Deodorant Activity of Black Cumin Seed Essential Oil against Garlic Organosulfur Compound
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental Procedures
2.2. Botanical Essential Oils
2.3. Chemicals
2.4. Isolation of AMTS and DATS from GEO
2.5. GC-MS Analysis
2.6. HS-GC Analysis
2.7. Evaluation of Deodorant Activity
2.8. Isolation and Identification of Reactants from BCO and AM
2.9. Reaction Monitoring between Thymoquinone and AM
2.10. Statistical Analysis
3. Results and Discussion
3.1. Organosulfur Compound Composition of GEO
3.2. Deodorant Activity of Black Cumin Seed Essential Oil (BCO) against GEO
3.3. Deodorant Activity of BCO against Organosulfur Compounds
3.4. Isolation and Identification of Reactants between Thymoquinone and AM
3.5. Reaction Monitoring between Thymoquinone and AM
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mahmoodi, M.R.; Mohammadizadeh, M. Therapeutic potentials of Nigella sativa preparations and its constituents in the management of diabetes and its complications in experimental animals and patients with diabetes mellitus: A systematic review. Complement. Ther. Med. 2020, 50, 102391. [Google Scholar] [CrossRef] [PubMed]
- El-Saber Batiha, G.; Magdy Beshbishy, A.; GWasef, L.; Elewa, Y.H.A.; AAl-Sagan, A.; Abd El-Hack, M.E.; Taha, A.E.; MAbd-Elhakim, Y.; Prasad Devkota, H. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. Nutrients 2020, 12, 872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haggard, H.W.; Greenberg, L.A. Breath odors from alliaceous substances: Cause and remedy. JAMA 1935, 104, 2160–2163. [Google Scholar] [CrossRef]
- Rosen, R.T.; Hiserodt, R.D.; Fukuda, E.K.; Ruiz, R.J.; Zhou, Z.; Lech, J.; Rosen, S.L.; Hartman, T.G. Determination of allicin, S-allylcysteine and volatile metabolites of garlic in breath, plasma or simulated gastric fluids. J. Nutr. 2001, 131, 968S–971S. [Google Scholar] [CrossRef]
- Nakatani, N.; Miura, K.; Inagaki, T. Structure of new deodorant biphenyl compounds from thyme (Thymus vulgaris L.) and their activity against methyl mercaptan. Agri. Biol. Chem. 1989, 53, 1375–1381. [Google Scholar] [CrossRef]
- Yasuda, H.; Arakawa, T. Deodorizing mechanism of (-)-epigallocatechin gallate against methyl mercaptan. Biosci. Biotechnol. Biochem. 1995, 59, 1232–1236. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Jang, S.-J.; Kim, H.-R.; Kim, S.-B. Deodorizing, antimicrobial and glucosyltransferase inhibitory activities of polyphenolics from biosource. Korean J. Chem. Eng. 2017, 34, 1400–1404. [Google Scholar] [CrossRef]
- Nakasugi, T.; Murakawa, T.; Shibuya, K.; Morimoto, M. Deodorizing substance in black cumin (Nigella sativa L.) seed oil. J. Oleo Sci. 2017, 66, 877–882. [Google Scholar] [CrossRef]
- Negishi, O.; Negishi, Y. Enzymatic deodorization with raw fruits, vegetables and mushrooms. Food Sci. Technol. Res. 1999, 5, 176–180. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Zou, X.; Lu, Y.; Xia, L.; Huang, C.; Shen, C.; Chen, X.; Chu, Y. Characterization of volatiles in garlic and in exhaled breath after garlic ingestion by on-line atmospheric pressure photoionization quadrupole time-of-flight mass spectrometry. Food Sci. Technol. Res. 2017, 23, 613–620. [Google Scholar] [CrossRef] [Green Version]
