Fisher Information-Based Optimization of Mapped Fourier Grid Methods
Abstract
:1. Introduction
2. Mapped Fourier Grid Method
2.1. Basic Elements of a DVR and the Fourier Grid Method
2.2. Mapping Considerations and Procedure
2.3. Transformation of the Differential Equations
3. Fisher Information Measure
4. Results and Discussion
4.1. Schrödinger Equation: Fisher Information and Level Energy Systematics on rmax and N
4.2. Dalgarno Lewis Equation: Fisher Information and Dipole Polarizability Systematics on rmax and N
4.3. Schrödinger Equation: Fisher Information Systematics on Transformations h(x) = xk, k ≥ 2
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zimmerman, M.L.; Littman, M.G.; Kash, M.K.; Kleppner, D. Stark structure of the Rydberg states of alkali-metal atoms. Phys. Rev. A 1979, 20, 2251–2275. [Google Scholar] [CrossRef]
- Salvat, F.; Fernández-Varea, J.M.; Williamson, W., Jr. Accurate numerical solution of the radial Schrödinger and Dirac wave equations. Comput. Phys. Commun. 1995, 90, 151–168. [Google Scholar] [CrossRef]
- Bray, I.; Fursa, D.V. Calculation of ionization within the close-coupling formalism. Phys. Rev. A 1996, 54, 2991–3004. [Google Scholar] [CrossRef]
- Pindzola, M.S.; Robicheaux, F.J. Time-dependent close-coupling calculations for the electron-impact ionization of helium. Phys. Rev. A 2000, 61, 052707. [Google Scholar] [CrossRef]
- Abdurakhmanov, I.B.; Bailey, J.J.; Kadyrov, A.S.; Bray, I. Wave-packet continuum-discretization approach to ion-atom collisions including rearrangement: Application to differential ionization in proton-hydrogen scattering. Phys. Rev. A 2018, 97, 032707. [Google Scholar] [CrossRef]
- Douguet, N.; Guchkov, M.; Bartschat, K.; Santos, S.F.d. Efficient Time-Dependent Method for Strong-Field Ionization of Atoms with Smoothly Varying Radial Steps. Atoms 2024, 12, 34. [Google Scholar] [CrossRef]
- Meyer, R. Trigonometric Interpolation Method for One-Dimensional Quantum-Mechanical Problems. J. Chem. Phys. 1970, 52, 2053–2059. [Google Scholar] [CrossRef]
- Light, J.C.; Hamilton, I.P.; Lill, J.V. Generalized discrete variable approximation in quantum mechanics. J. Chem. Phys. 1985, 82, 1400–1409. [Google Scholar] [CrossRef]
- Marston, C.C.; Balint-Kurti, G.G. The Fourier grid Hamiltonian method for bound state eigenvalues and eigenfunctions. J. Chem. Phys. 1989, 91, 3571–3576. [Google Scholar] [CrossRef]
- Colbert, D.T.; Miller, W.H. A novel discrete variable representation for quantum mechanical reactive scattering via the S-matrix Kohn method. J. Chem. Phys. 1992, 96, 1982–1991. [Google Scholar] [CrossRef]
- Rescigno, T.N.; McCurdy, C.W. Numerical grid methods for quantum-mechanical scattering problems. Phys. Rev. A 2000, 62, 032706. [Google Scholar] [CrossRef]
- Yu, D.; Cong, S.-L.; Zhang, D.H.; Sun, Z. Mapped Finite Element Discrete Variable Representation. Chin. J. Chem. Phys. 2013, 26, 755–764. [Google Scholar] [CrossRef]
- Yu, D.; Cong, S.-L.; Sun, Z. An improved Lobatto discrete variable representation by a phase optimisation and variable mapping method. Chem. Phys. 2015, 458, 41–51. [Google Scholar] [CrossRef]
- Fattal, E.; Baer, R.; Kosloff, R. Phase space approach for optimizing grid representations: The mapped Fourier method. Phys. Rev. E 1996, 53, 1217–1227. [Google Scholar] [CrossRef]
- Ackad, E.; Horbatsch, M. Numerical solution of the Dirac equation by a mapped Fourier grid method. J. Phys. A 2005, 38, 3157–3171. [Google Scholar] [CrossRef]
- Kokoouline, V.; Dulieu, O.; Kossloff, R.; Masnou-Seeuws, F. Mapped Fourier methods for long-range molecules: Application to perturbations in the Rb2(0u+) photoassociation spectrum. J. Chem. Phys. 1999, 110, 9865. [Google Scholar] [CrossRef]
- Lemoine, D. Optimized grid representations in curvilinear coordinates: The mapped sine Fourier method. Chem. Phys. Lett. 2000, 320, 492–498. [Google Scholar] [CrossRef]
