The Role of Nicotinamide in Cancer Chemoprevention and Therapy
Abstract
:1. Introduction
2. NAM Basic Principles and Metabolism
3. Nicotinamide and Cancer Chemoprevention
4. Nicotinamide and Cancer Therapy
4.1. Radiotherapy
4.2. Chemotherapy
5. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Braakhuis, B.J.M.; Tabor, M.P.; Kummer, J.A.; Leemans, C.R.; Brakenhoff, R.H. A genetic explanation of Slaughter’s concept of field cancerization: Evidence and clinical implications. Cancer Res. 2003, 63, 1727–1730. [Google Scholar] [PubMed]
- Yokota, J. Tumor progression and metastasis. Carcinogenesis 2000, 21, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Flavahan, W.A.; Gaskell, E.; Bernstein, B.E. Epigenetic plasticity and the hallmarks of cancer. Science 2017, 357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tonini, T.; Rossi, F.; Claudio, P.P. Molecular basis of angiogenesis and cancer. Oncogene 2003, 22, 6549–6556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, W.G.; Sanders, A.J.; Katoh, M.; Ungefroren, H.; Gieseler, F.; Prince, M.; Thompson, S.K.; Zollo, M.; Spano, D.; Dhawan, P.; et al. Tissue invasion and metastasis: Molecular, biological and clinical perspectives. Semin. Cancer Biol. 2015, 35, S244–S275. [Google Scholar] [CrossRef]
- Wong, R.S.Y. Apoptosis in cancer: From pathogenesis to treatment. J. Exp. Clin. Cancer Res. 2011, 30, 87. [Google Scholar] [CrossRef] [Green Version]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [Green Version]
- Seyfried, T.N.; Huysentruyt, L.C. On the origin of cancer metastasis. Crit. Rev. Oncog. 2013, 18, 43–73. [Google Scholar] [CrossRef] [Green Version]
- Pavlova, N.N.; Thompson, C.B. The Emerging Hallmarks of Cancer Metabolism. Cell Metab. 2016, 23, 27–47. [Google Scholar] [CrossRef] [Green Version]
- Bernstein, C.; R, A.; Nfonsam, V.; Bernstei, H. DNA Damage, DNA Repair and Cancer. In New Research Directions in DNA Repair; Chen, C., Ed.; InTech: Vienna, Austria, 2013; ISBN 9789535111146. [Google Scholar]
- Gonzalez, H.; Hagerling, C.; Werb, Z. Roles of the immune system in cancer: From tumor initiation to metastatic progression. Genes Dev. 2018, 32, 1267–1284. [Google Scholar] [CrossRef] [Green Version]
- Janssen, L.M.E.; Ramsay, E.E.; Logsdon, C.D.; Overwijk, W.W. The immune system in cancer metastasis: Friend or foe? J. Immunother. Cancer 2017, 5, 79. [Google Scholar] [CrossRef] [PubMed]
- Penn, I.; Starzl, T.E. Immunosuppression and cancer. Transplant. Proc. 1973, 5, 943–947. [Google Scholar] [PubMed]
- Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Benetou, V.; Lagiou, A.; Lagiou, P. Chemoprevention of cancer: Current evidence and future prospects. F1000Res. 2015, 4, 916. [Google Scholar] [CrossRef] [Green Version]
- Steward, W.P.; Brown, K. Cancer chemoprevention: A rapidly evolving field. Br. J. Cancer 2013, 109, 1–7. [Google Scholar] [CrossRef]
- Pan, H.; Gray, R.; Braybrooke, J.; Davies, C.; Taylor, C.; McGale, P.; Peto, R.; Pritchard, K.I.; Bergh, J.; Dowsett, M.; et al. 20-Year Risks of Breast-Cancer Recurrence after Stopping Endocrine Therapy at 5 Years. N. Engl. J. Med. 2017, 377, 1836–1846. [Google Scholar] [CrossRef] [Green Version]
- Drolet, M.; Bénard, É.; Pérez, N.; Brisson, M.; HPV Vaccination Impact Study Group. Population-level impact and herd effects following the introduction of human papillomavirus vaccination programmes: Updated systematic review and meta-analysis. Lancet 2019, 394, 497–509. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Albeniz, X.; Chan, A.T. Aspirin for the prevention of colorectal cancer. Best Pract. Res. Clin. Gastroenterol. 2011, 25, 461–472. [Google Scholar] [CrossRef] [Green Version]
- Zi, F.; Zi, H.; Li, Y.; He, J.; Shi, Q.; Cai, Z. Metformin and cancer: An existing drug for cancer prevention and therapy. Oncol. Lett. 2018, 15, 683–690. [Google Scholar] [CrossRef] [Green Version]
- Guraya, S.Y. Chemopreventive role of vitamin D in colorectal carcinoma. Journal of Microscopy and Ultrastructure 2014, 2, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Arruebo, M.; Vilaboa, N.; Sáez-Gutiérrez, B.; Lambea, J.; Tres, A.; Valladares, M.; González-Fernández, A. Assessment of the evolution of cancer treatment therapies. Cancers 2011, 3, 3279–3330. [Google Scholar] [CrossRef] [Green Version]
- Rakha, E.A.; Reis-Filho, J.S.; Baehner, F.; Dabbs, D.J.; Decker, T.; Eusebi, V.; Fox, S.B.; Ichihara, S.; Jacquemier, J.; Lakhani, S.R.; et al. Breast cancer prognostic classification in the molecular era: The role of histological grade. Breast Cancer Res. 2010, 12, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Z.; Aubry, M.-C.; Deschamps, C.; Marks, R.S.; Okuno, S.H.; Williams, B.A.; Sugimura, H.; Pankratz, V.S.; Yang, P. Histologic grade is an independent prognostic factor for survival in non-small cell lung cancer: An analysis of 5018 hospital- and 712 population-based cases. J. Thorac. Cardiovasc. Surg. 2006, 131, 1014–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J. Clin. 2017, 67, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Dumbrava, E.I.; Meric-Bernstam, F. Personalized cancer therapy-leveraging a knowledge base for clinical decision-making. Cold Spring Harb Mol Case Stud 2018, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sounni, N.E.; Noel, A. Targeting the tumor microenvironment for cancer therapy. Clin. Chem. 2013, 59, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Fisher, R.; Pusztai, L.; Swanton, C. Cancer heterogeneity: Implications for targeted therapeutics. Br. J. Cancer 2013, 108, 479–485. [Google Scholar] [CrossRef] [Green Version]
- Schnitt, S.J. Classification and prognosis of invasive breast cancer: From morphology to molecular taxonomy. Mod. Pathol. 2010, 23 Suppl 2, S60–S64. [Google Scholar] [CrossRef] [Green Version]