- Taucher, J.; Hansel, A.; Jordan, A.; Lindinger, W. Analysis of compounds in human breath after ingestion of garlic using proton-transfer-reaction mass spectrometry. J. Agric. Food Chem. 1996, 44, 3778–3782. [Google Scholar] [CrossRef]
- Suarez, F.; Springfield, J.; Furne, J.; Levitt, M. Differentiation of mouth versus gut as site of origin of odoriferous breath gases after garlic ingestion. Am. J. Physiol. 1999, 276, G425–G430. [Google Scholar] [CrossRef]
- Hansanugrum, A.; Barringer, S.A. Effect of milk on the deodorization of malodorous breath after garlic ingestion. J. Food Sci. 2010, 75, 549–558. [Google Scholar] [CrossRef]
- Sato, S.; Sekine, Y.; Kakumu, Y.; Hiramoto, T. Measurement of diallyl disulfide and allyl methyl sulfide emanating from human skin surface and influence of ingestion of grilled garlic. Sci. Rep. 2020, 10, 465. [Google Scholar] [CrossRef] [Green Version]
- Degen, L.P.; Phillips, S.F. Variability of gastrointestinal transit in healthy women and men. Gut 1996, 39, 299–305. [Google Scholar] [CrossRef] [Green Version]
- Hellmig, S.; Von Schöning, F.; Gadow, C.; Katsoulis, S.; Hedderich, J.; Fölsch, U.R.; Stüber, E. Gastric emptying time of fluids and solids in healthy subjects determined by 13C breath tests: Influence of age, sex and body mass index. J. Gastroen. Hepatol. 2006, 21, 1832–1838. [Google Scholar] [CrossRef]
- Lawson, L.D.; Wang, Z.J.; Hughes, B.G. Identification and HPLC quantitation of the sulfides and dialk(en)yl thiosulfinates in commercial garlic products. Planta Med. 1991, 57, 363–370. [Google Scholar] [CrossRef] [Green Version]
- Iberl, B.; Winkler, G.; Knobloch, K. Products of allicin transformation: Ajoenes and dithiins, characterization and their determination by HPLC. Planta Med. 1990, 56, 202–211. [Google Scholar] [CrossRef]
- Miething, H. HPLC-analysis of the volatile oil of garlic bulbs. Phytother. Res. 1988, 2, 149–151. [Google Scholar] [CrossRef]
- Clemente, J.G.; Williams, J.D.; Cross, M.; Chambers, C.C. Analysis of garlic cultivars using head space solid phase microextraction/gas chromatography/mass spectroscopy. Open Food Sci. J. 2012, 6, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Kita, N.; Fujimoto, K.; Nakajima, I.; Hayashi, R.; Shibuya, K. Screening test for deodorizing substances from marine algae and identification of phlorotannins as the effective ingredients in Eisenia bicyclis. J. Appl. Phycol. 1990, 2, 155–162. [Google Scholar] [CrossRef]
- Dziri, S.; Casabianca, H.; Hanchi, B.; Hosni, K. Composition of garlic essential oil (Allium sativum L.) as influenced by drying method. J. Essent. Oil Res. 2014, 26, 91–96. [Google Scholar] [CrossRef]
- Raghavan, R.; Rao, P.P.; Rao, L. Chemical composition of essential oils of garlic (Allium sativum L.). J. Spic. Arom. Crops. 1999, 8, 41–47. [Google Scholar]
- Tamaki, T.; Sonoki, S. Volatile sulfur compounds in human expiration after eating raw or heat-treated garlic. J. Nutr. Sci. Vitaminol. 1999, 45, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Egen-Schwind, C.; Eckard, R.; Kemper, F.H. Metabolism of garlic constituents in the isolated perfused rat liver. Planta Med. 1992, 58, 301–305. [Google Scholar] [CrossRef]
