Atomic Data for Plasma Spectroscopy: The CHIANTI Database, Improvements and Challenges
Abstract
:1. Introduction
2. Atomic Processes within an Ion
2.1. Electron Collisional Excitation (CE)
2.2. Collisional Excitation from Protons
2.3. Radiative Data
2.4. Experimental Energies and Line Identifications
2.5. Photoexcitation (PE)
3. Atomic Processes Affecting the Ion Charge State
3.1. Collisional Ionization (CI) Rates
3.2. Photoionization (PI)
3.3. Recombination Rates
3.4. Time-Dependent Ionization (TDI)
3.5. Charge Exchange
4. Uncertainties on Atomic Rates
5. Non-Maxwellian Electron Distributions (NMED)
6. Towards Collisional-Radiative Modeling
7. Distribution and Maintenance of CHIANTI
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Young, P.R.; Dere, K.P.; Landi, E.; Del Zanna, G.; Mason, H.E. The CHIANTI atomic database. J. Phys. B At. Mol. Phys. 2016, 49, 074009. [Google Scholar] [CrossRef] [Green Version]
- Dere, K.P.; Landi, E.; Mason, H.E.; Monsignori Fossi, B.C.; Young, P.R. CHIANTI—An atomic database for emission lines. Astron. Astrophys. Suppl. Ser. 1997, 125, 149–173. [Google Scholar] [CrossRef] [Green Version]
- Ferland, G.J.; Chatzikos, M.; Guzmán, F.; Lykins, M.L.; van Hoof, P.A.M.; Williams, R.J.R.; Abel, N.P.; Badnell, N.R.; Keenan, F.P.; Porter, R.L.; et al. The 2017 Release Cloudy. RMXAA 2017, 53, 385–438. [Google Scholar]
- Ercolano, B.; Young, P.R.; Drake, J.J.; Raymond, J.C. X-Ray Enabled MOCASSIN: A Three-dimensional Code for Photoionized Media. Astrophys. J. Suppl. Ser. 2008, 175, 534–542. [Google Scholar] [CrossRef] [Green Version]
- Bautista, M.A.; Kallman, T.R. The XSTAR Atomic Database. Astrophys. J. Suppl. Ser. 2001, 134, 139–149. [Google Scholar] [CrossRef]
- Kerzendorf, W.E.; Sim, S.A. A spectral synthesis code for rapid modelling of supernovae. Mon. Not. R. Astron. Soc. 2014, 440, 387–404. [Google Scholar] [CrossRef]
- Smith, R.K.; Brickhouse, N.S.; Liedahl, D.A.; Raymond, J.C. Collisional Plasma Models with APEC/APED: Emission-Line Diagnostics of Hydrogen-like and Helium-like Ions. Astrophys. J. Lett. 2001, 556, L91–L95. [Google Scholar] [CrossRef] [Green Version]
- Kashyap, V.; Drake, J.J. PINTofALE: Package for the interactive analysis of line emission. Bull. Astron. Soc. India 2000, 28, 475–476. [Google Scholar]
- Judge, P.G.; Meisner, R.W. The ‘HAO Spectral Diagnostics Package’ (HAOS-Diaper). In Proceedings of the Third SOHO Workshop on Solar Dynamic Phenomena and Solar Wind Consequences, Estes Park, CO, USA, 26–29 September 1994; Hunt, J.J., Ed.; ESA Special Publication: Paris, France, 1994; Volume 373, p. 67. [Google Scholar]
- Kaastra, J.S.; Mewe, R.; Nieuwenhuijzen, H. SPEX: A New Code for Spectral Analysis of X & UV Spectra; UV and X-ray Spectroscopy of Astrophysical and Laboratory Plasmas: Cambridge, MA, USA, 1996; pp. 411–414. [Google Scholar]
