Investigating the Role of Zinc in Atherosclerosis: A Review
Abstract
:1. Introduction
2. Zinc-Related Proteins
2.1. ZnT/ZIP
2.2. MTs
2.3. Zinc Finger Proteins
3. Zinc and Atherogenic Cells
3.1. Zinc and Vascular Cells
3.1.1. Zinc and ECs
3.1.2. Zinc and VSMCs
3.2. Zinc and Immune Cells
3.2.1. Zinc, Macrophage, and Cytokines
3.2.2. Zinc and Lymphocytes
4. Role of Zinc in Risk Factors of Atherosclerosis
4.1. Role of Zinc in Lipid Metabolism
4.2. Role of Zinc in Glucose Metabolism
4.3. Role of Zinc in the Regulation of Blood Pressure
5. Zinc and Atherosclerosis: Animal and Human Studies
5.1. Animal Studies
5.2. Human Studies
6. Limitations and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chasapis, C.T.; Ntoupa, P.-S.A.; Spiliopoulou, C.A.; Stefanidou, M.E. Recent aspects of the effects of zinc on human health. Arch. Toxicol. 2020, 94, 1443–1460. [Google Scholar] [CrossRef] [PubMed]
- Stefanidou, M.; Maravelias, C.; Dona, A.; Spiliopoulou, C. Zinc: A multipurpose trace element. Arch. Toxicol. 2005, 80, 1–9. [Google Scholar] [CrossRef]
- King, J.C.; Shames, D.M.; Woodhouse, L.R. Zinc Homeostasis in Humans. J. Nutr. 2000, 130, 1360S–1366S. [Google Scholar] [CrossRef]
- Valko, M.; Jomova, K.; Rhodes, C.J.; Kuča, K.; Musílek, K. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch. Toxicol. 2016, 90, 1–37. [Google Scholar] [CrossRef]
- Mocchegiani, E.; Muzzioli, M.; Giacconi, R. Zinc and immunoresistance to infection in aging: New biological tools. Trends Pharmacol. Sci. 2000, 21, 205–208. [Google Scholar] [CrossRef]
- Choi, S.; Cui, C.; Luo, Y.; Kim, S.; Ko, J.; Huo, X.; Ma, J.; Fu, L.; Souza, R.F.; Korichneva, I.; et al. Selective inhibitory effects of zinc on cell proliferation in esophageal squamous cell carcinoma through Orai1. FASEB J. 2017, 32, 404–416. [Google Scholar] [CrossRef]
- Pan, Z.; Choi, S.; Ouadid-Ahidouch, H.; Yang, J.-M.; Beattie, J.H.; Korichneva, I. Zinc transporters and dysregulated channels in cancers. Front. Biosci. 2017, 22, 623–643. [Google Scholar] [CrossRef]
- Prasad, A.S. Discovery of human zinc deficiency: 50 years later. J. Trace Elements Med. Biol. 2012, 26, 66–69. [Google Scholar] [CrossRef]
- Bonow, R.O.; Smaha, L.A.; Smith, S.C.; Mensah, G.; Lenfant, C. World Heart Day. Circulation 2002, 106, 1602–1605. [Google Scholar] [CrossRef]
- Benjamin, E.J.; Blaha, M.J.; Chiuve, S.E.; Cushman, M.; Das, S.R.; Deo, R.; de Ferranti, S.D.; Floyd, J.; Fornage, M.; Gillespie, C. Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association. Circulation 2017, 135, e146–e603. [Google Scholar] [CrossRef]
- Choi, S.; Liu, X.; Pan, Z. Zinc deficiency and cellular oxidative stress: Prognostic implications in cardiovascular diseases. Acta Pharmacol. Sin. 2018, 39, 1120–1132. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Stewart, A.J.; Sadler, P.J.; Pinheiro, T.J.; Blindauer, C.A. Albumin as a zinc carrier: Properties of its high-affinity zinc-binding site. Biochem. Soc. Trans. 2008, 36, 1317–1321. [Google Scholar] [CrossRef] [PubMed]
- Kambe, T.; Tsuji, T.; Hashimoto, A.; Itsumura, N. The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiol. Rev. 2015, 95, 749–784. [Google Scholar] [CrossRef] [PubMed]
- Outten, C.E.; O’Halloran, T.V. Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 2001, 292, 2488–2492. [Google Scholar] [CrossRef] [PubMed]
- Vinkenborg, J.L.; Nicolson, T.J.; Bellomo, E.A.; Koay, M.S.; Rutter, G.A.; Merkx, M. Genetically encoded FRET sensors to monitor intracellular Zn2+ homeostasis. Nat. Methods 2009, 6, 737–740. [Google Scholar] [CrossRef]
- Kimura, T.; Kambe, T. The Functions of Metallothionein and ZIP and ZnT Transporters: An Overview and Perspective. Int. J. Mol. Sci. 2016, 17, 336. [Google Scholar] [CrossRef]
- Kambe, T.; Taylor, K.M.; Fu, D. Zinc transporters and their functional integration in mammalian cells. J. Biol. Chem. 2021, 296, 100320. [Google Scholar] [CrossRef]
- Colvin, R.A.; Holmes, W.R.; Fontaine, C.P.; Maret, W. Cytosolic zinc buffering and muffling: Their role in intracellular zinc homeostasis. Metallomics 2010, 2, 306–317. [Google Scholar] [CrossRef]
- Maret, W. Zinc Biochemistry: From a Single Zinc Enzyme to a Key Element of Life. Adv. Nutr. Int. Rev. J. 2013, 4, 82–91. [Google Scholar] [CrossRef]
- Krezel, A.; Maret, W. Zinc-buffering capacity of a eukaryotic cell at physiological pZn. JBIC J. Biol. Inorg. Chem. 2006, 11, 1049–1062. [Google Scholar] [CrossRef]
- Laity, J.H.; Andrews, G.K. Understanding the mechanisms of zinc-sensing by metal-response element binding transcription factor-1 (MTF-1). Arch. Biochem. Biophys. 2007, 463, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Jia, R.; Song, Z.; Lin, J.; Li, Z.; Shan, G.; Huang, C. Gawky modulates MTF-1-mediated transcription activation and metal discrimination. Nucleic Acids Res. 2021, 49, 6296–6314. [Google Scholar] [CrossRef] [PubMed]
- Baltaci, A.K.; Yuce, K. Zinc Transporter Proteins. Neurochem. Res. 2017, 43, 517–530. [Google Scholar] [CrossRef]
- Huang, L.; Tepaamorndech, S. The SLC30 family of zinc transporters—A review of current understanding of their biological and pathophysiological roles. Mol. Asp. Med. 2013, 34, 548–560. [Google Scholar] [CrossRef]
- Zalewski, P.D.; Beltrame, J.F.; Wawer, A.A.; Abdo, A.I.; Murgia, C. Roles for endothelial zinc homeostasis in vascular physiology and coronary artery disease. Crit. Rev. Food Sci. Nutr. 2018, 59, 3511–3525. [Google Scholar] [CrossRef] [PubMed]
- Takagishi, T.; Hara, T.; Fukada, T. Recent Advances in the Role of SLC39A/ZIP Zinc Transporters In Vivo. Int. J. Mol. Sci. 2017, 18, 2708. [Google Scholar] [CrossRef]
- Bowers, K.; Srai, S.K.S. The trafficking of metal ion transporters of the Zrt- and Irt-like protein family. Traffic 2018, 19, 813–822. [Google Scholar] [CrossRef]
- Hoch, E.; Levy, M.; Hershfinkel, M.; Sekler, I. Elucidating the H+ Coupled Zn2+ Transport Mechanism of ZIP4; Implications in Acrodermatitis Enteropathica. Int. J. Mol. Sci. 2020, 21, 734. [Google Scholar] [CrossRef]
- Fagerberg, L.; Hallström, B.M.; Oksvold, P.; Kampf, C.; Djureinovic, D.; Odeberg, J.; Habuka, M.; Tahmasebpoor, S.; Danielsson, A.; Edlund, K.; et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell. Proteom. 2014, 13, 397–406. [Google Scholar] [CrossRef]
- Thul, P.J.; Åkesson, L.; Wiking, M.; Mahdessian, D.; Geladaki, A.; Ait Blal, H.; Alm, T.; Asplund, A.; Björk, L.; Breckels, L.M.; et al. A subcellular map of the human proteome. Science 2017, 356, eaal3321. [Google Scholar] [CrossRef]
- Nagamatsu, S.; Nishito, Y.; Yuasa, H.; Yamamoto, N.; Komori, T.; Suzuki, T.; Yasui, H.; Kambe, T. Sophisticated expression responses of ZNT1 and MT in response to changes in the expression of ZIPs. Sci. Rep. 2022, 12, 7334. [Google Scholar] [CrossRef] [PubMed]