- Fragomeni, S.M.; Sciallis, A.; Jeruss, J.S. Molecular Subtypes and Local-Regional Control of Breast Cancer. Surg. Oncol. Clin. N. Am. 2018, 27, 95–120. [Google Scholar] [CrossRef]
- Wang, Y.; Schmid-Bindert, G.; Zhou, C. Erlotinib in the treatment of advanced non-small cell lung cancer: An update for clinicians. Ther. Adv. Med. Oncol. 2012, 4, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Boekhout, A.H.; Beijnen, J.H.; Schellens, J.H.M. Trastuzumab. Oncologist 2011, 16, 800–810. [Google Scholar] [CrossRef]
- Luqmani, Y.A. Mechanisms of drug resistance in cancer chemotherapy. Med. Princ. Pract. 2005, 14 Suppl 1, 35–48. [Google Scholar] [CrossRef]
- Dagogo-Jack, I.; Shaw, A.T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 2018, 15, 81–94. [Google Scholar] [CrossRef]
- Kaanders, J.H.A.M.; Bussink, J.; van der Kogel, A.J. ARCON: A novel biology-based approach in radiotherapy. Lancet Oncol. 2002, 3, 728–737. [Google Scholar] [CrossRef]
- Tharmalingam, H.; Hoskin, P. Clinical trials targeting hypoxia. Br. J. Radiol. 2018, 20170966. [Google Scholar] [CrossRef]
- Maiese, K.; Chong, Z.Z.; Hou, J.; Shang, Y.C. The vitamin nicotinamide: Translating nutrition into clinical care. Molecules 2009, 14, 3446–3485. [Google Scholar] [CrossRef]
- Hwang, E.S.; Song, S.B. Nicotinamide is an inhibitor of SIRT1 in vitro, but can be a stimulator in cells. Cell. Mol. Life Sci. 2017, 74, 3347–3362. [Google Scholar] [CrossRef]
- Song, S.B.; Park, J.S.; Chung, G.J.; Lee, I.H.; Hwang, E.S. Diverse therapeutic efficacies and more diverse mechanisms of nicotinamide. Metabolomics 2019, 15, 137. [Google Scholar] [CrossRef]
- Surjana, D.; Halliday, G.M.; Damian, D.L. Role of nicotinamide in DNA damage, mutagenesis, and DNA repair. J. Nucleic Acids 2010, 2010. [Google Scholar] [CrossRef] [Green Version]
- Snaidr, V.A.; Damian, D.L.; Halliday, G.M. Nicotinamide for photoprotection and skin cancer chemoprevention: A review of efficacy and safety. Exp. Dermatol. 2019, 28 Suppl 1, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.J.; Jang, S.-Y.; Hwang, E.S. High-Dose Nicotinamide Suppresses ROS Generation and Augments Population Expansion during CD8(+) T Cell Activation. Mol. Cells 2015, 38, 918–924. [Google Scholar]
- Kwak, J.Y.; Ham, H.J.; Kim, C.M.; Hwang, E.S. Nicotinamide exerts antioxidative effects on senescent cells. Mol. Cells 2015, 38, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Song, S.B.; Jang, S.-Y.; Kang, H.T.; Wei, B.; Jeoun, U.-W.; Yoon, G.S.; Hwang, E.S. Modulation of Mitochondrial Membrane Potential and ROS Generation by Nicotinamide in a Manner Independent of SIRT1 and Mitophagy. Mol. Cells 2017, 40, 503–514. [Google Scholar]
- Alves-Fernandes, D.K.; Jasiulionis, M.G. The Role of SIRT1 on DNA Damage Response and Epigenetic Alterations in Cancer. Int. J. Mol. Sci. 2019, 20, 3153. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Chen, W. Emerging Roles of SIRT1 in Cancer Drug Resistance. Genes Cancer 2013, 4, 82–90. [Google Scholar] [CrossRef] [Green Version]
- Fania, L.; Mazzanti, C.; Campione, E.; Candi, E.; Abeni, D.; Dellambra, E. Role of Nicotinamide in Genomic Stability and Skin Cancer Chemoprevention. Int. J. Mol. Sci. 2019, 20, 5946. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Liang, C.; Li, F.; Guan, D.; Wu, X.; Fu, X.; Lu, A.; Zhang, G. PARP1 in Carcinomas and PARP1 Inhibitors as Antineoplastic Drugs. Int. J. Mol. Sci. 2017, 18, 2111. [Google Scholar] [CrossRef]
- Niren, N.M. Pharmacologic doses of nicotinamide in the treatment of inflammatory skin conditions: A review. Cutis 2006, 77, 11–16. [Google Scholar]
- Fricker, R.A.; Green, E.L.; Jenkins, S.I.; Griffin, S.M. The Influence of Nicotinamide on Health and Disease in the Central Nervous System. Int. J. Tryptophan Res. 2018, 11, 1178646918776658. [Google Scholar] [CrossRef] [Green Version]
- Rennie, G.; Chen, A.C.; Dhillon, H.; Vardy, J.; Damian, D.L. Nicotinamide and neurocognitive function. Nutr. Neurosci. 2015, 18, 193–200. [Google Scholar] [CrossRef]
- Crinó, A.; Schiaffini, R.; Ciampalini, P.; Suraci, M.C.; Manfrini, S.; Visalli, N.; Matteoli, M.C.; Patera, P.; Buzzetti, R.; Guglielmi, C.; et al. A two year observational study of nicotinamide and intensive insulin therapy in patients with recent onset type 1 diabetes mellitus. J. Pediatr. Endocrinol. Metab. 2005, 18, 749–754. [Google Scholar] [CrossRef]
- Murray, M.F. Nicotinamide: An oral antimicrobial agent with activity against both Mycobacterium tuberculosis and human immunodeficiency virus. Clin. Infect. Dis. 2003, 36, 453–460. [Google Scholar] [CrossRef] [Green Version]
- Williams, P.A.; Harder, J.M.; Foxworth, N.E.; Cochran, K.E.; Philip, V.M.; Porciatti, V.; Smithies, O.; John, S.W.M. Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice. Science 2017, 355, 756–760. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.C.; Martin, A.J.; Choy, B.; Fernández-Peñas, P.; Dalziell, R.A.; McKenzie, C.A.; Scolyer, R.A.; Dhillon, H.M.; Vardy, J.L.; Kricker, A.; et al. A Phase 3 Randomized Trial of Nicotinamide for Skin-Cancer Chemoprevention. N. Engl. J. Med. 2015, 373, 1618–1626. [Google Scholar] [CrossRef] [Green Version]
- Knip, M.; Douek, I.F.; Moore, W.P.; Gillmor, H.A.; McLean, A.E.; Bingley, P.J.; Gale, E.A.; European Nicotinamide Diabetes Intervention Trial Group. Safety of high-dose nicotinamide: A review. Diabetologia 2000, 43, 1337–1345. [Google Scholar] [CrossRef] [Green Version]
- Gale, E.A.M.; Bingley, P.J.; Emmett, C.L.; Collier, T.; European Nicotinamide Diabetes Intervention Trial (ENDIT) Group. European Nicotinamide Diabetes Intervention Trial (ENDIT): A randomised controlled trial of intervention before the onset of type 1 diabetes. Lancet 2004, 363, 925–931. [Google Scholar] [CrossRef]