- Albert, D.; Anton, B.K.; Ba, Y.-A.; Babikov, Y.L.; Bollard, P.; Boudon, V.; Delahaye, F.; Del Zanna, G.; Dimitrijevic, M.S.; Drouin, B.; et al. A decade with VAMDC: results and ambitio. Atoms 2020. submitted for publication. [Google Scholar]
- Gombosi, T.I.; van der Holst, B.; Manchester, W.B.; Sokolov, I.V. Extended MHD modeling of the steady solar corona and the solar wind. Living Rev. Sol. Phys. 2018, 15, 4. [Google Scholar] [CrossRef] [Green Version]
- Bradshaw, S.J.; Mason, H.E. A self-consistent treatment of radiation in coronal loop modelling. Astron. Astrophys. 2003, 401, 699–709. [Google Scholar] [CrossRef]
- Allred, J.C.; Kowalski, A.F.; Carlsson, M. A Unified Computational Model for Solar and Stellar Flares. Astrophys. J. 2015, 809, 104. [Google Scholar] [CrossRef] [Green Version]
- Del Zanna, G.; O’Dwyer, B.; Mason, H.E. SDO AIA and Hinode EIS observations of warm loops. Astron. Astrophys. 2011, 535, A46. [Google Scholar] [CrossRef]
- Boerner, P.F.; Testa, P.; Warren, H.; Weber, M.A.; Schrijver, C.J. Photometric and Thermal Cross-calibration of Solar EUV Instruments. Sol. Phys. 2014, 289, 2377–2397. [Google Scholar] [CrossRef] [Green Version]
- Hummer, D.G.; Berrington, K.A.; Eissner, W.; Pradhan, A.K.; Saraph, H.E.; Tully, J.A. Atomic data from the IRON Project. 1: Goals and methods. Astron. Astrophys. 1993, 279, 298–309. [Google Scholar]
- Berrington, K.A.; Eissner, W.B.; Norrington, P.H. RMATRX1: Belfast atomic R-matrix codes. Comput. Phys. Commun. 1995, 92, 290–420. [Google Scholar] [CrossRef]
- Burgess, A.; Tully, J.A. On the Analysis of Collision Strengths and Rate Coefficients. Astron. Astrophys. 1992, 254, 436. [Google Scholar]
- Del Zanna, G.; Mason, H.E. XUV Spectroscopy. Living Rev. Sol. Phys. 2018, 15, 5. [Google Scholar] [CrossRef]
- Griffin, D.C.; Badnell, N.R.; Pindzola, M.S. R-matrix electron-impact excitation cross sections in intermediate coupling: An MQDT transformation approach. J. Phys. B At. Mol. Phys. 1998, 31, 3713–3727. [Google Scholar] [CrossRef]
- Badnell, N.R.; Del Zanna, G.; Fernández-Menchero, L.; Giunta, A.S.; Liang, G.Y.; Mason, H.E.; Storey, P.J. Atomic processes for astrophysical plasmas. J. Phys. B At. Mol. Phys. 2016, 49, 094001. [Google Scholar] [CrossRef]
- Fernández-Menchero, L.; Zatsarinny, O.; Bartschat, K. Electron impact excitation of N3+ using the B-spline R-matrix method: Importance of the target structure description and the size of the close-coupling expansion. J. Phys. B At. Mol. Phys. 2017, 50, 065203. [Google Scholar] [CrossRef]
- Zatsarinny, O. BSR: B-spline atomic R-matrix codes. Comput. Phys. Commun. 2006, 174, 273–356. [Google Scholar] [CrossRef]
- Zatsarinny, O.; Bartschat, K. The B-spline R-matrix method for atomic processes: Application to atomic structure, electron collisions and photoionization. J. Phys. B At. Mol. Phys. 2013, 46, 112001. [Google Scholar] [CrossRef]