- Thingholm, T.E.; Rönnstrand, L.; Rosenberg, P.A. Why and how to investigate the role of protein phosphorylation in ZIP and ZnT zinc transporter activity and regulation. Experientia 2020, 77, 3085–3102. [Google Scholar] [CrossRef] [PubMed]
- Karin, M. Metallothioneins: Proteins in search of function. Cell 1985, 41, 9–10. [Google Scholar] [CrossRef]
- Krężel, A.; Maret, W. The Bioinorganic Chemistry of Mammalian Metallothioneins. Chem. Rev. 2021, 121, 14594–14648. [Google Scholar] [CrossRef] [PubMed]
- Krezel, A.; Maret, W. Different redox states of metallothionein/thionein in biological tissue. Biochem. J. 2007, 402, 551–558. [Google Scholar] [CrossRef]
- Krężel, A.; Maret, W. The Functions of Metamorphic Metallothioneins in Zinc and Copper Metabolism. Int. J. Mol. Sci. 2017, 18, 1237. [Google Scholar] [CrossRef]
- Jarosz, M.; Olbert, M.; Wyszogrodzka, G.; Mlyniec, K.; Librowski, T. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology 2017, 25, 11–24. [Google Scholar] [CrossRef]
- Hübner, C.; Haase, H. Interactions of zinc- and redox-signaling pathways. Redox Biol. 2021, 41, 101916. [Google Scholar] [CrossRef]
- Subramanian Vignesh, K.; Deepe, G.S., Jr. Metallothioneins: Emerging Modulators in Immunity and Infection. Int. J. Mol. Sci. 2017, 18, 2197. [Google Scholar] [CrossRef]
- Rahman, M.T.; Karim, M.M. Metallothionein: A Potential Link in the Regulation of Zinc in Nutritional Immunity. Biol. Trace Element Res. 2017, 182, 1–13. [Google Scholar] [CrossRef]
- Cousins, R.J.; Leinart, A.S. Tissue-specific regulation of zinc metabolism and metallothionein genes by interleukin 1. FASEB J. 1988, 2, 2884–2890. [Google Scholar] [CrossRef] [PubMed]
- Ugajin, T.; Nishida, K.; Yamasaki, S.; Suzuki, J.; Mita, M.; Kubo, M.; Yokozeki, H.; Hirano, T. Zinc-binding metallothioneins are key modulators of IL-4 production by basophils. Mol. Immunol. 2015, 66, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Wang, L.; Li, L.; Huang, Z.; Ye, L. Metallothionein 1: A New Spotlight on Inflammatory Diseases. Front. Immunol. 2021, 12, 739918. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Zhang, J.; Cai, L. Reappraisal of metallothionein: Clinical implications for patients with diabetes mellitus. J. Diabetes 2017, 10, 213–231. [Google Scholar] [CrossRef]
- Huang, S.; Wang, J.; Men, H.; Tan, Y.; Lin, Q.; Gozal, E.; Zheng, Y.; Cai, L. Cardiac metallothionein overexpression rescues diabetic cardiomyopathy in Akt2-knockout mice. J. Cell. Mol. Med. 2021, 25, 6828–6840. [Google Scholar] [CrossRef]
- Bensellam, M.; Shi, Y.-C.; Chan, J.Y.; Laybutt, D.R.; Chae, H.; Abou-Samra, M.; Pappas, E.G.; Thomas, H.E.; Gilon, P.; Jonas, J.-C. Metallothionein 1 negatively regulates glucose-stimulated insulin secretion and is differentially expressed in conditions of beta cell compensation and failure in mice and humans. Diabetologia 2019, 62, 2273–2286. [Google Scholar] [CrossRef]
- Laity, J.H.; Lee, B.M.; E Wright, P. Zinc finger proteins: New insights into structural and functional diversity. Curr. Opin. Struct. Biol. 2001, 11, 39–46. [Google Scholar] [CrossRef]
- Jain, M.K.; Sangwung, P.; Hamik, A. Regulation of an inflammatory disease: Krüppel-like factors and atherosclerosis. Arter. Thromb. Vasc. Biol. 2014, 34, 499–508. [Google Scholar] [CrossRef]
- Homeister, J.W.; Patterson, C. Zinc Fingers in the pizza pie aorta. Circ. Res. 2008, 103, 687–689. [Google Scholar] [CrossRef]
- Nayak, L.; Lin, Z.; Jain, M.K. “Go with the flow”: How krüppel-like factor 2 regulates the vasoprotective effects of shear stress. Antioxidants Redox Signal. 2011, 15, 1449–1461. [Google Scholar] [CrossRef] [Green Version]
- Wittner, J.; Schuh, W. Krüppel-like factor 2 (KLF2) in immune cell migration. Vaccines 2021, 9, 1171. [Google Scholar] [CrossRef] [PubMed]
- Atkins, G.B.; Wang, Y.; Mahabeleshwar, G.H.; Shi, H.; Gao, H.; Kawanami, D.; Natesan, V.; Lin, Z.; Simon, D.I.; Jain, M.K. Hemizygous Deficiency of Krüppel-Like Factor 2 Augments Experimental Atherosclerosis. Circ. Res. 2008, 103, 690–693. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Xu, S.; Liu, P.; Koroleva, M.; Zhang, S.; Si, S.; Jin, Z.G. Suberanilohydroxamic Acid as a Pharmacological Kruppel-Like Factor 2 Activator That Represses Vascular Inflammation and Atherosclerosis. J. Am. Heart Assoc. 2017, 6, e007134. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Li, L.; Zheng, X.-L.; Yin, W.-D.; Tang, C.-K. The role of Krüppel-like factor 14 in the pathogenesis of atherosclerosis. Atherosclerosis 2017, 263, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zou, J.; Yu, X.; Ou, X.; Tang, C. Zinc finger E-box binding homeobox 1 and atherosclerosis: New insights and therapeutic potential. J. Cell. Physiol. 2020, 236, 4216–4230. [Google Scholar] [CrossRef] [PubMed]
- McCaffrey, T.A.; Fu, C.; Du, B.; Eksinar, S.; Kent, K.C.; Bush, H.; Kreiger, K.; Rosengart, T.; Cybulsky, M.I.; Silverman, E.S.; et al. High-level expression of Egr-1 and Egr-1–inducible genes in mouse and human atherosclerosis. J. Clin. Investig. 2000, 105, 653–662. [Google Scholar] [CrossRef]
- Gimbrone, M.A., Jr.; García-Cardeña, G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ. Res. 2016, 118, 620–636. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Li, Y.-S.; Chien, S. Shear stress–initiated signaling and its regulation of endothelial function. Arter. Thromb. Vasc. Biol. 2014, 34, 2191–2198. [Google Scholar] [CrossRef]
- Baeyens, N.; Bandyopadhyay, C.; Coon, B.G.; Yun, S.; Schwartz, M.A. Endothelial fluid shear stress sensing in vascular health and disease. J. Clin. Investig. 2016, 126, 821–828. [Google Scholar] [CrossRef]
- Munjal, A.; Khandia, R. Atherosclerosis: Orchestrating cells and biomolecules involved in its activation and inhibition. Adv. Protein. Chem. Struct. Biol. 2020, 120, 85–122. [Google Scholar] [CrossRef]
- Conway, D.E.; Lee, S.; Eskin, S.G.; Shah, A.K.; Jo, H.; McIntire, L.V. Endothelial metallothionein expression and intracellular free zinc levels are regulated by shear stress. Am. J. Physiol. Physiol. 2010, 299, C1461–C1467. [Google Scholar] [CrossRef] [PubMed]
- Falk, E. Pathogenesis of atherosclerosis. J. Am. Coll. Cardiol. 2006, 47, C7–C12. [Google Scholar] [CrossRef] [PubMed]
- Higashi, Y.; Noma, K.; Yoshizumi, M.; Kihara, Y. Endothelial function and oxidative stress in cardiovascular diseases. Circ. J. 2009, 73, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Ozyildirim, S.; Baltaci, S.B. Cardiovascular Diseases and Zinc. Biol. Trace Element Res. 2022, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Maruhashi, T.; Kihara, Y.; Higashi, Y. Bilirubin and Endothelial Function. J. Atheroscler. Thromb. 2019, 26, 688–696. [Google Scholar] [CrossRef] [PubMed]
- Förstermann, U.; Xia, N.; Li, H. Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis. Circ. Res. 2017, 120, 713–735. [Google Scholar] [CrossRef]