- Tiwari, P.; Sahay, S.; Pandey, M.; Qadri, S.S.Y.H.; Gupta, K.P. Preventive effects of butyric acid, nicotinamide, calcium glucarate alone or in combination during the 7, 12-dimethylbenz (a) anthracene induced mouse skin tumorigenesis via modulation of K-Ras-PI3K-AKTpathway and associated microRNAs. Biochimie 2016, 121, 112–122. [Google Scholar] [CrossRef]
- Park, J.; Halliday, G.M.; Surjana, D.; Damian, D.L. Nicotinamide prevents ultraviolet radiation-induced cellular energy loss. Photochem. Photobiol. 2010, 86, 942–948. [Google Scholar] [CrossRef]
- Surjana, D.; Halliday, G.M.; Damian, D.L. Nicotinamide enhances repair of ultraviolet radiation-induced DNA damage in human keratinocytes and ex vivo skin. Carcinogenesis 2013, 34, 1144–1149. [Google Scholar] [CrossRef] [Green Version]
- Thompson, B.C.; Halliday, G.M.; Damian, D.L. Nicotinamide enhances repair of arsenic and ultraviolet radiation-induced DNA damage in HaCaT keratinocytes and ex vivo human skin. PLoS One 2015, 10, e0117491. [Google Scholar] [CrossRef] [Green Version]
- Thompson, B.C.; Surjana, D.; Halliday, G.M.; Damian, D.L. Nicotinamide enhances repair of ultraviolet radiation-induced DNA damage in primary melanocytes. Exp. Dermatol. 2014, 23, 509–511. [Google Scholar] [CrossRef] [PubMed]
- Monfrecola, G.; Gaudiello, F.; Cirillo, T.; Fabbrocini, G.; Balato, A.; Lembo, S. Nicotinamide downregulates gene expression of interleukin-6, interleukin-10, monocyte chemoattractant protein-1, and tumour necrosis factor-α gene expression in HaCaT keratinocytes after ultraviolet B irradiation. Clin. Exp. Dermatol. 2013, 38, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Minocha, R.; Martin, A.J.; Chen, A.C.; Scolyer, R.A.; Lyons, J.G.; McKenzie, C.A.; Madore, J.; Halliday, G.M.; Damian, D.L. A Reduction in Inflammatory Macrophages May Contribute to Skin Cancer Chemoprevention by Nicotinamide. J. Invest. Dermatol. 2019, 139, 467–469. [Google Scholar] [CrossRef] [Green Version]
- Gensler, H.L. Prevention of photoimmunosuppression and photocarcinogenesis by topical nicotinamide. Nutr. Cancer 1997, 29, 157–162. [Google Scholar] [CrossRef]
- Damian, D.L.; Patterson, C.R.S.; Stapelberg, M.; Park, J.; Barnetson, R.S.C.; Halliday, G.M. UV radiation-induced immunosuppression is greater in men and prevented by topical nicotinamide. J. Invest. Dermatol. 2008, 128, 447–454. [Google Scholar] [CrossRef] [Green Version]
- Sivapirabu, G.; Yiasemides, E.; Halliday, G.M.; Park, J.; Damian, D.L. Topical nicotinamide modulates cellular energy metabolism and provides broad-spectrum protection against ultraviolet radiation-induced immunosuppression in humans. Br. J. Dermatol. 2009, 161, 1357–1364. [Google Scholar] [CrossRef]
- Yiasemides, E.; Sivapirabu, G.; Halliday, G.M.; Park, J.; Damian, D.L. Oral nicotinamide protects against ultraviolet radiation-induced immunosuppression in humans. Carcinogenesis 2009, 30, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Thanos, S.M.; Halliday, G.M.; Damian, D.L. Nicotinamide reduces photodynamic therapy-induced immunosuppression in humans. Br. J. Dermatol. 2012, 167, 631–636. [Google Scholar] [CrossRef]
- Moloney, F.; Vestergaard, M.; Radojkovic, B.; Damian, D. Randomized, double-blinded, placebo controlled study to assess the effect of topical 1% nicotinamide on actinic keratoses. Br. J. Dermatol. 2010, 162, 1138–1139. [Google Scholar] [CrossRef]
- Surjana, D.; Halliday, G.M.; Martin, A.J.; Moloney, F.J.; Damian, D.L. Oral nicotinamide reduces actinic keratoses in phase II double-blinded randomized controlled trials. J. Invest. Dermatol. 2012, 132, 1497–1500. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.C.; Martin, A.J.; Dalziell, R.A.; McKenzie, C.A.; Lowe, P.M.; Eris, J.M.; Scolyer, R.A.; Dhillon, H.M.; Vardy, J.L.; Bielski, V.A.; et al. A phase II randomized controlled trial of nicotinamide for skin cancer chemoprevention in renal transplant recipients. Br. J. Dermatol. 2016, 175, 1073–1075. [Google Scholar] [CrossRef] [PubMed]
- Drago, F.; Ciccarese, G.; Cogorno, L.; Calvi, C.; Marsano, L.A.; Parodi, A. Prevention of non-melanoma skin cancers with nicotinamide in transplant recipients: A case-control study. Eur. J. Dermatol. 2017, 27, 382–385. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-K.; Yun, S.-J.; Kim, J.; Lee, O.-J.; Bae, S.-C.; Kim, W.-J. Identification of gene expression signature modulated by nicotinamide in a mouse bladder cancer model. PLoS One 2011, 6, e26131. [Google Scholar] [CrossRef] [PubMed]
- Galbraith, A.R.; Seabloom, D.E.; Wuertz, B.R.; Antonides, J.D.; Steele, V.E.; Wattenberg, L.W.; Ondrey, F.G. Chemoprevention of Lung Carcinogenesis by Dietary Nicotinamide and Inhaled Budesonide. Cancer Prev. Res. 2019, 12, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Gotoh, H.; Nomura, T.; Nakajima, H.; Hasegawa, C.; Sakamoto, Y. Inhibiting effects of nicotinamide on urethane-induced malformations and tumors in mice. Mutat. Res. 1988, 199, 55–63. [Google Scholar] [CrossRef]
- Park, S.Y.; Lee, K.B.; Lee, M.-J.; Bae, S.-C.; Jang, J.-J. Nicotinamide inhibits the early stage of carcinogen-induced hepatocarcinogenesis in mice and suppresses human hepatocellular carcinoma cell growth. J. Cell. Physiol. 2012, 227, 899–908. [Google Scholar] [CrossRef]
- Al-Gayyar, M.M.H.; Bagalagel, A.; Noor, A.O.; Almasri, D.M.; Diri, R. The therapeutic effects of nicotinamide in hepatocellular carcinoma through blocking IGF-1 and effecting the balance between Nrf2 and PKB. Biomed. Pharmacother. 2019, 112, 108653. [Google Scholar] [CrossRef]
- Bartleman, A.-P.; Jacobs, R.; Kirkland, J.B. Niacin supplementation decreases the incidence of alkylation-induced nonlymphocytic leukemia in Long-Evans rats. Nutr. Cancer 2008, 60, 251–258. [Google Scholar] [CrossRef]
