Cell Penetrating Peptide as a High Safety Anti-Inflammation Ingredient for Cosmetic Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stability Test of CPPAIF under Different Conditions
2.2. In Vitro Skin Irritation Test (OECD 439)
2.3. In Vitro Skin Barrier Function Test (Developed from OECD TG 439)
2.4. In Chemico Skin Sensitization: Direct Peptide Reactivity Assay (DPRA) (OECD 442C)
2.5. Macrophage Inflammation Assay
2.6. Mast Cell Degranulation Assay
2.7. Internalization of CPPAIF in Human Keratinocyte (HaCaT)
2.8. Transepidermal Measurement of CPPAIF by Reconstructed Human Epidermis Tissue Model
2.9. Statistical Analyses
3. Results
3.1. Stability of CPPAIF under Different Conditions
3.2. Safety of CPPAIF
3.3. Bio-Function of CPPAIF: Anti-Inflammation without Sensitization
3.4. Cell Penetration and Transepidermal Test. of CPPAIF:
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Fields, K.; Falla, T.J.; Rodan, K.; Bush, L. Bioactive peptides: Signaling the future. J. Cosmet. Dermatol. 2009, 8, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Pai, V.V.; Bhandari, P.; Shukla, P. Topical peptides as cosmeceuticals. Indian J. Dermatol. Venereol. Leprol. 2017, 83, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Pickart, L.; Thaler, M.M. Tripeptide in human serum which prolongs survival of normal liver cells and stimulates growth in neoplastic liver. Nat. New Biol. 1973, 243, 85–87. [Google Scholar] [PubMed]
- Bos, J.D.; Meinardi, M.M. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp. Dermatol. 2000, 9, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Gorouhi, F.; Maibach, H.I. Role of topical peptides in preventing or treating aged skin. Int. J. Cosmet. Sci. 2009, 31, 327–345. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.B.; Kim, Y.H.; Chong, M.S.; Hong, S.H.; Lee, Y.M. Study of gelatin-containing artificial skin V: Fabrication of gelatin scaffolds using a salt-leaching method. Biomaterials 2005, 26, 1961–1968. [Google Scholar] [CrossRef]
- Sun, T.; Jackson, S.; Haycock, J.W.; MacNeil, S. Culture of skin cells in 3D rather than 2D improves their ability to survive exposure to cytotoxic agents. J. Biotechnol. 2006, 122, 372–381. [Google Scholar] [CrossRef]
- Netzlaff, F.; Lehr, C.M.; Wertz, P.W.; Schaefer, U.F. The human epidermis models EpiSkin, SkinEthic and EpiDerm: An evaluation of morphology and their suitability for testing phototoxicity, irritancy, corrosivity, and substance transport. Eur. J. Pharm. Biopharm. 2005, 60, 167–178. [Google Scholar] [CrossRef]
- Mazlyzam, A.L.; Aminuddin, B.S.; Fuzina, N.H.; Norhayati, M.M.; Fauziah, O.; Isa, M.R.; Saim, L.; Ruszymah, B.H. Reconstruction of living bilayer human skin equivalent utilizing human fibrin as a scaffold. Burns 2007, 33, 355–363. [Google Scholar] [CrossRef]
- Lopes, L.B.; Brophy, C.M.; Furnish, E.; Flynn, C.R.; Sparks, O.; Komalavilas, P.; Joshi, L.; Panitch, A.; Bentley, M.V. Comparative study of the skin penetration of protein transduction domains and a conjugated peptide. Pharm. Res. 2005, 22, 750–757. [Google Scholar] [CrossRef]