- Zou, M.-H.; Shi, C.; Cohen, R.A. Oxidation of the zinc-thiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite. J. Clin. Investig. 2002, 109, 817–826. [Google Scholar] [CrossRef]
- Abregú, F.M.G.; Gobetto, M.N.; Juriol, L.V.; Caniffi, C.; Elesgaray, R.; Tomat, A.L.; Arranz, C. Developmental programming of vascular dysfunction by prenatal and postnatal zinc deficiency in male and female rats. J. Nutr. Biochem. 2018, 56, 89–98. [Google Scholar] [CrossRef]
- Zhuang, X.; Pang, X.; Zhang, W.; Wu, W.; Zhao, J.; Yang, H.; Qu, W. Effects of zinc and manganese on advanced glycation end products (AGEs) formation and AGEs-mediated endothelial cell dysfunction. Life Sci. 2012, 90, 131–139. [Google Scholar] [CrossRef]
- Lind, M.; Hayes, A.; Caprnda, M.; Petrovic, D.; Rodrigo, L.; Kruzliak, P.; Zulli, A. Inducible nitric oxide synthase: Good or bad? Biomed. Pharmacother. 2017, 93, 370–375. [Google Scholar] [CrossRef]
- Yuniwati, Y.; Syaban, M.; Anoraga, S.; Sabila, F. Molecular Docking Approach of Bryophyllum Pinnatum Compounds as Atherosclerosis Therapy by Targeting Adenosine Monophosphate-Activated Protein Kinase and Inducible Nitric Oxide Synthase. Acta Inform. Medica. 2022, 30, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, T.; Li, Y.; Shih, D.M.; Wang, X.; Laubach, V.E.; Matsumoto, A.H.; Helm, G.A.; Lusis, A.J.; Shi, W. Deficiency of inducible NO synthase reduces advanced but not early atherosclerosis in apolipoprotein E-deficient mice. Life Sci. 2006, 79, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Cortese-Krott, M.M.; Kulakov, L.; Opländer, C.; Kolb-Bachofen, V.; Kröncke, K.-D.; Suschek, C.V. Zinc regulates iNOS-derived nitric oxide formation in endothelial cells. Redox Biol. 2014, 2, 945–954. [Google Scholar] [CrossRef] [PubMed]
- Mestas, J.; Ley, K. Monocyte-endothelial cell interactions in the development of atherosclerosis. Trends Cardiovasc. Med. 2008, 18, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Lang, W.; Zhou, C.; Wu, C.; Zhang, F.; Liu, Q.; Yang, S.; Hao, J. Upregulation of Microglial ZEB1 Ameliorates Brain Damage after Acute Ischemic Stroke. Cell Rep. 2018, 22, 3574–3586. [Google Scholar] [CrossRef]
- Gholizadeh, M.; Saeedy, S.A.G.; Roodi, P.B.; Saedisomeolia, A. The association between zinc and endothelial adhesion molecules ICAMs and VCAM-1 and nuclear receptors PPAR-α and PPAR-γ: A systematic review on cell culture, animal and human studies. Microvasc. Res. 2021, 138, 104217. [Google Scholar] [CrossRef]
- Verstrepen, L.; Bekaert, T.; Chau, T.-L.; Tavernier, J.; Chariot, A.; Beyaert, R. TLR-4, IL-1R and TNF-R signaling to NF-κB: Variations on a common theme. Exp. 2008, 65, 2964–2978. [Google Scholar] [CrossRef]
- Cheng, W.; Cui, C.; Liu, G.; Ye, C.; Shao, F.; Bagchi, A.K.; Mehta, J.L.; Wang, X. NF-κB, A Potential Therapeutic Target in Cardiovascular Diseases. Cardiovasc. Drugs Ther. 2022, 1–14. [Google Scholar] [CrossRef]
- Libby, P.; Ridker, P.M.; Hansson, G.K. Progress and challenges in translating the biology of atherosclerosis. Nature 2011, 473, 317–325. [Google Scholar] [CrossRef]
- Hennig, B.; Meerarani, P.; Toborek, M.; McClain, C.J. Antioxidant-like properties of zinc in activated endothelial cells. J. Am. Coll. Nutr. 1999, 18, 152–158. [Google Scholar] [CrossRef]
- Fan, Y.; Lu, H.; Liang, W.; Hu, W.; Zhang, J.; Chen, Y.E. Krüppel-like factors and vascular wall homeostasis. J. Mol. Cell Biol. 2017, 9, 352–363. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Oesterling, E.; Stromberg, A.; Toborek, M.; Macdonald, R.; Hennig, B. Zinc deficiency induces vascular pro-inflammatory parameters associated with NF-κB and PPAR signaling. J. Am. Coll. Nutr. 2008, 27, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Meerarani, P.; Reiterer, G.; Toborek, M.; Hennig, B. Zinc Modulates PPARγ signaling and activation of porcine endothelial Cells. J. Nutr. 2003, 133, 3058–3064. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.S.; Bao, B.; Beck, F.W.; Sarkar, F.H. Zinc-suppressed inflammatory cytokines by induction of A20-mediated inhibition of nuclear factor-κB. Nutrition 2011, 27, 816–823. [Google Scholar] [CrossRef] [PubMed]
- Kattoor, A.J.; Pothineni, N.V.K.; Palagiri, D.; Mehta, J.L. Oxidative Stress in Atherosclerosis. Curr. Atheroscler. Rep. 2017, 19, 42. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Xue, Y.; Fu, Y.; Bao, B.; Guo, M.-Y. Zinc Deficiency Aggravates Oxidative Stress Leading to Inflammation and Fibrosis in Lung of Mice. Biol. Trace Element Res. 2021, 200, 4045–4057. [Google Scholar] [CrossRef]
- Xu, Y.; Li, A.; Li, X.; Deng, X.; Gao, X.-J. Zinc Deficiency Induces Inflammation and Apoptosis via Oxidative Stress in the Kidneys of Mice. Biol. Trace Element Res. 2022. online ahead of print. [Google Scholar] [CrossRef]
- Mohammadi, H.; Talebi, S.; Ghavami, A.; Rafiei, M.; Sharifi, S.; Faghihimani, Z.; Ranjbar, G.; Miraghajani, M.; Askari, G. Effects of zinc supplementation on inflammatory biomarkers and oxidative stress in adults: A systematic review and meta-analysis of randomized controlled trials. J. Trace Elements Med. Biol. 2021, 68, 126857. [Google Scholar] [CrossRef]
- Hosseini, R.; Ferns, G.A.; Sahebkar, A.; Mirshekar, M.A.; Jalali, M. Zinc supplementation is associated with a reduction in serum markers of inflammation and oxidative stress in adults: A systematic review and meta-analysis of randomized controlled trials. Cytokine 2020, 138, 155396. [Google Scholar] [CrossRef]
- Olechnowicz, J.; Tinkov, A.; Skalny, A.; Suliburska, J. Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J. Physiol. Sci. 2017, 68, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Zago, M.; I Oteiza, P. The antioxidant properties of zinc: Interactions with iron and antioxidants. Free Radic. Biol. Med. 2001, 31, 266–274. [Google Scholar] [CrossRef]
- Libby, P.; Okamoto, Y.; Rocha, V.Z.; Folco, E. Inflammation in Atherosclerosis: Transition From Theory to Practice. Circ. J. 2010, 74, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Tricot, O.; Mallat, Z.; Heymes, C.; Belmin, J.; Lesèche, G.; Tedgui, A. Relation between endothelial cell apoptosis and blood flow direction in human atherosclerotic plaques. Circulation 2000, 101, 2450–2453. [Google Scholar] [CrossRef]
- Magenta, A.; Cencioni, C.; Fasanaro, P.; Zaccagnini, G.; Greco, S.; Sarra-Ferraris, G.; Antonini, A.; Martelli, F.; Capogrossi, M.C. miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition. Cell Death Differ. 2011, 18, 1628–1639. [Google Scholar] [CrossRef] [PubMed]
- Thambiayya, K.; Wasserloos, K.J.; Huang, Z.; Kagan, V.E.; Croix, C.M.S.; Pitt, B.R. LPS-induced decrease in intracellular labile zinc, [Zn]i, contributes to apoptosis in cultured sheep pulmonary artery endothelial cells. Am. J. Physiol. Cell. Mol. Physiol. 2011, 300, L624–L632. [Google Scholar] [CrossRef] [PubMed]