- Rakieten, N.; Gordon, B.S.; Beaty, A.; Cooney, D.A.; Schein, P.S.; Dixon, R.L. Modification of renal tumorigenic effect of streptozotocin by nicotinamide: Spontaneous reversibility of streptozotocin diabetes. Proc. Soc. Exp. Biol. Med. 1976, 151, 356–361. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Madan, V.; Lear, J.T.; Szeimies, R.-M. Non-melanoma skin cancer. Lancet 2010, 375, 673–685. [Google Scholar] [CrossRef] [Green Version]
- Leiter, U.; Garbe, C. Epidemiology of melanoma and nonmelanoma skin cancer--the role of sunlight. Adv. Exp. Med. Biol. 2008, 624, 89–103. [Google Scholar] [PubMed]
- Roewert-Huber, J.; Stockfleth, E.; Kerl, H. Pathology and pathobiology of actinic (solar) keratosis - an update. Br. J. Dermatol. 2007, 157 Suppl 2, 18–20. [Google Scholar] [CrossRef]
- Criscione, V.D.; Weinstock, M.A.; Naylor, M.F.; Luque, C.; Eide, M.J.; Bingham, S.F.; Department of Veteran Affairs Topical Tretinoin Chemoprevention Trial Group. Actinic keratoses: Natural history and risk of malignant transformation in the Veterans Affairs Topical Tretinoin Chemoprevention Trial. Cancer 2009, 115, 2523–2530. [Google Scholar] [CrossRef] [PubMed]
- Dodds, A.; Chia, A.; Shumack, S. Actinic keratosis: Rationale and management. Dermatol. Ther. 2014, 4, 11–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glogau, R.G. The risk of progression to invasive disease. J. Am. Acad. Dermatol. 2000, 42, 23–24. [Google Scholar] [CrossRef]
- Ullrich, S.E. Mechanisms underlying UV-induced immune suppression. Mutat. Res. 2005, 571, 185–205. [Google Scholar] [CrossRef]
- Halliday, G.M. Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis. Mutat. Res. 2005, 571, 107–120. [Google Scholar] [CrossRef]
- Minocha, R.; Damian, D.L.; Halliday, G.M. Melanoma and nonmelanoma skin cancer chemoprevention: A role for nicotinamide? Photodermatol. Photoimmunol. Photomed. 2018, 34, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Bordea, C.; Wojnarowska, F.; Millard, P.R.; Doll, H.; Welsh, K.; Morris, P.J. Skin cancers in renal-transplant recipients occur more frequently than previously recognized in a temperate climate. Transplantation 2004, 77, 574–579. [Google Scholar] [CrossRef]
- Moloney, F.J.; Comber, H.; O’Lorcain, P.; O’Kelly, P.; Conlon, P.J.; Murphy, G.M. A population-based study of skin cancer incidence and prevalence in renal transplant recipients. Br. J. Dermatol. 2006, 154, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Garcovich, S.; Colloca, G.; Sollena, P.; Andrea, B.; Balducci, L.; Cho, W.C.; Bernabei, R.; Peris, K. Skin Cancer Epidemics in the Elderly as An Emerging Issue in Geriatric Oncology. Aging Dis. 2017, 8, 643–661. [Google Scholar] [CrossRef] [Green Version]
- Gensler, H.L.; Williams, T.; Huang, A.C.; Jacobson, E.L. Oral niacin prevents photocarcinogenesis and photoimmunosuppression in mice. Nutr. Cancer 1999, 34, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.J.; Dhillon, H.M.; Vardy, J.L.; Dalziell, R.A.; Choy, B.; Fernández-Peñas, P.; Dixon, A.; Renton, C.; St George, G.; Chinniah, N.; et al. Neurocognitive Function and Quality of Life Outcomes in the ONTRAC Study for Skin Cancer Chemoprevention by Nicotinamide. Geriatrics 2019, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenberg, M.R.; Novicki, D.L.; Jirtle, R.L.; Novotny, A.; Michalopoulos, G. Promoting effect of nicotinamide on the development of renal tubular cell tumors in rats initiated with diethylnitrosamine. Cancer Res. 1985, 45, 809–814. [Google Scholar]
- Rakieten, N.; Gordon, B.S.; Beaty, A.; Cooney, D.A.; Davis, R.D.; Schein, P.S. Pancreatic islet cell tumors produced by the combined action of streptozotocin and nicotinamide. Proc. Soc. Exp. Biol. Med. 1971, 137, 280–283. [Google Scholar] [CrossRef]
- Kaanders, J.H.A.M.; Pop, L.A.M.; Marres, H.A.M.; Bruaset, I.; van den Hoogen, F.J.A.; Merkx, M.A.W.; van der Kogel, A.J. ARCON: Experience in 215 patients with advanced head-and-neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 2002, 52, 769–778. [Google Scholar] [CrossRef]
- Bernier, J.; Denekamp, J.; Rojas, A.; Minatel, E.; Horiot, J.; Hamers, H.; Antognoni, P.; Dahl, O.; Richaud, P.; van Glabbeke, M.; et al. ARCON: Accelerated radiotherapy with carbogen and nicotinamide in head and neck squamous cell carcinomas. The experience of the Co-operative group of radiotherapy of the european organization for research and treatment of cancer (EORTC). Radiother. Oncol. 2000, 55, 111–119. [Google Scholar] [CrossRef]
- Hoogsteen, I.J.; Pop, L.A.M.; Marres, H.A.M.; Merkx, M.A.W.; van den Hoogen, F.J.A.; van der Kogel, A.J.; Kaanders, J.H.A.M. Oxygen-modifying treatment with ARCON reduces the prognostic significance of hemoglobin in squamous cell carcinoma of the head and neck. Int. J. Radiat. Oncol. Biol. Phys. 2006, 64, 83–89. [Google Scholar] [CrossRef]
- Bussink, J.; Kaanders, J.H.; Rijken, P.F.; Peters, J.P.; Hodgkiss, R.J.; Marres, H.A.; van der Kogel, A.J. Vascular architecture and microenvironmental parameters in human squamous cell carcinoma xenografts: Effects of carbogen and nicotinamide. Radiother. Oncol. 1999, 50, 173–184. [Google Scholar] [CrossRef]
- Rademakers, S.E.; Hoogsteen, I.J.; Rijken, P.F.; Terhaard, C.H.; Doornaert, P.A.; Langendijk, J.A.; van den Ende, P.; van der Kogel, A.J.; Bussink, J.; Kaanders, J.H. Prognostic value of the proliferation marker Ki-67 in laryngeal carcinoma: Results of the accelerated radiotherapy with carbogen breathing and nicotinamide phase III randomized trial. Head Neck 2015, 37, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Kaanders, J.H.; Pop, L.A.; Marres, H.A.; Liefers, J.; van den Hoogen, F.J.; van Daal, W.A.; van der Kogel, A.J. Accelerated radiotherapy with carbogen and nicotinamide (ARCON) for laryngeal cancer. Radiother. Oncol. 1998, 48, 115–122. [Google Scholar] [CrossRef]