- Nest, M.; Meyer, H.-D. Improving the mapping mechanism of the mapped Fourier method. Chem. Phys. Lett. 2002, 352, 486–490. [Google Scholar] [CrossRef]
- Willner, K.; Dulieu, O.; Masnou-Seeuws, F. Mapped grid methods for long-range molecules and cold collisions. J. Chem. Phys. 2004, 120, 548–561. [Google Scholar] [CrossRef]
- Kokoouline, V.; Masnou-Seeuws, F. Calculation of loosely bound levels for three-body quantum systems using hyperspherical coordinates with a mapping procedure. Phys. Rev. A 2006, 73, 012702. [Google Scholar] [CrossRef]
- Cohen, S.; Themelis, S.I. Numerical solution of Dalgarno-Lewis equations by a mapped Fourier grid method. J. Chem. Phys. 2006, 124, 134106. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.; Themelis, S.I.; Sen, K.D. Dynamic dipole polarizabilities of the ground and excited states of confined hydrogen atom computed by means of a mapped Fourier grid method. Int. J. Quantum Chem. 2008, 108, 351–361. [Google Scholar] [CrossRef]
- Meshkov, V.V.; Stolyarov, A.V.; Le Roy, R.J. Adaptive analytical mapping procedure for efficiently solving the radial Schrödinger equation. Phys. Rev. A 2008, 78, 052510. [Google Scholar] [CrossRef]
- Meshkov, V.V.; Stolyarov, A.V.; Le Roy, R.J. Rapid, accurate calculation of the s-wave scattering length. J. Chem. Phys. 2011, 135, 154108. [Google Scholar] [CrossRef]
- Frieden, B.R. Science from Fisher Information: A Unification; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar] [CrossRef]
- Romera, E.; Dehesa, J.S. The Fisher–Shannon information plane, an electron correlation tool. J. Chem. Phys. 2004, 120, 8906–8912. [Google Scholar] [CrossRef]
- González-Férez, R.; Dehesa, J.S. Characterization of atomic avoided crossings by means of Fisher’s information. Eur. Phys. J. D 2005, 32, 39–43. [Google Scholar] [CrossRef]
- Stam, A. Some inequalities satisfied by the quantities of information of Fisher and Shannon. Inform. Control 1959, 2, 101–112. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I.; Mycielski, J. Uncertainty relations for information entropy in wave mechanics. Commun. Math. Phys. 1975, 44, 129–132. [Google Scholar] [CrossRef]
- Sánchez-Moreno, P.; González-Férez, R.; Dehesa, J.S. Improvement of the Heisenberg and Fisher-information-based uncertainty relations for D-dimensional central potentials. New J. Phys. 2006, 8, 330. [Google Scholar] [CrossRef]
- Patil, S.H.; Sen, K.D. Uncertainty relations for modified isotropic harmonic oscillator and Coulomb potentials. Phys. Lett. A 2007, 362, 109–114. [Google Scholar] [CrossRef]
- Frieden, B.R. Fisher information as the basis for the Schrödinger wave equation. Am. J. Phys. 1989, 57, 1004–1008. [Google Scholar] [CrossRef]
- Angulo, J.C.; Antolin, J.; Sen, K.D. Fisher–Shannon plane and statistical complexity of atoms. Phys. Lett. A 2008, 372, 670–674. [Google Scholar] [CrossRef]
- Aquino, N.; Flores-Riveros, A.; Rivas-Silva, J.F. Shannon and Fisher entropies for a hydrogen atom under soft spherical confinement. Phys. Lett. A 2013, 377, 2062–2068. [Google Scholar] [CrossRef]
- Mukherjee, N.; Majumdar, S.; Roy, A.K. Fisher information in confined hydrogen-like ions. Chem. Phys. Lett. 2018, 691, 449–455. [Google Scholar] [CrossRef]
- Majumdar, S.; Roy, A.K. Shannon Entropy in Confined He-Like Ions within a Density Functional Formalism. Quantum Rep. 2020, 2, 189–207. [Google Scholar] [CrossRef]
- Salazar, S.J.C.; Laguna, H.G.; Dahiya, B.; Prasad, V.; Sagar, R.P. Shannon information entropy sum of the confined hydrogenic atom under the influence of an electric field. Eur. Phys. J. D 2021, 75, 127, Erratum in Eur. Phys. J. D 2021, 75, 255. https://doi.org/10.1140/epjd/s10053-021-00238-w. [Google Scholar] [CrossRef]
- Martínez-Flores, C. Shannon entropy and Fisher information for endohedral confined one- and two-electron atoms. Phys. Lett. A 2021, 386, 126988. [Google Scholar] [CrossRef]
- Kumar, K.; Prasad, V. Entropic measures of an atom confined in modified Hulthén potential. Results Phys. 2021, 21, 103796. [Google Scholar] [CrossRef]