- Thambiayya, K.; Wasserloos, K.; Kagan, V.E.; Stoyanovsky, D.; Pitt, B.R. A critical role for increased labile zinc in reducing sensitivity of cultured sheep pulmonary artery endothelial cells to LPS-induced apoptosis. Am. J. Physiol. Cell. Mol. Physiol. 2012, 302, L1287–L1295. [Google Scholar] [CrossRef] [PubMed]
- Perry, D.K.; Smyth, M.J.; Stennicke, H.R.; Salvesen, G.S.; Duriez, P.; Poirier, G.G.; Hannun, Y.A. Zinc is a potent inhibitor of the apoptotic protease, caspase-3. J. Biol. Chem. 1997, 272, 18530–18533. [Google Scholar] [CrossRef]
- Meerarani, P.; Ramadass, P.; Toborek, M.; Bauer, H.-C.; Bauer, H.; Hennig, B. Zinc protects against apoptosis of endothelial cells induced by linoleic acid and tumor necrosis factor α. Am. J. Clin. Nutr. 2000, 71, 81–87. [Google Scholar] [CrossRef]
- Fanzo, J.C.; Reaves, S.K.; Cui, L.; Zhu, L.; Lei, K.Y. p53 protein and p21 mRNA levels and caspase-3 activity are altered by zinc status in aortic endothelial cells. Am. J. Physiol. Physiol. 2002, 283, C631–C638. [Google Scholar] [CrossRef]
- Juriol, L.V.; Gobetto, M.N.; Abregú, F.M.G.; Dasso, M.E.; Pineda, G.; Güttlein, L.; Carranza, A.; Podhajcer, O.; Toblli, J.E.; Elesgaray, R.; et al. Cardiac changes in apoptosis, inflammation, oxidative stress, and nitric oxide system induced by prenatal and postnatal zinc deficiency in male and female rats. Eur. J. Nutr. 2016, 57, 569–583. [Google Scholar] [CrossRef]
- Truong-Tran, A.Q.; Carter, J.; Ruffin, R.E.; Zalewski, P.D. The role of zinc in caspase activation and apoptotic cell death. BioMetals 2001, 14, 315–330. [Google Scholar] [CrossRef] [PubMed]
- Albarrán-Juárez, J.; Kaur, H.; Grimm, M.; Offermanns, S.; Wettschureck, N. Lineage tracing of cells involved in atherosclerosis. Atherosclerosis 2016, 251, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Chappell, J.; Harman, J.L.; Narasimhan, V.M.; Yu, H.; Foote, K.; Simons, B.D.; Bennett, M.R.; Jørgensen, H.F. Extensive Proliferation of a Subset of Differentiated, yet Plastic, Medial Vascular Smooth Muscle Cells Contributes to Neointimal Formation in Mouse Injury and Atherosclerosis Models. Circ. Res. 2016, 119, 1313–1323. [Google Scholar] [CrossRef] [PubMed]
- Basatemur, G.L.; Jørgensen, H.F.; Clarke, M.C.H.; Bennett, M.R.; Mallat, Z. Vascular smooth muscle cells in atherosclerosis. Nat. Rev. Cardiol. 2019, 16, 727–744. [Google Scholar] [CrossRef]
- Clarke, M.C.; Littlewood, T.D.; Figg, N.; Maguire, J.J.; Davenport, A.P.; Goddard, M.; Bennett, M.R. Chronic apoptosis of vascular smooth muscle cells accelerates atherosclerosis and promotes calcification and medial degeneration. Circ. Res. 2008, 102, 1529–1538. [Google Scholar] [CrossRef]
- Bennett, M.R.; Sinha, S.; Owens, G.K. Vascular Smooth Muscle Cells in Atherosclerosis. Circ. Res. 2016, 118, 692–702. [Google Scholar] [CrossRef]
- Ross, R.; Glomset, J.A. Atherosclerosis and the arterial smooth muscle cell: Proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis. Science 1973, 180, 1332–1339. [Google Scholar] [CrossRef]
- Shankman, L.S.; Gomez, D.; A Cherepanova, O.; Salmon, M.; Alencar, G.F.; Haskins, R.M.; Swiatlowska, P.; Newman, A.A.C.; Greene, E.S.; Straub, A.C.; et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat. Med. 2015, 21, 628–637. [Google Scholar] [CrossRef]
- Allen-Redpath, K.; Ou, O.; Beattie, J.H.; Kwun, I.-S.; Feldmann, J.; Nixon, G.F.; Feldmann, J. Marginal dietary zinc deficiency in vivo induces vascular smooth muscle cell apoptosis in large arteries. Cardiovasc. Res. 2013, 99, 525–534. [Google Scholar] [CrossRef]
- Alcantara, E.H.; Shin, M.Y.; Feldmann, J.; Nixon, G.F.; Beattie, J.H.; Kwun, I.S. Long-term zinc deprivation accelerates rat vascular smooth muscle cell proliferation involving the down-regulation of JNK1/2 expression in MAPK signaling. Atherosclerosis 2013, 228, 46–52. [Google Scholar] [CrossRef]
- Ou, O.; Allen-Redpath, K.; Urgast, D.; Gordon, M.; Campbell, G.; Feldmann, J.; Nixon, G.F.; Mayer, C.; Kwun, I.; Beattie, J.H. Plasma zinc’s alter ego is a low-molecular-weight humoral factor. FASEB J. 2013, 27, 3672–3682. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.-Y.; Kwun, I.-S. Zinc Restored the Decreased Vascular Smooth Muscle Cell Viability under Atherosclerotic Calcification Conditions. Prev. Nutr. Food Sci. 2014, 19, 363–366. [Google Scholar] [CrossRef] [PubMed]
- Kuzan, A.; Wujczyk, M.; Wiglusz, R. The Study of the Aorta Metallomics in the Context of Atherosclerosis. Biomolecules 2021, 11, 946. [Google Scholar] [CrossRef]
- Libby, P.; Hansson, G.K. From Focal Lipid Storage to Systemic Inflammation. J. Am. Coll. Cardiol. 2019, 74, 1594–1607. [Google Scholar] [CrossRef] [PubMed]
- Frostegård, J. Immunity, atherosclerosis and cardiovascular disease. BMC Med. 2013, 11, 117. [Google Scholar] [CrossRef]
- Wolf, D.; Ley, K. Immunity and Inflammation in Atherosclerosis. Circ. Res. 2019, 124, 315–327. [Google Scholar] [CrossRef]
- Hansson, G.K.; Hermansson, A. The immune system in atherosclerosis. Nat. Immunol. 2011, 12, 204–212. [Google Scholar] [CrossRef]
- Libby, P. The changing landscape of atherosclerosis. Nature 2021, 592, 524–533. [Google Scholar] [CrossRef]
- Ketelhuth, D.F.; Hansson, G.K. Adaptive Response of T and B Cells in Atherosclerosis. Circ. Res. 2016, 118, 668–678. [Google Scholar] [CrossRef]
- Wessels, I.; Cousins, R.J. Zinc dyshomeostasis during polymicrobial sepsis in mice involves zinc transporter Zip14 and can be overcome by zinc supplementation. Am. J. Physiol. Liver Physiol. 2015, 309, G768–G778. [Google Scholar] [CrossRef] [Green Version]
- Westin, G.; Schaffner, W. A zinc-responsive factor interacts with a metal-regulated enhancer element (MRE) of the mouse metallothionein-I gene. EMBO J. 1988, 7, 3763–3770. [Google Scholar] [CrossRef] [PubMed]
- Tabas, I.; Lichtman, A.H. Monocyte-Macrophages and T Cells in Atherosclerosis. Immunity 2017, 47, 621–634. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Dai, W.; Zhao, L.; Min, J.; Wang, F. The Role of Zinc and Zinc Homeostasis in Macrophage Function. J. Immunol. Res. 2018, 2018, 6872621. [Google Scholar] [CrossRef]
- Kim, B. Regulatory Role of Zinc in Immune Cell Signaling. Mol. Cells 2021, 44, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Dubben, S.; Hönscheid, A.; Winkler, K.; Rink, L.; Haase, H. Cellular zinc homeostasis is a regulator in monocyte differentiation of HL-60 cells by 1α,25-dihydroxyvitamin D3. J. Leukoc. Biol. 2010, 87, 833–844. [Google Scholar] [CrossRef] [PubMed]