- Janssens, G.O.; Rademakers, S.E.; Terhaard, C.H.; Doornaert, P.A.; Bijl, H.P.; van den Ende, P.; Chin, A.; Marres, H.A.; de Bree, R.; van der Kogel, A.J.; et al. Accelerated radiotherapy with carbogen and nicotinamide for laryngeal cancer: Results of a phase III randomized trial. J. Clin. Oncol. 2012, 30, 1777–1783. [Google Scholar] [CrossRef] [PubMed]
- Janssens, G.O.; Terhaard, C.H.; Doornaert, P.A.; Bijl, H.P.; van den Ende, P.; Chin, A.; Pop, L.A.; Kaanders, J.H. Acute toxicity profile and compliance to accelerated radiotherapy plus carbogen and nicotinamide for clinical stage T2-4 laryngeal cancer: Results of a phase III randomized trial. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 532–538. [Google Scholar] [CrossRef]
- Janssens, G.O.; Rademakers, S.E.; Terhaard, C.H.; Doornaert, P.A.; Bijl, H.P.; van den Ende, P.; Chin, A.; Takes, R.P.; de Bree, R.; Hoogsteen, I.J.; et al. Improved recurrence-free survival with ARCON for anemic patients with laryngeal cancer. Clin. Cancer Res. 2014, 20, 1345–1354. [Google Scholar] [CrossRef] [Green Version]
- Janssens, G.O.; Langendijk, J.A.; Terhaard, C.H.; Doornaert, P.A.; van den Ende, P.; de Jong, M.A.; Takes, R.P.; Span, P.N.; Kaanders, J.H. Quality-of-life after radiotherapy for advanced laryngeal cancer: Results of a phase III trial of the Dutch Head and Neck Society. Radiother. Oncol. 2016, 119, 213–220. [Google Scholar] [CrossRef]
- Hoskin, P.; Rojas, A.; Saunders, M. Accelerated radiotherapy, carbogen, and nicotinamide (ARCON) in the treatment of advanced bladder cancer: Mature results of a Phase II nonrandomized study. Int. J. Radiat. Oncol. Biol. Phys. 2009, 73, 1425–1431. [Google Scholar] [CrossRef]
- Hoskin, P.J.; Rojas, A.M.; Phillips, H.; Saunders, M.I. Acute and late morbidity in the treatment of advanced bladder carcinoma with accelerated radiotherapy, carbogen, and nicotinamide. Cancer 2005, 103, 2287–2297. [Google Scholar] [CrossRef]
- Hoskin, P.J.; Rojas, A.M.; Bentzen, S.M.; Saunders, M.I. Radiotherapy with concurrent carbogen and nicotinamide in bladder carcinoma. J. Clin. Oncol. 2010, 28, 4912–4918. [Google Scholar] [CrossRef]
- Hulshof, M.C.; Rehmann, C.J.; Booij, J.; van Royen, E.A.; Bosch, D.A.; González González, D. Lack of perfusion enhancement after administration of nicotinamide and carbogen in patients with glioblastoma: A 99mTc-HMPAO SPECT study. Radiother. Oncol. 1998, 48, 135–142. [Google Scholar] [CrossRef]
- Miralbell, R.; Mornex, F.; Greiner, R.; Bolla, M.; Storme, G.; Hulshof, M.; Bernier, J.; Denekamp, J.; Rojas, A.M.; Pierart, M.; et al. Accelerated radiotherapy, carbogen, and nicotinamide in glioblastoma multiforme: Report of European Organization for Research and Treatment of Cancer trial 22933. J. Clin. Oncol. 1999, 17, 3143–3149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, J.M.; Noël, G.; Chiras, J.; Hoang-Xuan, K.; Delattre, J.Y.; Baillet, F.; Mazeron, J.J. Radiotherapy and chemotherapy with or without carbogen and nicotinamide in inoperable biopsy-proven glioblastoma multiforme. Radiother. Oncol. 2003, 67, 45–51. [Google Scholar] [CrossRef]
- Bernier, J.; Denekamp, J.; Rojas, A.; Trovò, M.; Horiot, J.C.; Hamers, H.; Antognoni, P.; Dahl, O.; Richaud, P.; Kaanders, J.; et al. ARCON: Accelerated radiotherapy with carbogen and nicotinamide in non small cell lung cancer: A phase I/II study by the EORTC. Radiother. Oncol. 1999, 52, 149–156. [Google Scholar] [CrossRef]
- van Laarhoven, H.W.M.; Bussink, J.; Lok, J.; Punt, C.J.A.; Heerschap, A.; van Der Kogel, A.J. Effects of nicotinamide and carbogen in different murine colon carcinomas: Immunohistochemical analysis of vascular architecture and microenvironmental parameters. Int. J. Radiat. Oncol. Biol. Phys. 2004, 60, 310–321. [Google Scholar] [CrossRef]
- van Laarhoven, H.W.M.; Bussink, J.; Lok, J.; Verhagen, I.; Punt, C.J.A.; Heerschap, A.; Kaanders, J.H.A.M.; van der Kogel, A.J. Modulation of hypoxia in murine liver metastases of colon carcinoma by nicotinamide and carbogen. Radiat. Res. 2005, 164, 245–249. [Google Scholar] [CrossRef]
- Young, A.; Berry, R.; Holloway, A.F.; Blackburn, N.B.; Dickinson, J.L.; Skala, M.; Phillips, J.L.; Brettingham-Moore, K.H. RNA-seq profiling of a radiation resistant and radiation sensitive prostate cancer cell line highlights opposing regulation of DNA repair and targets for radiosensitization. BMC Cancer 2014, 14, 808. [Google Scholar] [CrossRef] [Green Version]
- Fenton, B.M.; Lord, E.M.; Paoni, S.F. Enhancement of tumor perfusion and oxygenation by carbogen and nicotinamide during single- and multifraction irradiation. Radiat. Res. 2000, 153, 75–83. [Google Scholar] [CrossRef]
- Horsman, M.R.; Khalil, A.A.; Chaplin, D.J.; Overgaard, J. The ability of nicotinamide to inhibit the growth of a C3H mouse mammary carcinoma. Acta Oncol. 1995, 34, 443–446. [Google Scholar] [CrossRef]
- Wang, T.; Cui, H.; Ma, N.; Jiang, Y. Nicotinamide-mediated inhibition of SIRT1 deacetylase is associated with the viability of cancer cells exposed to antitumor agents and apoptosis. Oncol. Lett. 2013, 6, 600–604. [Google Scholar] [CrossRef] [Green Version]
