of Three-Body Forces. Prog. Theor. Phys. 1957, 17, 360. [Google Scholar] [CrossRef] [Green Version]
- Lovato, A.; Bombaci, I.; Logoteta, D.; Piarulli, M.; Wiringa, R.B. Benchmark calculations of infinite neutron matter with realistic two- and three-nucleon potentials. Phys. Rev. C 2022, 105, 055808. [Google Scholar] [CrossRef]
- Akmal, A.; Pandharipande, V.R.; Ravenhall, D.G. Equation of state of nucleon matter and neutron star structure. Phys. Rev. C 1998, 58, 1804. [Google Scholar] [CrossRef] [Green Version]
- Thouless, D. The Quantum Mechanics of Many-Body Systems; Academic Press: New York, NY, USA, 1961. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Statistical Physics; Pergamon Press: Oxford, UK, 1969. [Google Scholar]
- Baldo, M. (Ed.) Nuclear Matter and the Nuclear Equation of State; World Scientific: Singapore, 1990. [Google Scholar]
- Hugenholtz, N.M.; Van Hove, L. A theorem on the single particle energy in a Fermi gas with interaction. Physica 1958, 24, 363. [Google Scholar] [CrossRef] [Green Version]
- Lejeune, A.; Grange, P.; Martzollf, M.; Cugnon, J. Hot nuclear matter in an extended Brueckner approach. Nucl. Phys. A 1986, 453, 189. [Google Scholar] [CrossRef] [Green Version]
- Heyer, J.; Kuo, T.T.S.; Shen, J.P.; Wu, S.S. Finite-temperature density-dependent HF calculation of nuclear matter with Gogny interaction. Phys. Lett. B 1988, 202, 465. [Google Scholar] [CrossRef]
- Chandrasekhar, S. Solutions of Two Problems in the Theory of Gravitational Radiation. Phys. Rev. Lett. 1970, 24, 611. [Google Scholar] [CrossRef]
- Chandrasekhar, S. The Effect of gravitational radiation on the secular stability of the Maclaurin spheroid. Astrophys. J. 1970, 161, 561. [Google Scholar] [CrossRef]
- Friedman, J.L.; Schutz, B.F. Secular instability of rotating Newtonian stars. Astrophys. J. 1978, 222, 281. [Google Scholar] [CrossRef] [Green Version]
- Andersson, N.; Kokkotas, K.D. The r-mode instability in rotating neutron stars. Int. J. Mod. Phys. D 2001, 10, 381. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.; Jawahar, S.; Lockerbie, N.; Tokmakov, K.; LIGO Scientific Collaboration and Virgo Collaboration. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [Green Version]
- Alford, M.G.; Harris, S.P. Damping of density oscillations in neutrino-transparent nuclear matter. Phys. Rev. C 2019, 100, 035803. [Google Scholar] [CrossRef] [Green Version]
- Landau, L.D.; Lifshitz, E.M. Fluid Mechanics, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 1987. [Google Scholar]
- Schaefer, T. Fluid Dynamics and Viscosity in Strongly Correlated Fluids. Annu. Rev. Nucl. Part. Sci. 2014, 64, 125. [Google Scholar] [CrossRef] [Green Version]
- Haensel, P.; Schaeffer, R. Bulk viscosity of hot-neutron-star matter from direct URCA processes. Phys. Rev. D 1992, 45, 4708–4712. [Google Scholar] [CrossRef]
- Haensel, P.; Levenfish, K.P.; Yakovlev, D.G. Bulk viscosity in superfluid neutron star cores. I. direct urca processes in npeμ matter. Astron. Astrophys. 2000, 357, 1157. [Google Scholar] [CrossRef]
- Sawyer, R.F. Bulk viscosity of hot neutron-star matter and the maximum rotation rates of neutron stars. Phys. Rev. D 1989, 39, 3804. [Google Scholar] [CrossRef] [PubMed]
- Alford, M.; Harutyunyan, A.; Sedrakian, A. Bulk Viscous Damping of Density Oscillations in Neutron Star Mergers. Particles 2020, 3, 34. [Google Scholar] [CrossRef]
- Alford, M.G.; Harris, S.P. β-equilibrium in neutron-star mergers. Phys. Rev. C 2018, 98, 065806. [Google Scholar] [CrossRef] [Green Version]
- Yakovlev, D.; Kaminker, A.; Gnedin, O.; Haensel, P. Neutrino emission from neutron stars. Phys. Rep. 2001, 354, 1–155. [Google Scholar] [CrossRef] [Green Version]
- Benhar, O. Testing the Paradigm of Nuclear Many-Body Theory. Particles 2023, 6, 611–621. [Google Scholar] [CrossRef]
- Loffredo, E.; Perego, A.; Logoteta, D.; Branchesi, M. Muons in the aftermath of neutron star mergers and their impact on trapped neutrinos. Astron. Astrophys. 2023, 672, A124. [Google Scholar] [CrossRef]
- Vidaña, I.; Bombaci, I.; Polls, A.; Ramos, A. Microscopic study of neutrino trapping in hyperon stars. Astron. Astrophys. 2003, 399, 687–693. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benhar, O.; Lovato, A.; Tonetto, L. Properties of Hot Nuclear Matter. Universe 2023, 9, 345. https://doi.org/10.3390/universe9080345
Benhar O, Lovato A, Tonetto L. Properties of Hot Nuclear Matter. Universe. 2023; 9(8):345. https://doi.org/10.3390/universe9080345
Chicago/Turabian StyleBenhar, Omar, Alessandro Lovato, and Lucas Tonetto. 2023. "Properties of Hot Nuclear Matter" Universe 9, no. 8: 345. https://doi.org/10.3390/universe9080345
APA StyleBenhar, O., Lovato, A., & Tonetto, L. (2023). Properties of Hot Nuclear Matter. Universe, 9(8), 345. https://doi.org/10.3390/universe9080345