- Kojima, C.; Kawakami, A.; Takei, T.; Nitta, K.; Yoshida, M. Angiotensin-converting enzyme inhibitor attenuates monocyte adhesion to vascular endothelium through modulation of intracellular zinc. J. Pharmacol. Exp. Ther. 2007, 323, 855–860. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, X.; Yang, L.; Wang, J.; Hu, Y.; Bian, A.; Liu, J.; Ma, J. Zinc inhibits high glucose-induced NLRP3 inflammasome activation in human peritoneal mesothelial cells. Mol. Med. Rep. 2017, 16, 5195–5202. [Google Scholar] [CrossRef]
- Summersgill, H.; England, H.; Lopez-Castejon, G.; Lawrence, C.; Luheshi, N.M.; Pahle, J.; Mendes, P.; E Brough, D. Zinc depletion regulates the processing and secretion of IL-1β. Cell Death Dis. 2014, 5, e1040. [Google Scholar] [CrossRef]
- Faghfouri, A.H.; Baradaran, B.; Khabbazi, A.; Bishak, Y.K.; Zarezadeh, M.; Tavakoli-Rouzbehani, O.M.; Faghfuri, E.; Payahoo, L.; Alipour, M.; Alipour, B. Profiling inflammatory cytokines following zinc supplementation: A systematic review and meta-analysis of controlled trials. Br. J. Nutr. 2021, 126, 1441–1450. [Google Scholar] [CrossRef]
- Mocchegiani, E.; Bertoni-Freddari, C.; Marcellini, F.; Malavolta, M. Brain, aging and neurodegeneration: Role of zinc ion availability. Prog. Neurobiol. 2005, 75, 367–390. [Google Scholar] [CrossRef]
- Zhou, X.; Nicoletti, A.; Elhage, R.; Hansson, G.K. Transfer of CD4 + T cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice. Circulation 2000, 102, 2919–2922. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.S. Effects of Zinc Deficiency on Th1 and Th2 Cytokine Shifts. J. Infect. Dis. 2000, 182, S62–S68. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.S. Zinc: Mechanisms of Host Defense. J. Nutr. 2007, 137, 1345–1349. [Google Scholar] [CrossRef]
- Hwang, J.-R.; Byeon, Y.; Kim, D.; Park, S.-G. Recent insights of T cell receptor-mediated signaling pathways for T cell activation and development. Exp. Mol. Med. 2020, 52, 750–761. [Google Scholar] [CrossRef]
- Lin, R.S.; Rodriguez, C.; Veillette, A.; Lodish, H.F. Zinc is essential for binding of p56(lck) to CD4 and CD8alpha. J. Biol. Chem. 1998, 273, 32878–32882. [Google Scholar] [CrossRef]
- Romir, J.; Lilie, H.; Egerer-Sieber, C.; Bauer, F.; Sticht, H.; Muller, Y.A. Crystal structure analysis and solution studies of human Lck-SH3; zinc-induced homodimerization competes with the binding of proline-rich motifs. J. Mol. Biol. 2007, 365, 1417–1428. [Google Scholar] [CrossRef]
- Aydemir, T.B.; Liuzzi, J.P.; McClellan, S.; Cousins, R.J. Zinc transporter ZIP8 (SLC39A8) and zinc influence IFN-γ expression in activated human T cells. J. Leukoc. Biol. 2009, 86, 337–348. [Google Scholar] [CrossRef]
- Liu, M.-J.; Bao, S.; Gálvez-Peralta, M.; Pyle, C.J.; Rudawsky, A.C.; Pavlovicz, R.E.; Killilea, D.W.; Li, C.; Nebert, D.W.; Wewers, M.D.; et al. ZIP8 Regulates Host Defense through Zinc-Mediated Inhibition of NF-κB. Cell Rep. 2013, 3, 386–400. [Google Scholar] [CrossRef]
- Khorshidi, M.; Zarezadeh, M.; Sadeghi, A.; Teymouri, A.; Emami, M.R.; Kord-Varkaneh, H.; Aryaeian, N.; Rahmani, J.; Mousavi, S.M. The Effect of Zinc Supplementation on Serum Leptin Levels: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Horm. Metab. Res. 2019, 51, 503–510. [Google Scholar] [CrossRef]
- Tabatabaie, M.; Soltani, S.; Mozaffari-Khosravi, H.; Salehi-Abargouei, A. Zinc Supplementation Might Not Affect Serum Leptin and Adiponectin Levels in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. Iran. J. Public Health 2021, 50, 245–256. [Google Scholar] [CrossRef]
- Wei, C.; Luo, Z.; Hogstrand, C.; Xu, Y.; Wu, L.; Chen, G.; Pan, Y.; Song, Y. Zinc reduces hepatic lipid deposition and activates lipophagy via Zn2+/MTF-1/PPARα and Ca2+/CaMKKβ/AMPK pathways. FASEB J. 2018, 32, 6666–6680. [Google Scholar] [CrossRef] [PubMed]
- Severo, J.S.; Morais, J.B.S.; Beserra, J.B.; dos Santos, L.R.; de Sousa Melo, S.R.; de Sousa, G.S.; de Matos Neto, E.M.; Henriques, G.S.; do Nascimento Marreiro, D. Role of Zinc in Zinc-α2-Glycoprotein Metabolism in Obesity: A Review of Literature. Biol. Trace Elem. Res. 2020, 193, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Balaz, M.; Vician, M.; Janakova, Z.; Kurdiova, T.; Surova, M.; Imrich, R.; Majercikova, Z.; Penesova, A.; Vlcek, M.; Kiss, A.; et al. Subcutaneous adipose tissue zinc-α2-glycoprotein is associated with adipose tissue and whole-body insulin sensitivity. Obesity 2014, 22, 1821–1829. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Liu, X.; Tan, C.; Mo, L.; Wang, H.; Peng, X.; Deng, F.; Chen, L. Expression and Function of Zinc-α2-Glycoprotein. Neurosci. Bull. 2019, 35, 540–550. [Google Scholar] [CrossRef] [PubMed]
- Vasto, S.; Mocchegiani, E.; Candore, G.; Listì, F.; Colonna-Romano, G.; Lio, D.; Malavolta, M.; Giacconi, R.; Cipriano, C.; Caruso, C. Inflammation, genes and zinc in ageing and age-related diseases. Biogerontology 2006, 7, 315–327. [Google Scholar] [CrossRef]
- Li, X.; Guan, Y.; Shi, X.; Ding, H.; Song, Y.; Li, C.; Liu, R.; Liu, G. Effects of High Zinc Levels on the Lipid Synthesis in Rat Hepatocytes. Biol. Trace Element Res. 2013, 154, 97–102. [Google Scholar] [CrossRef]
- Abregú, F.M.G.; Gobetto, M.N.; Castañón, A.; Lucero, D.; Caniffi, C.; Elesgaray, R.; Schreier, L.; Arranz, C.; Tomat, A.L. Fetal and postnatal zinc restriction: Sex differences in metabolic alterations in adult rats. Nutrition 2019, 65, 18–26. [Google Scholar] [CrossRef]
- Xu, C.; Huang, Z.; Liu, L.; Luo, C.; Lu, G.; Li, Q.; Gao, X. Zinc Regulates Lipid Metabolism and MMPs Expression in Lipid Disturbance Rabbits. Biol. Trace Element Res. 2015, 168, 411–420. [Google Scholar] [CrossRef]
- Stawarska, A.; Czerwonka, M.; Wyrębiak, R.; Wrzesień, R.; Bobrowska-Korczak, B. Zinc Affects Cholesterol Oxidation Products and Fatty Acids Composition in Rats’ Serum. Nutrients 2021, 13, 1563. [Google Scholar] [CrossRef]
- Rios-Lugo, M.J.; Madrigal-Arellano, C.; Gaytán-Hernández, D.; Hernández-Mendoza, H.; Romero-Guzmán, E.T. Association of Serum Zinc Levels in Overweight and Obesity. Biol. Trace Element Res. 2020, 198, 51–57. [Google Scholar] [CrossRef]
- Yokokawa, H.; Fukuda, H.; Saita, M.; Miyagami, T.; Takahashi, Y.; Hisaoka, T.; Naito, T. Serum zinc concentrations and characteristics of zinc deficiency/marginal deficiency among Japanese subjects. J. Gen. Fam. Med. 2020, 21, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Jiang, S.; Yan, S.; Li, M.; Wang, C.; Pan, Y.; Sun, C.; Jin, L.; Yao, Y.; Li, B. Association Between Copper, Zinc, Iron, and Selenium Intakes and TC/HDL-C Ratio in US Adults. Biol. Trace Element Res. 2019, 197, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Yary, T.; Virtanen, J.; Ruusunen, A.; Tuomainen, T.-P.; Voutilainen, S. Association between serum zinc and later development of metabolic syndrome in middle aged and older men: The Kuopio Ischaemic Heart Disease Risk Factor Study. Nutrition 2017, 37, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Khazdouz, M.; Djalalinia, S.; Zadeh, S.S.; Hasani, M.; Shidfar, F.; Ataie-Jafari, A.; Asayesh, H.; Zarei, M.; Gorabi, A.M.; Noroozi, M.; et al. Effects of Zinc Supplementation on Cardiometabolic Risk Factors: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Biol. Trace Element Res. 2019, 195, 373–398. [Google Scholar] [CrossRef] [PubMed]