- Jafary, H.; Ahmadian, S.; Soleimani, M. The enhanced apoptosis and antiproliferative response to combined treatment with valproate and nicotinamide in MCF-7 breast cancer cells. Tumour Biol. 2014, 35, 2701–2710. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, H.; Woo, J.; Yue, W.; Kim, K.; Choi, S.; Jang, J.-J.; Kim, Y.; Park, I.A.; Han, D.; et al. Reconstruction of pathway modification induced by nicotinamide using multi-omic network analyses in triple negative breast cancer. Sci. Rep. 2017, 7, 3466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santidrian, A.F.; Matsuno-Yagi, A.; Ritland, M.; Seo, B.B.; LeBoeuf, S.E.; Gay, L.J.; Yagi, T.; Felding-Habermann, B. Mitochondrial complex I activity and NAD+/NADH balance regulate breast cancer progression. J. Clin. Invest. 2013, 123, 1068–1081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, Y.; Guo, Y.; Zhou, J.; Dai, K.; Xu, Q.; Jin, X. Nicotinamide Overcomes Doxorubicin Resistance of Breast Cancer Cells through Deregulating SIRT1/Akt Pathway. Anticancer Agents Med. Chem. 2019, 19, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Gómez, G.; Díaz-Chávez, J.; Chávez-Blanco, A.; Gonzalez-Fierro, A.; Jiménez-Salazar, J.E.; Damián-Matsumura, P.; Gómez-Quiroz, L.E.; Dueñas-González, A. Nicotinamide sensitizes human breast cancer cells to the cytotoxic effects of radiation and cisplatin. Oncol. Rep. 2015, 33, 721–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Itzhaki, O.; Greenberg, E.; Shalmon, B.; Kubi, A.; Treves, A.J.; Shapira-Frommer, R.; Avivi, C.; Ortenberg, R.; Ben-Ami, E.; Schachter, J.; et al. Nicotinamide inhibits vasculogenic mimicry, an alternative vascularization pathway observed in highly aggressive melanoma. PLoS One 2013, 8, e57160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunimoto, R.; Jimbow, K.; Tanimura, A.; Sato, M.; Horimoto, K.; Hayashi, T.; Hisahara, S.; Sugino, T.; Hirobe, T.; Yamashita, T.; et al. SIRT1 regulates lamellipodium extension and migration of melanoma cells. J. Invest. Dermatol. 2014, 134, 1693–1700. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Ryu, H.S.; Jang, J.J. Nicotinamide suppresses cell growth by G1-phase arrest and induces apoptosis in intrahepatic cholangiocarcinoma. Molecular & Cellular Toxicology 2018, 14, 43–51. [Google Scholar]
- Jafary, H.; Ahmadian, S.; Soleimani, M. Synergistic anticancer activity of valproate combined with nicotinamide enhances anti-proliferation response and apoptosis in MIAPaca2 cells. Mol. Biol. Rep. 2014, 41, 3801–3812. [Google Scholar] [CrossRef]
- Zhang, J.-G.; Zhao, G.; Qin, Q.; Wang, B.; Liu, L.; Liu, Y.; Deng, S.-C.; Tian, K.; Wang, C.-Y. Nicotinamide prohibits proliferation and enhances chemosensitivity of pancreatic cancer cells through deregulating SIRT1 and Ras/Akt pathways. Pancreatology 2013, 13, 140–146. [Google Scholar] [CrossRef]
- Gupta, N.; Saleem, A.; Kötz, B.; Osman, S.; Aboagye, E.O.; Phillips, R.; Vernon, C.; Wasan, H.; Jones, T.; Hoskin, P.J.; et al. Carbogen and nicotinamide increase blood flow and 5-fluorouracil delivery but not 5-fluorouracil retention in colorectal cancer metastases in patients. Clin. Cancer Res. 2006, 12, 3115–3123. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Wang, Y.; Jiang, C.; Fang, Z.; Zhang, Z.; Lin, X.; Sun, L.; Jiang, W. Nicotinamide induces mitochondrial-mediated apoptosis through oxidative stress in human cervical cancer HeLa cells. Life Sci. 2017, 181, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Audrito, V.; Vaisitti, T.; Rossi, D.; Gottardi, D.; D’Arena, G.; Laurenti, L.; Gaidano, G.; Malavasi, F.; Deaglio, S. Nicotinamide blocks proliferation and induces apoptosis of chronic lymphocytic leukemia cells through activation of the p53/miR-34a/SIRT1 tumor suppressor network. Cancer Res. 2011, 71, 4473–4483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amengual, J.E.; Clark-Garvey, S.; Kalac, M.; Scotto, L.; Marchi, E.; Neylon, E.; Johannet, P.; Wei, Y.; Zain, J.; O’Connor, O.A. Sirtuin and pan-class I/II deacetylase (DAC) inhibition is synergistic in preclinical models and clinical studies of lymphoma. Blood 2013, 122, 2104–2113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dell’Omo, G.; Ciana, P. Nicotinamide in the prevention of breast cancer recurrences? Oncotarget 2019, 10, 5495–5496. [Google Scholar] [CrossRef]
- Chamie, K.; Litwin, M.S.; Bassett, J.C.; Daskivich, T.J.; Lai, J.; Hanley, J.M.; Konety, B.R.; Saigal, C.S.; Urologic Diseases in America Project. Recurrence of high-risk bladder cancer: A population-based analysis. Cancer 2013, 119, 3219–3227. [Google Scholar] [CrossRef] [Green Version]
- Choupani, J.; Mansoori Derakhshan, S.; Bayat, S.; Alivand, M.R.; Shekari Khaniani, M. Narrower insight to SIRT1 role in cancer: A potential therapeutic target to control epithelial--mesenchymal transition in cancer cells. J. Cell. Physiol. 2018, 233, 4443–4457. [Google Scholar] [CrossRef]
- Frazzi, R. SIRT1 in Secretory Organ Cancer. Front. Endocrinol. 2018, 9, 569. [Google Scholar] [CrossRef]
- Sun, M.; Du, M.; Zhang, W.; Xiong, S.; Gong, X.; Lei, P.; Zha, J.; Zhu, H.; Li, H.; Huang, D.; et al. Survival and Clinicopathological Significance of SIRT1 Expression in Cancers: A Meta-Analysis. Front. Endocrinol. 2019, 10, 121. [Google Scholar] [CrossRef]
- Fang, Y.; Nicholl, M.B. Sirtuin 1 in malignant transformation: Friend or foe? Cancer Lett. 2011, 306, 10–14. [Google Scholar] [CrossRef]
- Shi, L.; Tang, X.; Qian, M.; Liu, Z.; Meng, F.; Fu, L.; Wang, Z.; Zhu, W.-G.; Huang, J.-D.; Zhou, Z.; et al. A SIRT1-centered circuitry regulates breast cancer stemness and metastasis. Oncogene 2018, 37, 6299–6315. [Google Scholar] [CrossRef] [Green Version]