- Bray, I.; Stelbovics, A.T. Convergent close-coupling calculations of electron-hydrogen scattering. Phys. Rev. A 1992, 46, 6995–7011. [Google Scholar] [CrossRef] [Green Version]
- Mao, J.; Badnell, N.R.; Del Zanna, G. R-matrix electron-impact excitation data for the C-like iso-electronic sequence. Astron. Astrophys. 2020, 634, A7. [Google Scholar] [CrossRef]
- Del Zanna, G.; Dere, K.P.; Young, P.R.; Landi, E.; Mason, H.E. CHIANTI—An atomic database for emission lines. Version 8. Astron. Astrophys. 2015, 582, A56. [Google Scholar] [CrossRef]
- Del Zanna, G.; Storey, P.J.; Badnell, N.R.; Mason, H.E. Atomic data for astrophysics: Fe x soft X-ray lines. Astron. Astrophys. 2012, 541, A90. [Google Scholar] [CrossRef] [Green Version]
- Del Zanna, G.; Storey, P.J.; Badnell, N.R.; Andretta, V. Helium Line Emissivities in the Solar Corona. Astrophys. J. 2020, 898, 72. [Google Scholar] [CrossRef]
- Fernández-Menchero, L.; Del Zanna, G.; Badnell, N.R. Scaling of collision strengths for highly-excited states of ions of the H- and He-like sequences. Astron. Astrophys. 2016, 592, A135. [Google Scholar] [CrossRef] [Green Version]
- Del Zanna, G.; Storey, P.J.; Mason, H.E. Atomic data from the IRON project. LXVIII. Electron impact excitation of Fe XI. Astron. Astrophys. 2010, 514, A40+. [Google Scholar] [CrossRef] [Green Version]
- Griffin, D.C.; Pindzola, M.S.; Badnell, N.R. Electron-impact excitation of Fe7+. Astron. Astrophys. Suppl. Ser. 2000, 142, 317–323. [Google Scholar] [CrossRef]
- Tayal, S.S.; Zatsarinny, O. Effective Collision Strengths for Electron-impact Excitation of Fe VIII. Astrophys. J. 2011, 743, 206. [Google Scholar] [CrossRef]
- Del Zanna, G. Benchmarking atomic data for astrophysics: Fe VIII EUV lines. Astron. Astrophys. 2009, 508, 513–524. [Google Scholar] [CrossRef]
- Del Zanna, G.; Badnell, N.R. Atomic data for astrophysics: Improved collision strengths for Fe VIII. Astron. Astrophys. 2014, 570, A56. [Google Scholar] [CrossRef] [Green Version]
- Witthoeft, M.C.; Badnell, N.R. Atomic data from the IRON Project. LXV. Electron-impact excitation of Fe6+. Astron. Astrophys. 2008, 481, 543–551. [Google Scholar] [CrossRef]
- Del Zanna, G. Benchmarking atomic data for astrophysics: Fe VII and other cool lines observed by Hinode EIS. Astron. Astrophys. 2009, 508, 501–511. [Google Scholar] [CrossRef] [Green Version]
- Young, P.R.; Landi, E. Chianti-An Atomic Database for Emission Lines. XI. Extreme-Ultraviolet Emission Lines of Fe VII, Fe VIII, and Fe IX Observed by Hinode/EIS. Astrophys. J. 2009, 707, 173–192. [Google Scholar] [CrossRef] [Green Version]
- Tayal, S.S.; Zatsarinny, O. Electron Impact Excitation Collision Strengths for Extreme Ultraviolet Lines of Fe VII. Astrophys. J. 2014, 788, 24. [Google Scholar] [CrossRef]
- Young, P.R.; Del Zanna, G.; Landi, E.; Dere, K.P.; Mason, H.E.; Landini, M. CHIANTI-An Atomic Database for Emission Lines. VI. Proton Rates and Other Improvements. Astrophys. J. Suppl. Ser. 2003, 144, 135–152. [Google Scholar] [CrossRef]