- Romera, E.; Sánchez-Moreno, P.; Dehesa, J.S. The Fisher information of single-particle systems with a central potential. Chem. Phys. Lett. 2005, 414, 468–472. [Google Scholar] [CrossRef]
- Gadre, S.R.; Kulkarni, S.A.; Shrivastava, I.H. Cross-entropy minimization for refinement of Gaussian basis sets. Chem. Phys. Lett. 1990, 166, 445–451. [Google Scholar] [CrossRef]
- Gadre, S.R.; Sears, S.B.; Chakravorty, S.J.; Bendale, R.D. Some novel characteristics of atomic information entropies. Phys. Rev. A 1985, 32, 2602–2606. [Google Scholar] [CrossRef] [PubMed]
- Gadre, S.R.; Kulkarni, S.A.; Shrivastava, I.H. Use of second-moment constraints for the refinement of determinantal wave functions. Phys. Rev. A 1988, 38, 487–489. [Google Scholar] [CrossRef] [PubMed]
- Nagy, Á.; Parr, R.G. Information entropy as a measure of the quality of an approximate electronic wave function. Int. J. Quantum Chem. 1996, 58, 323–327. [Google Scholar] [CrossRef]
- Cohen, S. Systematics of perturbative semiclassical quantum defect expansions probed by RKR-QDT and a Fisher-information-based criterion. Eur. Phys. J. D 2009, 55, 67–74. [Google Scholar] [CrossRef]
- Dalgarno, A.; Lewis, J.T. The exact calculation of long-range forces between atoms by perturbation theory. Proc. R. Soc. Lond. Ser. A 1955, 233, 70–74. [Google Scholar] [CrossRef]
- Fornberg, B. A Practical Guide to Pseudospectral Methods; Cambridge University Press: Cambridge, UK, 1996; pp. 83–100. [Google Scholar] [CrossRef]
- Baye, D. The Lagrange-mesh method. Phys. Rep. 2015, 565, 1–107, Erratum in Phys. Rep. 2024, 1084, 1–2. https://doi.org/10.1016/j.physrep.2024.06.006. [Google Scholar] [CrossRef]
- Bhatti, M.I.; Coleman, K.D.; Perger, W.F. Static polarizabilities of hydrogen in the B-spline basis set. Phys. Rev. A 2003, 68, 044503. [Google Scholar] [CrossRef]
- Gao, B.; Pan, C.; Liu, C.-R.; Starace, A.F. Variational methods for high-order multiphoton processes. J. Opt. Soc. Am. B 1990, 7, 622–630. [Google Scholar] [CrossRef]
- Aquino, N.; Campoy, G.; Montgomery, H.E., Jr. Highly accurate solutions for the confined hydrogen atom. Int. J. Quantum Chem. 2007, 107, 1548–1558. [Google Scholar] [CrossRef]
- Takemoto, N.; Shimshovitz, A.; Tannor, D.J. Communication: Phase space approach to laser-driven electronic wavepacket propagation. J. Chem. Phys. 2012, 137, 011102. [Google Scholar] [CrossRef]
- Chen, C.-T.; Robicheaux, F. R-matrix Floquet description of multiphoton ionization of Li. Phys. Rev. A 1996, 54, 3261–3269. [Google Scholar] [CrossRef] [PubMed]
- Flügge, S. Practical Quantum Mechanics; Springer: Berlin/Heidelberg, Germany, 1999; p. 175. [Google Scholar] [CrossRef]
- Frieden, R.; Plastino, A.; Plastino, A.R.; Soffer, B.H. Schrödinger link between nonequilibrium thermodynamics and Fisher information. Phys. Rev. E 2002, 66, 046128. [Google Scholar] [CrossRef] [PubMed]
- Nalewajski, R.F. Use of Fisher information in quantum chemistry. Int. J. Quantum Chem. 2008, 108, 2230–2252. [Google Scholar] [CrossRef]
- Flego, S.; Olivares, F.; Plastino, A.; Casas, M. Extreme Fisher Information, Non-Equilibrium Thermodynamics and Reciprocity Relations. Entropy 2011, 13, 184–194. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danakas, S.; Cohen, S. Fisher Information-Based Optimization of Mapped Fourier Grid Methods. Atoms 2024, 12, 50. https://doi.org/10.3390/atoms12100050
Danakas S, Cohen S. Fisher Information-Based Optimization of Mapped Fourier Grid Methods. Atoms. 2024; 12(10):50. https://doi.org/10.3390/atoms12100050
Chicago/Turabian StyleDanakas, Sotiris, and Samuel Cohen. 2024. "Fisher Information-Based Optimization of Mapped Fourier Grid Methods" Atoms 12, no. 10: 50. https://doi.org/10.3390/atoms12100050
APA StyleDanakas, S., & Cohen, S. (2024). Fisher Information-Based Optimization of Mapped Fourier Grid Methods. Atoms, 12(10), 50. https://doi.org/10.3390/atoms12100050