The Inhibition of Icing and Frosting on Glass Surfaces by the Coating of Polyethylene Glycol and Polypeptide Mimicking Antifreeze Protein
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. SS Coatings
2.2.1. SS Coating Using MPTMS
- The cover glasses are immersed in the 2.0% ethanol solution of MPTMS for 3 h;
- The substrates are dried at 100 °C for 1 h in a drying chamber (ETTAS ONW-450S; AS ONE Co., Ltd., Osaka, Japan). After that, they are rinsed with DI water. The coating of MPTMS on the glass surfaces is completed with this drying;
- The specimens are immersed in a 1.0 mg/mL DMSO solution of NHS-PEG-MAL for 3 h, based on the reference [20];
- The specimens are washed with DMSO. After that, they are washed with DI water;
- To produce an SS solution, SS is added gradually to the pH buffer solution of sodium phosphate (pH = 8.0);
- The SS solution is dropped gradually into the inside of a washer set on the specimens to secure an identical coating area, irrespective of surface wettability. The specimens are maintained in a temperature-controlled room at 5 °C for 3 h. After that, they are washed with DI water.
2.2.2. SS Coating Using APTMS and GA
- The cover glasses are soaked in 2% ethanol solution of APTMS for 3 h;
- The substrates are dried at 100 °C for 1 h in the drying chamber. The coating of APTMS on the glass surfaces is completed with this drying;
- The APTMS-bound cover glasses are soaked in 2% GA solution in the oven at 37 °C for 2 h. (The time of 2 h was based on the study by Gao et al. [21].) After that, they are rinsed with DI water and the coating of GA on the glass surfaces is completed;
- The SS solution is dropped gradually into the inside of a washer set on the GA-bound specimens. The specimens are maintained in a temperature-controlled room at 22 °C overnight. After that, they are washed with DI water.
2.3. Contact Angle Measurement
2.4. Surface Measurements
2.5. Droplet Freezing Experiment
2.6. Frost Experiment
3. Results and Discussion
3.1. Contact Angle
3.2. Surface Roughness
3.3. Photoelectron Intensity
3.4. Supercooling Temperature
3.5. Frost Weight
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Subramanyam, S.B.; Rykaczewski, K.; Varanasi, K.K. Ice adhesion on lubricant-impregnated textured surfaces. Langmuir 2013, 29, 13414–13418. [Google Scholar] [CrossRef] [PubMed]
- Wilson, P.W.; Lu, W.; Xu, H.; Kim, P.; Kreder, M.J.; Alvarenga, J.; Aizenberg, J. Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS). Phys. Chem. Chem. Phys. 2013, 15, 581–585. [Google Scholar] [CrossRef] [PubMed]
- Kim, P.; Wong, T.; Alvarenga, J.; Kreder, M.J.; Adorno-Martinez, W.E.; Aizenberg, J. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. ACS Nano 2012, 6, 6569–6577. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Dorrestijn, M.; Raps, D.; Das, A.; Megaridis, C.M.; Poulikakos, D. Are superhydrophobic surfaces best for icephobicity? Langmuir 2011, 27, 3059–3066. [Google Scholar] [CrossRef] [PubMed]
- Tourkine, P.; Le Merrer, M.; Quérét, D. Delayed freezing on water repellent materials. Langmuir 2009, 25, 7214–7216. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Jacobi, A.M. Effects of microgroove geometry on the early stages of frost formation and frost properties. Appl. Eng. 2013, 56, 91–100. [Google Scholar] [CrossRef]
- Rykaczewski, K.; Anand, S.; Subramanyam, S.B.; Varanasi, K.K. Mechanism of frost formation on lubricant-impregnated surfaces. Langmuir 2013, 29, 5230–5238. [Google Scholar] [CrossRef]
- Golovin, K.; Kobaku, S.P.R.; Lee, D.H.; DiLoreto, E.T.; Mabry, J.M.; Tuteja, A. Designing durable icephobic surfaces. Sci. Adv. 2016, 2, e1501496. [Google Scholar] [CrossRef] [Green Version]