- Froese Fischer, C.; Godefroid, M.; Brage, T.; Jönsson, P.; Gaigalas, G. Advanced multiconfiguration methods for complex atoms: I. Energies and wave functions. J. Phys. B At. Mol. Phys. 2016, 49, 182004. [Google Scholar] [CrossRef] [Green Version]
- Jönsson, P.; He, X.; Froese Fischer, C.; Grant, I.P. The grasp2K relativistic atomic structure package. Comput. Phys. Commun. 2007, 177, 597–622. [Google Scholar] [CrossRef]
- Jönsson, P.; Gaigalas, G.; Bieroń, J.; Fischer, C.F.; Grant, I.P. New version: GRASP2K relativistic atomic structure package. Comput. Phys. Commun. 2013, 184, 2197–2203. [Google Scholar] [CrossRef] [Green Version]
- Jönsson, P.; Gaigalas, G.; Rynkun, P.; Radžiūtė, L.; Ekman, J.; Gustafsson, S.; Hartman, H.; Wang, K.; Godefroid, M.; Froese Fischer, C.; et al. Multiconfiguration Dirac-Hartree-Fock Calculations with Spectroscopic Accuracy: Applications to Astrophysics. Atoms 2017, 5, 16. [Google Scholar] [CrossRef]
- Feldman, U.; Doschek, G.A. Improved low-lying energy levels determined from solar coronal forbidden and spin-forbidden lines in the 500 1500 Å range. At. Data Nucl. Data Tables 2007, 93, 779–806. [Google Scholar] [CrossRef]
- Young, P.R.; Feldman, U.; Lobel, A. Forbidden and Intercombination Lines of RR Telescopii: Wavelength Measurements and Energy Levels. Astrophys. J. Suppl. Ser. 2011, 196, 23. [Google Scholar] [CrossRef] [Green Version]
- Beiersdorfer, P.; Träbert, E.; Lepson, J.K.; Brickhouse, N.S.; Golub, L. High-resolution Laboratory Measurements of Coronal Lines in the 198-218 Å Region. Astrophys. J. 2014, 788, 25. [Google Scholar] [CrossRef]
- Del Zanna, G. Benchmarking atomic data for astrophysics: A first look at the soft X-ray lines. Astron. Astrophys. 2012, 546, A97. [Google Scholar] [CrossRef]
- Ballance, C.P.; Ludlow, J.A.; Pindzola, M.S.; Loch, S.D. Electron-impact ionization of ground and metastable neon. J. Phys. B At. Mol. Phys. 2009, 42, 175202. [Google Scholar] [CrossRef]
- Loch, S.D.; Ballance, C.P.; Wu, D.; Abdel-Naby, S.A.; Pindzola, M.S. Electron-impact ionization of Al. J. Phys. B At. Mol. Phys. 2012, 45, 065201. [Google Scholar] [CrossRef]
- Dere, K.P. Ionization rate coefficients for the elements hydrogen through zinc. Astron. Astrophys. 2007, 466, 771–792. [Google Scholar] [CrossRef] [Green Version]
- Gu, M.F. The flexible atomic code. Can. J. Phys. 2008, 86, 675–689. [Google Scholar] [CrossRef]
- Hahn, M. Electron impact ionization of stored highly charged ions. J. Phys. Conf. Ser. 2014, 488, 012050. [Google Scholar] [CrossRef] [Green Version]
- Dufresne, R.P.; Del Zanna, G. Modelling ion populations in astrophysical plasmas: Carbon in the solar transition region. Astron. Astrophys. 2019, 626, A123. [Google Scholar] [CrossRef] [Green Version]