- Saykally, J.N.; Dogan, S.; Cleary, M.P.; Sanders, M.M. The ZEB1 transcription factor is a novel repressor of adiposity in female mice. PLoS ONE 2009, 4, e8460. [Google Scholar] [CrossRef]
- Gopoju, R.; Panangipalli, S.; Kotamraju, S. Metformin treatment prevents SREBP2-mediated cholesterol uptake and improves lipid homeostasis during oxidative stress-induced atherosclerosis. Free Radic. Biol. Med. 2018, 118, 85–97. [Google Scholar] [CrossRef]
- Zhao, Z.; Hao, D.; Wang, L.; Li, J.; Meng, Y.; Li, P.; Wang, Y.; Zhang, C.; Zhou, H.; Gardner, K.; et al. CtBP promotes metastasis of breast cancer through repressing cholesterol and activating TGF-β signaling. Oncogene 2018, 38, 2076–2091. [Google Scholar] [CrossRef]
- Tamura, Y. The Role of Zinc Homeostasis in the Prevention of Diabetes Mellitus and Cardiovascular Diseases. J. Atheroscler. Thromb. 2021, 28, 1109–1122. [Google Scholar] [CrossRef]
- Filios, S.R.; Xu, G.; Chen, J.; Hong, K.; Jing, G.; Shalev, A. MicroRNA-200 is induced by thioredoxin-interacting protein and regulates Zeb1 protein signaling and beta cell apoptosis. J. Biol. Chem. 2014, 289, 36275–36283. [Google Scholar] [CrossRef]
- Cruz, K.J.C.; de Oliveira, A.R.S.; Morais, J.B.S.; Severo, J.S.; Mendes, P.M.V.; Melo, S.R.D.S.; de Sousa, G.S.; Marreiro, D.D.N. Zinc and Insulin Resistance: Biochemical and Molecular Aspects. Biol. Trace Element Res. 2018, 186, 407–412. [Google Scholar] [CrossRef]
- Ahn, B.-I.; Kim, M.J.; Koo, H.S.; Seo, N.; Joo, N.-S.; Kim, Y.-S. Serum zinc concentration is inversely associated with insulin resistance but not related with metabolic syndrome in nondiabetic korean adults. Biol. Trace Element Res. 2014, 160, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Fukunaka, A.; Fukada, T.; Bhin, J.; Suzuki, L.; Tsuzuki, T.; Takamine, Y.; Bin, B.-H.; Yoshihara, T.; Ichinoseki-Sekine, N.; Naito, H.; et al. Zinc transporter ZIP13 suppresses beige adipocyte biogenesis and energy expenditure by regulating C/EBP-β expression. PLoS Genet. 2017, 13, e1006950. [Google Scholar] [CrossRef] [PubMed]
- Ranasinghe, P.; Pigera, S.; Galappatthy, P.; Katulanda, P.; Constantine, G.R. Zinc and diabetes mellitus: Understanding molecular mechanisms and clinical implications. DARU J. Pharm. Sci. 2015, 23, 44. [Google Scholar] [CrossRef]
- Bandeira, V.D.S.; Pires, L.V.; Hashimoto, L.L.; de Alencar, L.L.; Almondes, K.G.S.; Lottenberg, S.A.; Cozzolino, S. Association of reduced zinc status with poor glycemic control in individuals with type 2 diabetes mellitus. J. Trace Elements Med. Biol. 2017, 44, 132–136. [Google Scholar] [CrossRef] [PubMed]
- Sisnande, T.; Lima, C.K.; da Silva, D.C.; Beninatto, T.M.; Alves, N.L.; Amaral, M.J.; Miranda-Alves, L.; Lima, L.M.T. Dietary zinc restriction promotes degeneration of the endocrine pancreas in mice. Biochim. Biophys. Acta. Mol. Basis. Dis. 2020, 1866, 165675. [Google Scholar] [CrossRef]
- Cooper-Capetini, V.; De Vasconcelos, D.A.A.; Martins, A.R.; Hirabara, S.M.; Donato, J., Jr.; Carpinelli, A.R.; Abdulkader, F.; Donato, J. Zinc Supplementation Improves Glucose Homeostasis in High Fat-Fed Mice by Enhancing Pancreatic β-Cell Function. Nutrients 2017, 9, 1150. [Google Scholar] [CrossRef]
- Qi, Y.; Zhang, Z.; Liu, S.; Aluo, Z.; Zhang, L.; Yu, L.; Li, Y.; Song, Z.; Zhou, L. Zinc Supplementation Alleviates Lipid and Glucose Metabolic Disorders Induced by a High-Fat Diet. J. Agric. Food Chem. 2020, 68, 5189–5200. [Google Scholar] [CrossRef]
- Ranasinghe, P.; Wathurapatha, W.S.; Galappatthy, P.; Katulanda, P.; Jayawardena, R.; Constantine, G.R. Zinc supplementation in prediabetes: A randomized double-blind placebo-controlled clinical trial. J. Diabetes 2018, 10, 386–397. [Google Scholar] [CrossRef]
- Skalnaya, M.G.; Skalny, A.V.; Yurasov, V.V.; Demidov, V.A.; Grabeklis, A.R.; Radysh, I.V.; Tinkov, A.A. Serum Trace Elements and Electrolytes Are Associated with Fasting Plasma Glucose and HbA1c in Postmenopausal Women with Type 2 Diabetes Mellitus. Biol. Trace Element Res. 2016, 177, 25–32. [Google Scholar] [CrossRef]
- Hansen, A.F.; Simić, A.; Åsvold, B.O.; Romundstad, P.R.; Midthjell, K.; Syversen, T.; Flaten, T.P. Trace elements in early phase type 2 diabetes mellitus—A population-based study. The HUNT study in Norway. J. Trace Elem. Med. Biol. 2017, 40, 46–53. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, J.; Zhao, J.; Li, J.; Cai, X. Serum zinc concentrations and prediabetes and diabetes in the general population. Biol. Trace Element Res. 2021, 200, 1071–1077. [Google Scholar] [CrossRef] [PubMed]
- Simić, A.; Hansen, A.F.; Åsvold, B.O.; Romundstad, P.R.; Midthjell, K.; Syversen, T.; Flaten, T.P. Trace element status in patients with type 2 diabetes in Norway: The HUNT3 Survey. J. Trace Elements Med. Biol. 2017, 41, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Cao, J.C.; Warthon-Medina, M.; Moran, V.H.; Arija, V.; Doepking, C.; Serra-Majem, L.; Lowe, N.M. Zinc Intake and Status and Risk of Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Nutrients 2019, 11, 1027. [Google Scholar] [CrossRef]
- Dimitrova, A.A.; Strashimirov, D.; Betova, T.; Russeva, A.; Alexandrova, M. Zinc content in the diet affects the activity of Cu/ZnSOD, lipid peroxidation and lipid profile of spontaneously hypertensive rats. Acta Biol. Hung. 2008, 59, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Yanagisawa, H.; Miyazaki, T.; Nodera, M.; Miyajima, Y.; Suzuki, T.; Kido, T.; Suka, M. Zinc-Excess Intake Causes the Deterioration of Renal Function Accompanied by an Elevation in Systemic Blood Pressure Primarily Through Superoxide Radical-Induced Oxidative Stress. Int. J. Toxicol. 2014, 33, 288–296. [Google Scholar] [CrossRef]
- Tomat, A.L.; Weisstaub, A.R.; Jauregui, A.; Piñeiro, A.; Balaszczuk, A.M.; A Costa, M.; Arranz, C.T. Moderate zinc deficiency influences arterial blood pressure and vascular nitric oxide pathway in growing rats. Pediatr. Res. 2005, 58, 672–676. [Google Scholar] [CrossRef]
- Gobetto, M.N.; Abregú, F.M.G.; Caniffi, C.; Veiras, L.; Elesgaray, R.; Gironacci, M.; Tomat, A.L.; Arranz, C. Fetal and postnatal zinc restriction: Sex differences in the renal renin-angiotensin system of newborn and adult Wistar rats. J. Nutr. Biochem. 2020, 81, 108385. [Google Scholar] [CrossRef]
- Williams, C.R.; Mistry, M.; Cheriyan, A.M.; Williams, J.M.; Naraine, M.K.; Ellis, C.L.; Mallick, R.; Mistry, A.C.; Gooch, J.L.; Ko, B.; et al. Zinc deficiency induces hypertension by promoting renal Na+ reabsorption. Am. J. Physiol. Physiol. 2019, 316, F646–F653. [Google Scholar] [CrossRef]