- Rifaï, K.; Idrissou, M.; Penault-Llorca, F.; Bignon, Y.-J.; Bernard-Gallon, D. Breaking down the Contradictory Roles of Histone Deacetylase SIRT1 in Human Breast Cancer. Cancers 2018, 10, 409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, M.-S.; Hyun, C.L.; Park, I.A.; Kim, J.Y.; Chung, Y.R.; Im, S.-A.; Lee, K.-H.; Moon, H.-G.; Ryu, H.S. SIRT1 induces tumor invasion by targeting epithelial mesenchymal transition-related pathway and is a prognostic marker in triple negative breast cancer. Tumour Biol. 2016, 37, 4743–4753. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.Y.; Jung, Y.Y.; Park, I.A.; Kim, H.; Chung, Y.R.; Kim, J.Y.; Park, S.Y.; Im, S.-A.; Lee, K.-H.; Moon, H.-G.; et al. Oncogenic role of SIRT1 associated with tumor invasion, lymph node metastasis, and poor disease-free survival in triple negative breast cancer. Clin. Exp. Metastasis 2016, 33, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.R.; Kim, H.; Park, S.Y.; Park, I.A.; Jang, J.J.; Choe, J.-Y.; Jung, Y.Y.; Im, S.-A.; Moon, H.-G.; Lee, K.-H.; et al. Distinctive role of SIRT1 expression on tumor invasion and metastasis in breast cancer by molecular subtype. Hum. Pathol. 2015, 46, 1027–1035. [Google Scholar] [CrossRef]
- Kim, H.; Lee, K.-H.; Park, I.A.; Chung, Y.R.; Im, S.-A.; Noh, D.-Y.; Han, W.; Moon, H.-G.; Jung, Y.Y.; Ryu, H.S. Expression of SIRT1 and apoptosis-related proteins is predictive for lymph node metastasis and disease-free survival in luminal A breast cancer. Virchows Arch. 2015, 467, 563–570. [Google Scholar] [CrossRef]
- Tan, J.; Liu, Y.; Maimaiti, Y.; Wang, C.; Yan, Y.; Zhou, J.; Ruan, S.; Huang, T. Combination of SIRT1 and Src overexpression suggests poor prognosis in luminal breast cancer. Onco. Targets. Ther. 2018, 11, 2051–2061. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Wei, W.; Xiao, X.; Guo, J.; Xie, X.; Li, L.; Kong, Y.; Lv, N.; Jia, W.; Zhang, Y.; et al. Expression of SIRT1 is associated with lymph node metastasis and poor prognosis in both operable triple-negative and non-triple-negative breast cancer. Med. Oncol. 2012, 29, 3240–3249. [Google Scholar] [CrossRef]
Tissue/Cancer Type | Level(s) Tested | Summary of Findings | Reference |
---|---|---|---|
Skin | Animal models | NAM, in synergy with butyric acid and calcium glucarate, suppressed the DMBA-induced tumorigenesis by inhibiting the KRAS/PI3K/AKT signaling pathway and regulating the expression of selected microRNAs | [58] |
Cell lines | NAM suppressed ATP depletion in UV-irradiated keratinocytes | [59] | |
Cell lines, ex vivo skin | NAM enhanced DNA repair in UV-irradiated keratinocytes and ex vivo skin | [60] | |
Cell lines, ex vivo skin | NAM enhanced DNA repair in sodium arsenite and UV-irradiated keratinocytes and ex vivo skin | [61] | |
Cell lines | NAM enhanced DNA repair in UV-irradiated melanocytes | [62] | |
Cell lines | NAM suppressed diverse pro-inflammatory mediators in UV-irradiated keratinocytes | [63] | |
Human tissues | NAM suppressed the number of macrophages in human NMSC tissues, exhibiting anti-inflammatory capacity | [64] | |
Animal models | Topical NAM reduced immunosuppression and suppressed tumor formation in UV-irradiated animal models | [65] | |
Patients (clinical study) | Topical NAM reduced immunosuppression in UV-irradiated human skin | [66] | |
Patients (clinical study), cell lines | Topical NAM reduced immunosuppression in UV-irradiated human skin; NAM also enhanced energy metabolism and the expression of p53 | [67] | |
Patients (clinical study) | Oral NAM was well tolerated, while it reduced immunosuppression in UV-irradiated human skin; it also increased NAD+ levels in the blood | [68] | |
Patients (clinical study) | Topical and oral NAM reduced immunosuppression in skin areas undergoing photodynamic therapy | [69] | |
Patients (clinical study) | Topical NAM reduced the incidence of AK | [70] | |
Patients (phase II clinical trial) | Oral NAM reduced the incidence of AK | [71] | |
Patients (phase III clinical trial) | Oral NAM was safe and well tolerated, while it reduced the incidence of AK, SCC, and BCC in immunocompetent patients | [55] | |
Patients (clinical study) | Oral NAM suppressed AKs and cancer in immunocompromised patients | [72] | |
Patients (clinical study) | Oral NAM suppressed preexisting AKs in immunocompromised patients, also inhibited the development of new AKs or cancer | [73] | |
Urinary bladder | Animal models, cell lines, human samples (mining of published data) | NAM suppressed bladder tumor formation in BBN-exposed animal models and prevented urinary bladder carcinogenesis by modulating the expression of Myc and its related genes | [74] |
Lung | Animal models | Dietary NAM suppressed lung tumor formation in benzo(a)pyrene-exposed animal models, either when administered alone or synergistically with budesonide | [75] |
Animal models | Dietary NAM suppressed lung tumor formation in urethane-exposed animal models | [76] | |
Liver | Animal models | NAM inhibited the formation of pre-neoplastic lesions | [77] |
Cell lines, animal models | NAM suppressed liver tumor formation in thioacetamide-exposed animal models | [78] | |
Leukemia | Animal models | Oral NAM reduced the incidence of non-lymphocytic leukemia in alkylation-exposed animal models | [79] |
Kidney | Animal models | NAM suppressed tumor formation in streptozotocin-exposed animal models | [80] |
Tissue/Cancer Type | Level(s) Tested | Summary of Findings | Reference(s) |
---|---|---|---|
Head and Neck | Patients (phase II clinical trial) | ARCON enhanced locoregional tumor control | [98] |
Patients (phase I/II clinical trial) | ARCON showed no significant therapeutic benefit in terms of local tumor control and tumor response; gastrointestinal toxicity was recorded and linked with the high doses of NAM (6 gr/day) used in this trial | [99] | |
Patients (phase III clinical trial) | ARCON counteracted the negative prognostic impact of anemia in patients with head and neck squamous cell cancer | [100] | |
Larynx | Animal models | NAM and carbogen reduced tumor hypoxia in animal models treated with radiotherapy | [101] |
Human tissues | ARCON improved prognosis in patients with highly proliferative laryngeal cancers (high Ki-67) | [102] | |