- Dufresne, R.P.; Del Zanna, G.; Badnell, N.R. Effects of density on the oxygen ionization equilibrium in collisional plasmas. Mon. Not. R. Astron. Soc. 2020, 497, 1443–1456. [Google Scholar] [CrossRef]
- Berrington, K.A.; Burke, P.G.; Butler, K.; Seaton, M.J.; Storey, P.J.; Taylor, K.T.; Yan, Y. Atomic data for opacity calculations. II. Computational methods. J. Phys. B At. Mol. Phys. 1987, 20, 6379–6397. [Google Scholar] [CrossRef]
- Badnell, N.R.; Seaton, M.J. On the importance of inner-shell transitions for opacity calculations. J. Phys. B At. Mol. Phys. 2003, 36, 4367–4385. [Google Scholar] [CrossRef]
- Seaton, M.J.; Yan, Y.; Mihalas, D.; Pradhan, A.K. Opacities for Stellar Envelopes. Mon. Not. R. Astron. Soc. 1994, 266, 805. [Google Scholar] [CrossRef] [Green Version]
- Karzas, W.J.; Latter, R. Electron Radiative Transitions in a Coulomb Field. Astrophys. J. Suppl. Ser. 1961, 6, 167. [Google Scholar] [CrossRef]
- Verner, D.A.; Yakovlev, D.G. Analytic FITS for partial photoionization cross sections. Astron. Astrophys. Suppl. Ser. 1995, 109, 125–133. [Google Scholar]
- Gu, M.F. Indirect X-Ray Line-Formation Processes in Iron L-Shell Ions. Astrophys. J. 2003, 582, 1241–1250. [Google Scholar] [CrossRef]
- Badnell, N.R. Radiative Recombination Data for Modeling Dynamic Finite-Density Plasmas. Astrophys. J. Suppl. Ser. 2006, 167, 334–342. [Google Scholar] [CrossRef] [Green Version]
- Dere, K.P.; Del Zanna, G.; Young, P.R.; Landi, E.; Sutherland, R.S. CHIANTI—An Atomic Database for Emission Lines. XV. Version 9, Improvements for the X-Ray Satellite Lines. Astrophys. J. Suppl. Ser. 2019, 241, 22. [Google Scholar] [CrossRef] [Green Version]
- Badnell, N.R.; O’Mullane, M.G.; Summers, H.P.; Altun, Z.; Bautista, M.A.; Colgan, J.; Gorczyca, T.W.; Mitnik, D.M.; Pindzola, M.S.; Zatsarinny, O. Dielectronic recombination data for dynamic finite-density plasmas. I. Goals and methodology. Astron. Astrophys. 2003, 406, 1151–1165. [Google Scholar] [CrossRef]
- Burgess, A.; Summers, H.P. The Effects of Electron and Radiation Density on Dielectronic Recombination. Astrophys. J. 1969, 157, 1007. [Google Scholar] [CrossRef]
- Summers, H.P. The ionization equilibrium of hydrogen-like to argon-like ions of elements. Mon. Not. R. Astron. Soc. 1974, 169, 663–680. [Google Scholar] [CrossRef] [Green Version]
- Young, P.R. Element Abundance Ratios in the Quiet Sun Transition Region. Astrophys. J. 2018, 855, 15. [Google Scholar] [CrossRef] [Green Version]
- Nikolić, D.; Gorczyca, T.W.; Korista, K.T.; Chatzikos, M.; Ferland, G.J.; Guzmán, F.; van Hoof, P.A.M.; Williams, R.J.R.; Badnell, N.R. Suppression of Dielectronic Recombination Due to Finite Density Effects. II. Analytical Refinement and Application to Density-dependent Ionization Balances and AGN Broad-line Emission. Astrophys. J. Suppl. Ser. 2018, 237, 41. [Google Scholar] [CrossRef] [Green Version]