- Varanasi, K.K.; Hsu, M.; Bhate, N.; Yang, W.; Deng, T. Spatial control in the heterogeneous nucleation of water. Appl. Phys. Lett. 2009, 95, 094101. [Google Scholar] [CrossRef]
- Ezzat, M.; Huang, C. Zwitterionic polymer brush coatings with excellent anti-fog and anti-frost properties. RSC Adv. 2016, 6, 61695–61702. [Google Scholar] [CrossRef]
- Chen, J.; Luo, Z.; Fan, Q.; Lv, J.; Wang, J. Anti-ice coating inspired by ice skating. Small 2014, 10, 4693–4699. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yao, X.; Chen, J.; He, Z.; Liu, J.; Li, Q.; Wang, J.; Jiang, L. Organogel as durable anti-icing coatings. Sci. China Mater. 2015, 58, 559–565. [Google Scholar] [CrossRef]
- Moriya, T.; Manabe, K.; Tenjimbayashi, M.; Suwabe, K.; Tsuchiya, H.; Matsubayashi, T.; Navarrinib, W.; Shiratori, S. A superrepellent coating with dynamic fluorine chains for frosting suppression: Effects of polarity, coalescence and ice nucleation free energy barrier. RSC Adv. 2016, 6, 92197–92205. [Google Scholar] [CrossRef]
- Esser-Kahn, P.; Trang, V.; Francis, M.B. Incorporation of antifreeze proteins into polymer coatings using site-selective bioconjugation. J. Am. Chem. Soc. 2010, 132, 13264–13269. [Google Scholar] [CrossRef] [PubMed]
- Gwak, Y.; Park, J.; Kim, M.; Kim, H.S.; Kwon, M.J.; Oh, S.J.; Kim, Y.-P.; Jin, E. Creating anti-icing surfaces via the direct immobilization of antifreeze proteins on aluminum. Sci. Rep. 2015, no. 12019, no–9. [Google Scholar] [CrossRef] [Green Version]
- Koshio, K.; Arai, K.; Waku, T.; Wilson, P.W.; Hagiwara, Y. Suppression of droplets freezing on glass surfaces on which antifreeze polypeptides are adhered by a silane coupling agent. PLoS ONE 2018, 13, e0204686. [Google Scholar] [CrossRef] [Green Version]
- Kun, H.; Mastai, Y. Activity of short segments of type I antifreeze protein. Peptide Sci. 2007, 88, 807–814. [Google Scholar] [CrossRef]
- Koshio, K.; Waku, T.; Hagiwara, Y. Ice-phobic glass-substrate surfaces coated with polypeptides inspired by antifreeze protein. Int. J. Refrig. 2020, in press. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, K.; Li, K.; Gutowski, V.; Yin, Y.; Wang, J. Fabrication of anti-icing surfaces by short α-helical peptides. ACS Appl. Mater. Interfaces 2018, 10, 1957–1962. [Google Scholar] [CrossRef]
- Li, W.; Kou, X.; Xu, J.; Zhou, W.; Zhao, R.; Zhang, Z.; Fang, X. Characterization of hepatitis C virus core protein dimerization by atomic force microscopy. Anal. Chem. 2018, 90, 4596–4602. [Google Scholar] [CrossRef]
- Gao, J.; Feng, K.; Li, H.; Jiang, Y.; Zhou, L. Immobilized lipase on porous ceramic monoliths for the production of sugar-derived oil gelling agent. Rsc Adv. 2015, 5, 68601–68609. [Google Scholar] [CrossRef]
- Chaudhary, G.; Li, R. Freezing of water droplets on solid surfaces: An experimental and numerical study. Exp. Fluid Sci. 2014, 57, 86–93. [Google Scholar] [CrossRef]
- Graeber, G.; Schutzius, T.M.; Eghlidi, H.; Poulikakos, D. Spontaneous self-dislodging of freezing water droplets and the role of wettability. Proc. Natl. Acad. Sci. USA 2017, 114, 11040–11045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aswal, D.K.; Lenfant, S.; Guerin, D.; Yakhmi, J.V.; Vuillaume, D. Tunnel current in self assembled monolayers of 3-mercaptopropyltrimethoxysilane. Small 2005, 1, 725–729. [Google Scholar] [CrossRef] [Green Version]
- Nishi, N.; Miyamoto, T.; Waku, T.; Tanaka, N.; Hagiwara, Y. Ice growth inhibition in antifreeze polypeptide solution by short-time solution preheating. PLoS ONE 2016, 11, e0154782. [Google Scholar] [CrossRef]