- Degim, I.T. New tools and approaches for predicting skin permeability. Drug Discov. Today 2006, 11, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.S.; Tsai, J.J.; Chen, Y.J.; Lin, H.K.; Tsai, M.C.; Chang, M.D. Heparin protects BALB/c mice from mite-induced airway allergic inflammation. Int. J. Immunopathol. Pharmacol. 2013, 26, 349–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, K.W.; Fuchs, G.; Sonneck, K.; Gieras, A.; Swoboda, I.; Douladiris, N.; Linhart, B.; Jankovic, M.; Pavkov, T.; Keller, W.; et al. Reduction of the in vivo allergenicity of Der p 2, the major house-dust mite allergen, by genetic engineering. Mol. Immunol. 2008, 45, 2486–2498. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Ryu, J.; Kim, K.A.; Lee, H.J.; Bahn, J.H.; Han, K.; Choi, E.Y.; Lee, K.S.; Kwon, H.Y.; Choi, S.Y. Mutational analysis of a human immunodeficiency virus type 1 Tat protein transduction domain which is required for delivery of an exogenous protein into mammalian cells. J. Gen. Virol. 2002, 83, 1173–1181. [Google Scholar] [CrossRef]
- Chang, M.; Chou, J.C.; Lee, H.J. Cellular internalization of fluorescent proteins via arginine-rich intracellular delivery peptide in plant cells. Plant. Cell Physiol. 2005, 46, 482–488. [Google Scholar] [CrossRef] [Green Version]
- Siprashvili, Z.; Reuter, J.A.; Khavari, P.A. Intracellular delivery of functional proteins via decoration with transporter peptides. Mol. Ther. 2004, 9, 721–728. [Google Scholar] [CrossRef]
- Lim, J.M.; Chang, M.Y.; Park, S.G.; Kang, N.G.; Song, Y.S.; Lee, Y.H.; Yoo, Y.C.; Cho, W.G.; Choi, S.Y.; Kang, S.H. Penetration enhancement in mouse skin and lipolysis in adipocytes by TAT-GKH, a new cosmetic ingredient. J. Cosmet. Sci. 2003, 54, 483–491. [Google Scholar]
- Schutze-Redelmeier, M.P.; Kong, S.; Bally, M.B.; Dutz, J.P. Antennapedia transduction sequence promotes anti tumour immunity to epicutaneously administered CTL epitopes. Vaccine 2004, 22, 1985–1991. [Google Scholar] [CrossRef]
- Rothbard, J.B.; Garlington, S.; Lin, Q.; Kirschberg, T.; Kreider, E.; McGrane, P.L.; Wender, P.A.; Khavari, P.A. Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nat. Med. 2000, 6, 1253–1257. [Google Scholar] [CrossRef]
- Fang, S.L.; Fan, T.C.; Fu, H.W.; Chen, C.J.; Hwang, C.S.; Hung, T.J.; Lin, L.Y.; Chang, M.D. A novel cell-penetrating peptide derived from human eosinophil cationic protein. PLoS ONE 2013, 8, e57318. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.J.; Tsai, K.C.; Kuo, P.H.; Chang, P.L.; Wang, W.C.; Chuang, Y.J.; Chang, M.D. A Heparan Sulfate-Binding Cell Penetrating Peptide for Tumor Targeting and Migration Inhibition. Biomed. Res. Int. 2015, 2015, 237969. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.W.; Kim, S.C.; Kwak, T.W.; Lee, J.R.; Jo, M.J.; Ahn, Y.T.; Kim, J.M.; An, W.G. Anti-inflammatory effects of bangpungtongsung-san, a traditional herbal prescription. Evid. Based Complemen. Altern. Med. 2012, 2012, 892943. [Google Scholar] [CrossRef] [PubMed]
- Bartosh, T.J.; Ylostalo, J.H. Macrophage Inflammatory Assay. Biol. Protoc. 2014, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaure, C.; Liu, Y. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front. Immunol. 2014, 5, 316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, P.; Iijima, R.; Han, J.; Shigemori, H.; Yokota, S.; Isoda, H. Inhibitory effect of acteoside isolated from Cistanche tubulosa on chemical mediator release and inflammatory cytokine production by RBL-2H3 and KU812 cells. Planta Med. 2010, 76, 1512–1518. [Google Scholar] [CrossRef] [Green Version]