- Nikolić, D.; Gorczyca, T.W.; Korista, K.T.; Ferland, G.J.; Badnell, N.R. Suppression of Dielectronic Recombination due to Finite Density Effects. Astrophys. J. 2013, 768, 82. [Google Scholar] [CrossRef] [Green Version]
- Dudík, J.; Dzifčáková, E.; Meyer-Vernet, N.; Del Zanna, G.; Young, P.R.; Giunta, A.; Sylwester, B.; Sylwester, J.; Oka, M.; Mason, H.E. Nonequilibrium Processes in the Solar Corona, Transition Region, Flares, and Solar Wind (Invited Review). Sol. Phys. 2017, 292, 100. [Google Scholar] [CrossRef]
- Bradshaw, S.J.; Del Zanna, G.; Mason, H.E. On the consequences of a non-equilibrium ionisation balance for compact flare emission and dynamics. Astron. Astrophys. 2004, 425, 287–299. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Sykora, J.; De Pontieu, B.; Hansteen, V.H.; Gudiksen, B. Time Dependent Nonequilibrium Ionization of Transition Region Lines Observed with IRIS. Astrophys. J. 2016, 817, 46. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Del Zanna, G.; Stenning, D.C.; Cisewski-Kehe, J.; Kashyap, V.L.; Stein, N.; van Dyk, D.A.; Warren, H.P.; Weber, M.A. Incorporating Uncertainties in Atomic Data into the Analysis of Solar and Stellar Observations: A Case Study in Fe XIII. Astrophys. J. 2018, 866, 146. [Google Scholar] [CrossRef] [Green Version]
- Del Zanna, G.; Fernández-Menchero, L.; Badnell, N.R. Uncertainties on atomic data. A case study: N IV. Mon. Not. R. Astron. Soc. 2019, 484, 4754–4759. [Google Scholar] [CrossRef] [Green Version]
- Del Zanna, G.; Berrington, K.A.; Mason, H.E. Benchmarking atomic data for astrophysics: Fe X. Astron. Astrophys. 2004, 422, 731–749. [Google Scholar] [CrossRef] [Green Version]
- Dudík, J.; Del Zanna, G.; Dzifčáková, E.; Mason, H.E.; Golub, L. Solar Transition Region Lines Observed by the Interface Region Imaging Spectrograph: Diagnostics for the O IV and Si IV Lines. Astrophys. J. Lett. 2014, 780, L12. [Google Scholar] [CrossRef] [Green Version]
- Lörinčík, J.; Dudík, J.; del Zanna, G.; Dzifčáková, E.; Mason, H.E. Plasma Diagnostics from Active Region and Quiet-Sun Spectra Observed by Hinode/EIS: Quantifying the Departures from a Maxwellian Distribution. Astrophys. J. 2020, 893, 34. [Google Scholar] [CrossRef] [Green Version]
- Bartiromo, R.; Bombarda, F.; Giannella, R. Spectroscopic study of nonthermal plasmas. Phys. Rev. A 1985, 32, 531–537. [Google Scholar] [CrossRef]
- Glenzer, S.H.; Rosmej, F.B.; Lee, R.W.; Back, C.A.; Estabrook, K.G.; MacGowan, B.J.; Shepard, T.D.; Turner, R.E. Measurements of Suprathermal Electrons in Hohlraum Plasmas with X-Ray Spectroscopy. Phys. Rev. Lett. 1998, 81, 365–368. [Google Scholar] [CrossRef]
- Fang, X.; Storey, P.J.; Liu, X.W. New effective recombination coefficients for nebular N ii lines. Astron. Astrophys. 2011, 530, A18. [Google Scholar] [CrossRef] [Green Version]
- Storey, P.J.; Sochi, T. Emission and recombination coefficients for hydrogen with κ-distributed electron energies. Mon. Not. R. Astron. Soc. 2015, 446, 1864–1866. [Google Scholar] [CrossRef] [Green Version]