- Schutzius, T.M.; Jung, S.; Maitra, T.; Eberle, P.; Antonini, C.; Stamatopoulos, C.; Poulikakos, D. Physics of icing and rational design of surfaces with extraordinary icephobicity. Langmuir 2014, 31, 4807–4821. [Google Scholar] [CrossRef]
- Liu, J.; Nicholson, C.E.; Cooper, S.J. Direct measurement of critical nucleus size in confined volumes. Langmuir 2007, 23, 7286–7292. [Google Scholar] [CrossRef]
- Eberle, P.; Tiwari, M.K.; Maitra, T.; Poulikakos, D. Rational nanostructuring of surfaces for extraordinary icephobicity. Nanoscale 2014, 6, 4874–4881. [Google Scholar] [CrossRef]
- Kenworthy, A.K.; Hristova, K.; Needham, D.; McIntosh, T.J. Range and magnitude of the steric pressure between bilayers containing phospholipids with covalently attached poly (ethylene glycol). Biophys. J. 1995, 68, 1921–1936. [Google Scholar] [CrossRef] [Green Version]
- Mehne, J.; Markovic, G.; Pröll, F.; Schweizer, N.; Zorn, S.; Schreiber, F.; Gauglitz, G. Characterisation of morphology of self-assembled PEG monolayers: A comparison of mixed and pure coatings optimised for biosensor applications. Anal. Bioanal. Chem. 2008, 391, 1783–1791. [Google Scholar] [CrossRef]
- Chauhan, A.K.; Aswal, D.K.; Koiry, S.P.; Gupta, S.K.; Yakhmi, J.V.; Sürgers, C.; Guerin, D.; Lenfant, S.; Vuillaume, D. Self-assembly of the 3-aminopropyltrimethoxysilane multilayers on Si and hysteretic current–voltage characteristics. Appl. Phys. A 2008, 90, 581–589. [Google Scholar] [CrossRef]
- Mark, J.E. Some interesting things about polysiloxanes. Acc. Chem. Res. 2004, 37, 946–953. [Google Scholar] [CrossRef] [PubMed]
- Nath, S.; Ahmadi, S.F.; Boreyko, J.B. A review of condensation frosting. Nanoscale Microscale Eng. 2017, 21, 81–101. [Google Scholar] [CrossRef]
- Galvin, C.J.; Dimitriou, M.D.; Satija, S.K.; Genzer, J. Swelling of polyelectrolyte and polyzwitterion brushes by humid vapors. J. Am. Chem. Soc. 2014, 136, 12737–12745. [Google Scholar] [CrossRef]
Specimen name | Glass | MPTMS | PEG | PEG-SS | GA-SS |
---|---|---|---|---|---|
MPTMS | - | o | o | o | - |
NHS-PEG-MAL | - | - | o | o | - |
SS | - | - | - | o | o |
APTMS | - | - | - | - | o |
GA | - | - | - | - | o |
Specimen name | Glass | PEG | PEG-SS | GA-SS |
---|---|---|---|---|
Ts | −14.2 (0.5) | −14.7 (1.9) | −17.2 (1.0) | −16.4 (0.7) |
s/sGlass | 1 | 1.04 | 1.22 | 1.16 |
Specimen name | Glass | PEG | PEG-SS | GA-SS |
---|---|---|---|---|
W/Glass | 1 | 1.39 (0.61) | 0.62 (0.28) | 1.04 (0.17) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasahara, K.; Waku, T.; Wilson, P.W.; Tonooka, T.; Hagiwara, Y. The Inhibition of Icing and Frosting on Glass Surfaces by the Coating of Polyethylene Glycol and Polypeptide Mimicking Antifreeze Protein. Biomolecules 2020, 10, 259. https://doi.org/10.3390/biom10020259
Kasahara K, Waku T, Wilson PW, Tonooka T, Hagiwara Y. The Inhibition of Icing and Frosting on Glass Surfaces by the Coating of Polyethylene Glycol and Polypeptide Mimicking Antifreeze Protein. Biomolecules. 2020; 10(2):259. https://doi.org/10.3390/biom10020259
Chicago/Turabian StyleKasahara, Kazuya, Tomonori Waku, Peter W. Wilson, Taishi Tonooka, and Yoshimichi Hagiwara. 2020. "The Inhibition of Icing and Frosting on Glass Surfaces by the Coating of Polyethylene Glycol and Polypeptide Mimicking Antifreeze Protein" Biomolecules 10, no. 2: 259. https://doi.org/10.3390/biom10020259
APA StyleKasahara, K., Waku, T., Wilson, P. W., Tonooka, T., & Hagiwara, Y. (2020). The Inhibition of Icing and Frosting on Glass Surfaces by the Coating of Polyethylene Glycol and Polypeptide Mimicking Antifreeze Protein. Biomolecules, 10(2), 259. https://doi.org/10.3390/biom10020259