Patients (clinical study) | ARCON enhanced local tumor control | [103] | |
Patients (phase III clinical trial) | ARCON enhanced local tumor control, especially in the presence of tumor hypoxia | [104,105] | |
Patients (phase III clinical trial) | ARCON enhanced locoregional control and disease-free survival in anemic patients with laryngeal carcinoma; it also improved patient quality of life after the radiotherapy treatment | [106,107] | |
Urinary Bladder | Patients (phase II clinical trial) | ARCON was relatively safe and well tolerated; it also enhanced local regional control and improved overall survival | [108,109] |
Patients (phase III clinical trial) | NAM and carbogen improved overall and disease-free survival at a significant level in patients treated with radiotherapy | [110] | |
Brain/Glioblastoma | Patients | NAM and carbogen showed no significant difference in tumor perfusion of glioblastoma patients treated with radiotherapy | [111] |
Patients (phase I/II clinical trial) | NAM and carbogen showed no significant therapeutic benefit in terms of overall survival in glioblastoma patients treated with radiotherapy; gastrointestinal toxicity was recorded and linked with the high doses of NAM used in this trial | [112] | |
Patients (phase III clinical trial) | NAM and carbogen showed no significant therapeutic benefit in terms of overall survival in glioblastoma patients treated with radiotherapy; gastrointestinal toxicity was recorded and linked with the high doses of NAM used in this trial | [113] | |
Lung/NSCLC | Patients (phase I/II clinical trial) | ARCON showed no significant therapeutic benefit in terms of tumor response in NSCLC patients | [114] |
Colon/Primary cancer and liver metastasis | Animal models | NAM and carbogen reduced tumor hypoxia in primary colon cancer and its metastasis in the liver | [115,116] |
Prostate | Cell lines | NAM reestablished sensitivity to radiotherapy in resistant prostate cancer cell lines | [117] |
Soft tissue/Fibrosarcoma) | Animal models | NAM and carbogen reduced tumor hypoxia in fibrosarcoma animal models treated with radiotherapy | [118] |
Tissue /Cancer Type | Level(s) Tested | Summary of Findings | Reference |
---|---|---|---|
Breast | Animal models | Intraperitoneal NAM suppressed tumor growth in animal models | [119] |
Cell lines | NAM enhanced apoptosis in hormone-positive breast cancer cells | [120] | |
Cell lines | NAM suppressed proliferation and enhanced apoptosis in hormone-positive breast cancer cells | [121] | |
Cell lines | NAM suppressed cell cycle progression, DNA repair, and DNA replication, while it enhanced apoptosis of TNBC in vitro | [122] | |
Animal models | NAM suppressed metastasis to the lungs and brain and prolonged survival of TNBC animal models | [123] | |
Cell lines | NAM reestablished sensitivity to chemotherapy in resistant hormone-positive breast cancer cell lines | [124] | |
Cell lines | NAM reestablished sensitivity to chemotherapy in resistant TNBC and hormone-positive breast cancer cell lines | [125] | |
Skin/Melanoma | Cell lines, human tissues | NAM suppressed vasculogenic mimicry and proliferation, but enhanced invasion of melanoma | [126] |
Cell lines, animal models | NAM suppressed migration in vitro, also invasion and metastasis of melanoma in vivo by inhibiting SIRT1 | [127] | |
Liver/HCC | Cell lines | NAM suppressed proliferation, while it enhanced apoptosis and cell cycle arrest of HCC in vitro | [77] |
Cell lines, animal models | NAM suppressed HCC growth, reduced serum AFP, and enhanced survival of thioacetamide-exposed animal models | [78] | |
Liver/Bile duct carcinoma | Cell lines | NAM suppressed cell cycle progression, EMT, and invasion, while it enhanced apoptosis of intrahepatic cholangiocarcinoma in vitro | [128] |
Pancreas | Cell lines | NAM suppressed proliferation and enhanced apoptosis when administered in combination with valproate in vitro | [129] |
Cell lines | NAM suppressed proliferation, cell cycle progression, invasion, and enhanced apoptosis in vitro, while it reestablished sensitivity to chemotherapy in resistant pancreatic cancer cell lines | [130] | |
Colon | Patients (clinical study) | NAM enhanced the delivery of chemotherapy to colon cancer metastases when administered together with carbogen | [131] |
Urinary bladder | Animal models, cell lines, human samples (mining of published data) | NAM suppressed tumor proliferation, growth, and progression by modulating the expression of Myc and its related genes | [74] |
Cervix | Cell lines | NAM suppressed proliferation, while it enhanced oxidative stress and apoptosis in vitro | [132] |
Leukemia | Cell lines (derived from patient blood samples) | NAM suppressed proliferation and enhanced apoptosis in CLL | [133] |
Lymphoma | Cell lines, animal models, patients (phase I clinical trial) | NAM exhibited a synergistic cytotoxic action against DLBCL when administered together with a pan I/II deacetylase inhibitor (e.g., vorinostat) | [134] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikas, I.P.; Paschou, S.A.; Ryu, H.S. The Role of Nicotinamide in Cancer Chemoprevention and Therapy. Biomolecules 2020, 10, 477. https://doi.org/10.3390/biom10030477
Nikas IP, Paschou SA, Ryu HS. The Role of Nicotinamide in Cancer Chemoprevention and Therapy. Biomolecules. 2020; 10(3):477. https://doi.org/10.3390/biom10030477
Chicago/Turabian StyleNikas, Ilias P., Stavroula A. Paschou, and Han Suk Ryu. 2020. "The Role of Nicotinamide in Cancer Chemoprevention and Therapy" Biomolecules 10, no. 3: 477. https://doi.org/10.3390/biom10030477
APA StyleNikas, I. P., Paschou, S. A., & Ryu, H. S. (2020). The Role of Nicotinamide in Cancer Chemoprevention and Therapy. Biomolecules, 10(3), 477. https://doi.org/10.3390/biom10030477