- Navarro, J.; Sanchez, A.; Saiz, J.; Ruilope, L.M.; García-Estañ, J.; Romero, J.C.; Moncada, S.; Lahera, V. Hormonal, renal, and metabolic alterations during hypertension induced by chronic inhibition of NO in rats. Am. J. Physiol. Integr. Comp. Physiol. 1994, 267, R1516–R1521. [Google Scholar] [CrossRef]
- Tomat, A.; Elesgaray, R.; Zago, V.; Fasoli, H.; Fellet, A.; Balaszczuk, A.M.; Schreier, L.; Costa, M.; Arranz, C. Exposure to zinc deficiency in fetal and postnatal life determines nitric oxide system activity and arterial blood pressure levels in adult rats. Br. J. Nutr. 2010, 104, 382–389. [Google Scholar] [CrossRef] [Green Version]
- Xiao, H.; Yan, Y.; Gu, Y.; Zhang, Y. Strategy for sodium-salt substitution: On the relationship between hypertension and dietary intake of cations. Food Res. Int. 2021, 156, 110822. [Google Scholar] [CrossRef] [PubMed]
- Yanagisawa, H.; Sato, M.; Nodera, M.; Wada, O. Excessive zinc intake elevates systemic blood pressure levels in normotensive rats ??? potential role of superoxide-induced oxidative stress. J. Hypertens. 2004, 22, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.M.; Mofrad, M.D.; Nascimentoe, I.J.B.D.; Milajerdi, A.; Mokhtari, T.; Esmaillzadeh, A. The effect of zinc supplementation on blood pressure: A systematic review and dose–response meta-analysis of randomized-controlled trials. Eur. J. Nutr. 2020, 59, 1815–1827. [Google Scholar] [CrossRef] [PubMed]
- Nevárez-López, S.C.; Simental-Mendía, L.E.; Guerrero-Romero, F.; Burciaga-Nava, J.A. Zinc deficiency is an independent risk factor for prehypertension in healthy subjects. Int. J. Vitam. Nutr. Res. 2021, 91, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Naghizadeh, S.; Kheirouri, S.; Ojaghi, H.; Kaffash, A.J. Zinc supplementation attenuate diabetic indices in patients with diabetic retinopathy. Prog. Nutr. 2018, 20, 263–269. [Google Scholar] [CrossRef]
- Yao, J.; Hu, P.; Zhang, D. Associations Between Copper and Zinc and Risk of Hypertension in US Adults. Biol. Trace Element Res. 2018, 186, 346–353. [Google Scholar] [CrossRef]
- Darroudi, S.; Saberi-Karimian, M.; Tayefi, M.; Tayefi, B.; Khashyarmanesh, Z.; Fereydouni, N.; Haghighi, H.M.; Mahmoudi, A.A.; Kharazmi-Khorassani, J.; Gonoodi, K.; et al. Association Between Hypertension in Healthy Participants and Zinc and Copper Status: A Population-Based Study. Biol. Trace Element Res. 2018, 190, 38–44. [Google Scholar] [CrossRef]
- Bastola, M.M.; Locatis, C.; Maisiak, R.; Fontelo, P. Selenium, copper, zinc and hypertension: An analysis of the National Health and Nutrition Examination Survey (2011–2016). BMC Cardiovasc. Disord. 2020, 20, 45. [Google Scholar] [CrossRef]
- Suliburska, J.; Skrypnik, K.; Szulińska, M.; Kupsz, J.; Bogdanski, P. Effect of hypotensive therapy combined with modified diet or zinc supplementation on biochemical parameters and mineral status in hypertensive patients. J. Trace Elements Med. Biol. 2018, 47, 140–148. [Google Scholar] [CrossRef]
- Reiterer, G.; Macdonald, R.; Browning, J.D.; Morrow, J.; Matveev, S.V.; Daugherty, A.; Smart, E.; Toborek, M.; Hennig, B. Zinc Deficiency increases plasma lipids and atherosclerotic markers in LDL-receptor–deficient mice. J. Nutr. 2005, 135, 2114–2118. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.; MacDonald, R.; Bruemmer, D.; Stromberg, A.; Daugherty, A.; Li, X.-A.; Toborek, M.; Hennig, B. Zinc deficiency alters lipid metabolism in LDL receptor–deficient mice treated with rosiglitazone. J. Nutr. 2007, 137, 2339–2345. [Google Scholar] [CrossRef] [PubMed]
- Beattie, J.H.; Gordon, M.-J.; Duthie, S.J.; McNeil, C.J.; Horgan, G.W.; Nixon, G.F.; Feldmann, J.; Kwun, I.-S. Suboptimal dietary zinc intake promotes vascular inflammation and atherogenesis in a mouse model of atherosclerosis. Mol. Nutr. Food Res. 2012, 56, 1097–1105. [Google Scholar] [CrossRef] [PubMed]
- Alissa, E.M.; Bahijri, S.M.; Lamb, D.J.; Ferns, G.A.A. The effects of coadministration of dietary copper and zinc supplements on atherosclerosis, antioxidant enzymes and indices of lipid peroxidation in the cholesterol-fed rabbit. Int. J. Exp. Pathol. 2004, 85, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Ren, M.; Rajendran, R.; Ning, P.; Huat, B.T.K.; Nam, O.C.; Watt, F.; Jenner, A.; Halliwell, B. Zinc supplementation decreases the development of atherosclerosis in rabbits. Free Radic. Biol. Med. 2006, 41, 222–225. [Google Scholar] [CrossRef] [PubMed]
- Abdelhalim, M.A.K.; Moussa, S.A.A.; Al-Mohy, Y.H. Ultraviolet-visible and fluorescence spectroscopy techniques are important diagnostic tools during the progression of atherosclerosis: Diet zinc supplementation retarded or delayed atherosclerosis. BioMed Res. Int. 2013, 2013, 652604. [Google Scholar] [CrossRef]
- Jenner, A.; Ren, M.; Rajendran, R.; Ning, P.; Huat, B.; Watt, F.; Halliwell, B. Zinc supplementation inhibits lipid peroxidation and the development of atherosclerosis in rabbits fed a high cholesterol diet. Free Radic. Biol. Med. 2007, 42, 559–566. [Google Scholar] [CrossRef]
- Cheng, G.; Chang, F.-J.; You, P.-H.; Lin, J.; Huang, X.-Y.; Wu, H.-Y.; Yan, L.; Deng, J.-Z.; You, H.-J.; Sun, C.-F. ZIP8 induces monocyte adhesion to the aortas ex-vivo by regulating zinc influx. Int. Immunopharmacol. 2018, 62, 203–211. [Google Scholar] [CrossRef]
- Beattie, J.H.; Gordon, M.-J.; Rucklidge, G.J.; Reid, M.D.; Duncan, G.J.; Horgan, G.W.; Cho, Y.-E.; Kwun, I.-S. Aorta protein networks in marginal and acute zinc deficiency. Proteomics 2008, 8, 2126–2135. [Google Scholar] [CrossRef]
- Sayin, V.I.; Khan, O.M.; Pehlivanoglu, L.E.; Staffas, A.; Ibrahim, M.X.; Asplund, A.; Ågren, P.; Nilton, A.; Bergström, G.; Bergo, M.O.; et al. Loss of one copy of Zfp148 reduces lesional macrophage proliferation and atherosclerosis in mice by activating p53. Circ. Res. 2014, 115, 781–789. [Google Scholar] [CrossRef]
- Wang, H.; Guo, Y.; Lu, H.; Luo, Y.; Hu, W.; Liang, W.; Garcia-Barrio, M.T.; Chang, L.; Schwendeman, A.; Zhang, J.; et al. Krüppel-like factor 14 deletion in myeloid cells accelerates atherosclerotic lesion development. Cardiovasc. Res. 2021, 118, 475–488. [Google Scholar] [CrossRef]
- Li, X.; Yang, M.; Wang, H.; Jia, Y.; Yan, P.; Boden, G.; Yang, G.; Li, L. Overexpression of JAZF1 protected ApoE-deficient mice from atherosclerosis by inhibiting hepatic cholesterol synthesis via CREB-dependent mechanisms. Int. J. Cardiol. 2014, 177, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.H.; Kim, M.J.; Kim, K.J.; Kim, J.-R. POZ/BTB and AT-hook-containing zinc finger protein 1 (PATZ1) inhibits endothelial cell senescence through a p53 dependent pathway. Cell Death Differ. 2011, 19, 703–712. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.J.; Choi, B.Y.; Chun, B.-Y.; Kweon, S.-S.; Lee, Y.-H.; Park, P.S.; Kim, M.K. Dietary zinc intake is inversely related to subclinical atherosclerosis measured by carotid intima-media thickness. Br. J. Nutr. 2010, 104, 1202–1211. [Google Scholar] [CrossRef]