- Landi, E.; Del Zanna, G.; Young, P.R.; Dere, K.P.; Mason, H.E.; Landini, M. CHIANTI-An Atomic Database for Emission Lines. VII. New Data for X-Rays and Other Improvements. Astrophys. J. Suppl. Ser. 2006, 162, 261–280. [Google Scholar] [CrossRef] [Green Version]
- Hahn, M.; Savin, D.W. A Simple Method for Modeling Collision Processes in Plasmas with a Kappa Energy Distribution. Astrophys. J. 2015, 809, 178. [Google Scholar] [CrossRef]
- Dzifčáková, E.; Dudík, J.; Kotrč, P.; Fárník, F.; Zemanová, A. KAPPA: A Package for Synthesis of Optically Thin Spectra for the Non-Maxwellian κ-distributions Based on the Chianti Database. Astrophys. J. Suppl. Ser. 2015, 217, 14. [Google Scholar] [CrossRef] [Green Version]
- De Pontieu, B.; Title, A.M.; Lemen, J.R.; Kushner, G.D.; Akin, D.J.; Allard, B.; Berger, T.; Boerner, P.; Cheung, M.; Chou, C.; et al. The Interface Region Imaging Spectrograph (IRIS). Sol. Phys. 2014, 289, 2733–2779. [Google Scholar] [CrossRef]
- Anderson, M.; Appourchaux, T.; Auchère, F.; Aznar Cuadrado, R.; Barbay, J.; Baudin, F.; Beardsley, S.; Bocchialini, K.; Borgo, B.; Bruzzi, D.; et al. The Solar Orbiter SPICE instrument—An extreme UV imaging spectrometer. AA 2019. [Google Scholar] [CrossRef] [Green Version]
- Polito, V.; Del Zanna, G.; Dudík, J.; Mason, H.E.; Giunta, A.; Reeves, K.K. Density diagnostics derived from the O iv and S iv intercombination lines observed by IRIS. Astron. Astrophys. 2016, 594, A64. [Google Scholar] [CrossRef] [Green Version]
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 |
I | II | III | IV | V | VI | VII | VIII | IX | X | XI | XII | XIII | XIV | XV | XVI | XVII | XVIII | XIX | XX | XXI | XXII | XXIII | XXIV | XXV | XXVI | XXVII | XXVIII | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H | OA 25 | |||||||||||||||||||||||||||
He | OA 49 | OA 25 | ||||||||||||||||||||||||||
C | RM 42 | A12 204 | A14 75 | A11 63 AI:860 | OA 127 AI:450 | OA 25 | ||||||||||||||||||||||
N | RM 50 | RM 58 | A12 204 | A14 238 | A11 63 AI:860 | OA 127 AI:450 | OA 25 | |||||||||||||||||||||
O | RM 7 | RM 35 | A20 177 | A12 204 | A14 166 | A11 63 AI:860 | OA 127 AI:450 | OA 25 | ||||||||||||||||||||
Ne | A07 138 | RM+DW 86 | RM 22 | A20 304 | A12 204 | A14 166 | A11 63 AI:860 | OA 127 AI:450 | OA 36 | |||||||||||||||||||
Na | A10 209 | A07 195 | RM+I 10 | I 13 | A20 410 | A12 204 | A14 166 | A11 204 | OA 49 | OA 25 | ||||||||||||||||||
Mg | A09 32 AI:129 | A10 209 | A07 195 | RM+DW 86 | RM+DW 72 | A20 450 | A12 204 | A14 166 | A11 63 AI:860 | OA 127 AI:450 | OA 25 | |||||||||||||||||
Al | A14 60 | A09 32 AI:129 | A10 209 | A07 195 | I 10 | DW 15 | A20 482 | A12 204 | A14 166 | A11 63 AI:860 | OA 127 AI:450 | OA 25 | ||||||||||||||||
Si | RM 29 | A14 82 | A09 32 AI:129 | A10 209 | A07 195 | DW 86 | RM+DW 72 | A20 590 | A12 204 | A14 166 | A11 63 AI:860 | OA 127 AI:450 | OA 25 | |||||||||||||||