- Munch, R.; Barringer, S.A. Deodorization of garlic breath volatiles by food and food components. J. Food Sci. 2014, 79, 526–533. [Google Scholar] [CrossRef] [Green Version]
- Lawson, L.D.; Wang, Z.J. Allicin and allicin-derived garlic compounds increase breath acetone through allyl methyl sulfide: Use in measuring allicin bioavailability. J. Agric. Food Chem. 2005, 53, 1974–1983. [Google Scholar] [CrossRef]
- Yoshioka, Y.; Matsumura, S.; Morimoto, M.; Takemoto, Y.; Kishi, C.; Moriyama, T.; Zaima, N. Inhibitory activities of sulfur compounds in garlic essential oil against Alzheimer’s disease-related enzymes and their distribution in the mouse brain. J. Agric. Food Chem. 2021, 69, 10163–10173. [Google Scholar] [CrossRef]
Assay Condition | Dosage of BCO (mg) | Deodorant Activity ± SD (%) |
---|---|---|
pH 7.0 | 0.1 | 75.7 ± 9.30 |
10 | 100 ± 0.00 | |
pH 1.2 | 0.1 | 18.7 ± 16.7 |
10 | 70.2 ± 13.7 |
Compounds | Deodorant Activity ± SD (%) | ||
---|---|---|---|
5 mg of BCO | 10 mg of BCO | 20 mg of BCO | |
AMS | 31.6 ± 2.72 | 32.8 ± 11.4 | 49.5 ± 8.14 |
DAS | 58.9 ± 1.27 | 57.0 ± 4.58 | 81.2 ± 2.11 |
AMDS | 22.7 ± 7.38 | 65.1 ± 6.76 | 87.2 ± 2.8 |
DMTS | 61.8 ± 11.0 | 68.8 ± 5.00 | 85.9 ± 3.23 |
DADS | 43.6 ± 6.52 | 45.3 ± 11.0 | 100 ± 0.00 |
AMTS | 58.2 ± 4.42 | 82.5 ± 2.21 | 100 ± 0.00 |
DATS | 49.4 ± 2.81 | 73.7 ± 1.59 | 100 ± 0.00 |
Reaction pH | Time (min) | Quantity of AM (μg) | Content ± SD (ng/mL) | ||
---|---|---|---|---|---|
Reactant 1 | Reactant 2 | Reactant 3 | |||
1.2 | 10 | 0.5 | n.d. | n.d. | n.d. |
5 | 0.14 ± 0.24 | 0.02 ± 0.04 | n.d. | ||
50 | 4.05 ± 3.52 | 1.81 ± 0.88 | 0.08 ± 0.07 | ||
30 | 0.5 | n.d. | n.d. | n.d. | |
5 | 0.16 ± 0.28 | 0.06 ± 0.10 | n.d. | ||
50 | 8.12 ± 2.47 | 2.96 ± 0.85 | 0.22 ± 0.05 | ||
60 | 0.5 | n.d. | n.d. | n.d. | |
5 | 0.28 ± 0.48 | 0.14 ± 0.24 | 0.02 ± 0.03 | ||
50 | 10.08 ± 1.83 | 5.66 ± 0.22 | 0.68 ± 0.31 | ||
7.0 | 10 | 0.5 | n.d. | 0.26 ± 0.28 | 0.21 ± 0.20 |
5 | n.d. | 5.58 ± 3.6 | 4.31 ± 1.23 | ||
50 | n.d. | 422.69 ± 194.55 | 163.23 ± 38.93 | ||
30 | 0.5 | n.d. | 1.42 ± 1.41 | 0.50 ± 0.55 | |
5 | n.d. | 18.42 ± 11.45 | 10.27 ± 0.77 | ||
50 | n.d. | 605.32 ± 123.83 | 231.97 ± 49.12 | ||
60 | 0.5 | n.d. | 2.13 ± 2.12 | 0.70 ± 0.63 | |
5 | n.d. | 28.38 ± 13.47 | 11.29 ± 0.32 | ||
50 | n.d. | 732.26 ± 176.18 | 261.43 ± 36.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshioka, Y.; Matsumura, S.; Morimoto, M. Deodorant Activity of Black Cumin Seed Essential Oil against Garlic Organosulfur Compound. Biomolecules 2021, 11, 1874. https://doi.org/10.3390/biom11121874
Yoshioka Y, Matsumura S, Morimoto M. Deodorant Activity of Black Cumin Seed Essential Oil against Garlic Organosulfur Compound. Biomolecules. 2021; 11(12):1874. https://doi.org/10.3390/biom11121874
Chicago/Turabian StyleYoshioka, Yuri, Shinichi Matsumura, and Masanori Morimoto. 2021. "Deodorant Activity of Black Cumin Seed Essential Oil against Garlic Organosulfur Compound" Biomolecules 11, no. 12: 1874. https://doi.org/10.3390/biom11121874
APA StyleYoshioka, Y., Matsumura, S., & Morimoto, M. (2021). Deodorant Activity of Black Cumin Seed Essential Oil against Garlic Organosulfur Compound. Biomolecules, 11(12), 1874. https://doi.org/10.3390/biom11121874