- Suschek, C.V.; Bruch-Gerharz, D.; Kleinert, H.; Forstermann, U.; Kolb-Bachofen, V. Ultraviolet A1 radiation induces nitric oxide synthase-2 expression in human skin endothelial cells in the absence of proinflammatory cytokines. J. Investig. Dermatol. 2001, 117, 1200–1205. [Google Scholar] [CrossRef] [Green Version]
- Bashir, M.M.; Sharma, M.R.; Werth, V.P. UVB and proinflammatory cytokines synergistically activate TNF-alpha production in keratinocytes through enhanced gene transcription. J. Investig. Dermatol. 2009, 129, 994–1001. [Google Scholar] [CrossRef] [Green Version]
- Mazza, J.; Rossi, A.; Weinberg, J.M. Innovative uses of tumor necrosis factor alpha inhibitors. Dermatol. Clin. 2010, 28, 559–575. [Google Scholar] [CrossRef]
- Pinho, B.R.; Sousa, C.; Valentao, P.; Oliveira, J.M.; Andrade, P.B. Modulation of basophils’ degranulation and allergy-related enzymes by monomeric and dimeric naphthoquinones. PLoS ONE 2014, 9, e90122. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.; Cheong, H.; Park, Y.S.; Kim, H.; Zhang, M.; Moon, C.; Huang, Y. Cell-penetrating peptide-mediated topical delivery of biomacromolecular drugs. Curr. Pharm. Biotechnol. 2014, 15, 231–239. [Google Scholar] [CrossRef]
Mean of Cysteine and Lysine% Depletion | Reactivity Class | DPRA Prediction |
---|---|---|
0% ≤ mean% depletion ≤ 6.38% | No or minimal reactivity | Negative |
6.38% ≤ mean% depletion ≤ 22.62% | Low reactivity | Positive |
22.62% ≤ mean% depletion ≤ 42.47% | Moderate reactivity | |
42.47% ≤ mean% depletion ≤ 100% | High reactivity |
Test Item | Concentration (mM) | Lysine Depletion | Cysteine Depletion | Mean of Cysteine and Lysine % Depletion | DPRA *1 Prediction |
---|---|---|---|---|---|
Cinnamaldehyde | 100 | 53.82 | 76.33 | 65.07 | Sensitiser |
Phenoxyethanol | 100 | −0.25 | 1.38 | 0.56 | Non-sensitiser |
Caprylyl glycol | 100 | 2.34 | 2.72 | 2.53 | Non-sensitiser |
Hexalene glycol | 100 | −0.36 | 1.62 | 0.63 | Non-sensitiser |
1,3-Butanediol | 100 | −0.36 | 0.13 | −0.12 | Non-sensitiser |
CPPAIF | 0.1 | 1.02 | 0.45 | 0.74 | Non-sensitiser |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, T.-K.; Kuo, P.-H.; Lu, Y.-C.; Lin, H.-N.; Wang, L.H.-C.; Lin, Y.-C.; Kao, Y.-C.; Lai, H.-M.; Chang, M.D.-T. Cell Penetrating Peptide as a High Safety Anti-Inflammation Ingredient for Cosmetic Applications. Biomolecules 2020, 10, 101. https://doi.org/10.3390/biom10010101
Fu T-K, Kuo P-H, Lu Y-C, Lin H-N, Wang LH-C, Lin Y-C, Kao Y-C, Lai H-M, Chang MD-T. Cell Penetrating Peptide as a High Safety Anti-Inflammation Ingredient for Cosmetic Applications. Biomolecules. 2020; 10(1):101. https://doi.org/10.3390/biom10010101
Chicago/Turabian StyleFu, Tse-Kai, Ping-Hsueh Kuo, Yen-Chang Lu, Hsing-Ni Lin, Lily Hui-Ching Wang, Yu-Chun Lin, Yu-Chen Kao, Huey-Min Lai, and Margaret Dah-Tsyr Chang. 2020. "Cell Penetrating Peptide as a High Safety Anti-Inflammation Ingredient for Cosmetic Applications" Biomolecules 10, no. 1: 101. https://doi.org/10.3390/biom10010101
APA StyleFu, T. -K., Kuo, P. -H., Lu, Y. -C., Lin, H. -N., Wang, L. H. -C., Lin, Y. -C., Kao, Y. -C., Lai, H. -M., & Chang, M. D. -T. (2020). Cell Penetrating Peptide as a High Safety Anti-Inflammation Ingredient for Cosmetic Applications. Biomolecules, 10(1), 101. https://doi.org/10.3390/biom10010101