P | A14 117 | A09 32 AI:129 | A10 209 | A07 3 | DW 10 | DW 15 | A20 590 | A12 204 | A14 166 | A11 204 | OA 45 | OA 25 | ||||||||||||||||
S | RM 5 | RM 70 | RM 53 | RM 52 | A14 159 | A09 32 AI:129 | A10 209 | A07 195 | DW 86 | RM+DW 72 | A20 590 | A12 204 | A14 166 | A11 63 AI:860 | OA 127 AI:450 | OA 25 | ||||||||||||
Cl | RM 5 | RM 5 | RM 5 | A14 171 | DW 10 | DW 15 | A20 590 | A12 204 | A14 166 | A11 204 | OA 49 | OA 25 | ||||||||||||||||
Ar | RM 5 | RM 30 | RM 5 | A14 196 | A09 32 AI:129 | A10 209 | A07 195 | DW 86 | DW 725 | A20 590 | A12 204 | A14 166 | A11 63 AI:860 | OA 127 AI:450 | OA 25 | |||||||||||||
K | RM 5 | RM 5 | RM 5 | A14 209 | A09 32 AI:129 | A10 209 | A07 3 | DW 10 | DW 15 | A20 590 | A12 204 | A14 166 | A11 204 | OA 49 | OA 25 | |||||||||||||
Ca | RM 41 | RM 5 | RM 5 | DW 27 | RM 40 | A14 220 | A09 32 AI:129 | A10 209 | A07 195 | DW 86 | RM 84 | A20 590 | A12 204 | A14 166 | A11 63 AI:860 | OA 127 AI:450 | OA 25 | |||||||||||
Ti | A14 283 | A09 32 AI:129 | A10 209 | A07 3 | DW 10 | DW 72 | A20 590 | A12 15 | A14 166 | A11 20 | OA 127 AI:450 | |||||||||||||||||
Cr | DW 13 | DW 31 | 48 | A14 283 | A09 32 AI:129 | A10 209 | A07 3 | DW 10 | DW 15 | A20 590 | A12 204 | A14 166 | A11 243 | OA 127 AI:450 | ||||||||||||||
Mn | DW 13 | DW 31 | 48 | A14 283 | A09 32 AI:129 | A10 209 | A07 3 | DW 10 | DW 15 | A20 590 | A12 204 | A14 166 | A11 204 | |||||||||||||||
Fe | RM 142 | A 322 | RM 37 | RM 34 | RM 96 | A 9 | A 536 | A 915 | A 552 | A 996 | A 912 | A 749 | A 739 | A14 283 | A09 32 AI:129 | A10 267 | A07 336 AI:1 | RM+DW 630 AI:6 | 359 AI:16 | A20 590 AI:30 | A12 513 AI:35 | A14 166 AI:30 | A11 63 AI:860 | OA 127 AI:450 | OA 25 | |||
Co | A14 283 | A09 32 AI:129 | A10 209 | A07 3 | DW 10 | DW 15 | A20 590 | A12 204 | A14 166 | A11 204 | ||||||||||||||||||
Ni | RM 17 | A 599 | RM 31 | DW 48 | DW 143 | A 483 | DW 40 | A14 283 | A09 32 AI:129 | A10 209 | A07 195 | DW 58 | DW 15 | A20 590 | A12 204 | A14 166 | A11 63 AI:860 | OA 127 AI:450 | OA 25 | |||||||||
Zn | A14 283 | A09 32 AI:129 | A10 209 | DW 10 | DW 72 | A20 590 | A14 10 | A11 63 AI:860 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del Zanna, G.; Young, P.R. Atomic Data for Plasma Spectroscopy: The CHIANTI Database, Improvements and Challenges. Atoms 2020, 8, 46. https://doi.org/10.3390/atoms8030046
Del Zanna G, Young PR. Atomic Data for Plasma Spectroscopy: The CHIANTI Database, Improvements and Challenges. Atoms. 2020; 8(3):46. https://doi.org/10.3390/atoms8030046
Chicago/Turabian StyleDel Zanna, Giulio, and Peter R. Young. 2020. "Atomic Data for Plasma Spectroscopy: The CHIANTI Database, Improvements and Challenges" Atoms 8, no. 3: 46. https://doi.org/10.3390/atoms8030046
APA StyleDel Zanna, G., & Young, P. R. (2020). Atomic Data for Plasma Spectroscopy: The CHIANTI Database, Improvements and Challenges. Atoms, 8(3), 46. https://doi.org/10.3390/atoms8030046