- Masley, S.C.; Roetzheim, R.; Masley, L.V.; McNamara, T.; Schocken, U.D. Emerging Risk Factors as Markers for Carotid Intima Media Thickness Scores. J. Am. Coll. Nutr. 2015, 34, 100–107. [Google Scholar] [CrossRef]
- Chen, W.; Eisenberg, R.; Mowrey, W.B.; Wylie-Rosett, J.; Abramowitz, M.K.; A Bushinsky, D.; Melamed, M.L. Association between dietary zinc intake and abdominal aortic calcification in US adults. Nephrol. Dial. Transplant. 2019, 35, 1171–1178. [Google Scholar] [CrossRef]
- Dziedzic, E.A.; Gąsior, J.S.; Tuzimek, A.; Paleczny, J.; Kwaśny, M.; Dąbrowski, M.; Jankowski, P. No Association of Hair Zinc Concentration with Coronary Artery Disease Severity and No Relation with Acute Coronary Syndromes. Biomolecules 2022, 12, 862. [Google Scholar] [CrossRef] [PubMed]
- Giannoglou, G.D.; Konstantinou, D.; Kovatsi, L.; Chatzizisis, Y.S.; Mikhailidis, D.P. Association of reduced zinc status with angiographically severe coronary atherosclerosis: A pilot study. Angiology 2010, 61, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Milton, A.H.; Vashum, K.P.; McEvoy, M.; Hussain, S.; McElduff, P.; Byles, J.; Attia, J. Prospective Study of Dietary Zinc Intake and Risk of Cardiovascular Disease in Women. Nutrients 2018, 10, 38. [Google Scholar] [CrossRef]
- Mattern, L.; Chen, C.; McClure, L.A.; Brockman, J.; Cushman, M.; Judd, S.; Kahe, K. Serum Zinc Levels and Incidence of Ischemic Stroke: The Reasons for Geographic and Racial Differences in Stroke Study. Stroke 2021, 52, 3953–3960. [Google Scholar] [CrossRef]
- Gao, J.-W.; Zhang, S.-L.; Hao, Q.-Y.; Huang, F.-F.; Liu, Z.-Y.; Zhang, H.-F.; Yan, L.; Wang, J.-F.; Liu, P.-M. Association of dietary zinc intake with coronary artery calcium progression: The Multi-Ethnic Study of Atherosclerosis (MESA). Eur. J. Nutr. 2021, 60, 2759–2767. [Google Scholar] [CrossRef]
- de Oliveira Otto, M.C.; Alonso, A.; Lee, D.-H.; Delclos, G.L.; Bertoni, A.G.; Jiang, R.; Lima, J.A.; Symanski, E.; Jacobs, D.R.; Nettleton, J.A. Dietary intakes of zinc and heme iron from red meat, but not from other sources, are associated with greater risk of metabolic syndrome and cardiovascular disease. J. Nutr. 2012, 142, 526–533. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.K.; Kim, M.-K.; Lee, Y.-H.; Shin, D.H.; Shin, M.-H.; Chun, B.-Y.; Choi, B.Y. Lower zinc bioavailability may be related to higher risk of subclinical atherosclerosis in Korean adults. PLoS ONE 2013, 8, e80115. [Google Scholar] [CrossRef] [PubMed]
- Alissa, E.M.; Bahjri, S.M.; Ahmed, W.H.; Al-Ama, N.; Ferns, G.A. Trace element status in Saudi patients with established atherosclerosis. J. Trace Elements Med. Biol. 2006, 20, 105–114. [Google Scholar] [CrossRef]
- Qazmooz, H.A.; Smeism, H.N.; Mousa, R.F.; Al-Hakeim, H.K.; Maes, M. Trace element, immune and opioid biomarkers of unstable angina, increased atherogenicity and insulin resistance: Results of machine learning. J. Trace Elements Med. Biol. 2020, 64, 126703. [Google Scholar] [CrossRef]
- Lee, D.-H.; Folsom, A.R.; Jacobs, D.R. Iron, zinc, and alcohol consumption and mortality from cardiovascular diseases: The Iowa Women’s Health Study. Am. J. Clin. Nutr. 2005, 81, 787–791. [Google Scholar] [CrossRef] [PubMed]
- Eshak, E.S.; Iso, H.; Yamagishi, K.; Maruyama, K.; Umesawa, M.; Tamakoshi, A. Associations between copper and zinc intakes from diet and mortality from cardiovascular disease in a large population-based prospective cohort study. J. Nutr. Biochem. 2018, 56, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Chu, A.; Zhen, S.; Taylor, A.W.; Dai, Y.; Riley, M.; Samman, S. Association between dietary zinc intake and mortality among Chinese adults: Findings from 10-year follow-up in the Jiangsu Nutrition Study. Eur. J. Nutr. 2017, 57, 2839–2846. [Google Scholar] [CrossRef]
- Bao, B.; Prasad, A.S.; Beck, F.W.; Fitzgerald, J.T.; Snell, D.; Bao, G.W.; Singh, T.; Cardozo, L.J. Zinc decreases C-reactive protein, lipid peroxidation, and inflammatory cytokines in elderly subjects: A potential implication of zinc as an atheroprotective agent. Am. J. Clin. Nutr. 2010, 91, 1634–1641. [Google Scholar] [CrossRef]
- Costarelli, L.; Muti, E.; Malavolta, M.; Cipriano, C.; Giacconi, R.; Tesei, S.; Piacenza, F.; Pierpaoli, S.; Gasparini, N.; Faloia, E.; et al. Distinctive modulation of inflammatory and metabolic parameters in relation to zinc nutritional status in adult overweight/obese subjects. J. Nutr. Biochem. 2010, 21, 432–437. [Google Scholar] [CrossRef]
- Seet, R.C.; Lee, C.-Y.J.; Lim, E.C.; Quek, A.M.; Huang, H.; Huang, S.H.; Looi, W.F.; Long, L.H.; Halliwell, B. Oral zinc supplementation does not improve oxidative stress or vascular function in patients with type 2 diabetes with normal zinc levels. Atherosclerosis 2011, 219, 231–239. [Google Scholar] [CrossRef]
- Chu, A.; Foster, M.; Samman, S. Zinc Status and Risk of Cardiovascular Diseases and Type 2 Diabetes Mellitus—A Systematic Review of Prospective Cohort Studies. Nutrients 2016, 8, 707. [Google Scholar] [CrossRef] [PubMed]
- Chu, A.; Holdaway, C.; Varma, T.; Petocz, P.; Samman, S. Lower Serum Zinc Concentration Despite Higher Dietary Zinc Intake in Athletes: A Systematic Review and Meta-analysis. Sports Med. 2017, 48, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Gonoodi, K.; Moslem, A.; Darroudi, S.; Ahmadnezhad, M.; Mazloum, Z.; Tayefi, M.; Zadeh, S.A.T.; Eslami, S.; Shafiee, M.; Khashayarmanesh, Z.; et al. Serum and dietary zinc and copper in Iranian girls. Clin. Biochem. 2018, 54, 25–31. [Google Scholar] [CrossRef]
- Eby, G.A.; Halcomb, W.W. High-dose zinc to terminate angina pectoris: A review and hypothesis for action by ICAM inhibition. Med. Hypotheses 2006, 66, 169–172. [Google Scholar] [CrossRef] [PubMed]
- Ruz, M.; Carrasco, F.; Rojas, P.; Basfi-Fer, K.; Hernández, M.C.; Pérez, A. Nutritional Effects of Zinc on Metabolic Syndrome and Type 2 Diabetes: Mechanisms and Main Findings in Human Studies. Biol. Trace Element Res. 2019, 188, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Haase, H.; Mocchegiani, E.; Rink, L. Correlation between zinc status and immune function in the elderly. Biogerontology 2006, 7, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Lestienne, I.; Verniere, C.I.; Mouquet-Rivier, C.; Picq, C.; Trèche, S. Effects of soaking whole cereal and legume seeds on iron, zinc and phytate contents. Food Chem. 2005, 89, 421–425. [Google Scholar] [CrossRef]
- King, J.C.; Brown, K.H.; Gibson, R.S.; Krebs, N.F.; Lowe, N.M.; Siekmann, J.H.; Raiten, D.J. Biomarkers of Nutrition for Development (BOND)—Zinc Review. J. Nutr. 2015, 146, 858S–885S. [Google Scholar] [CrossRef] [Green Version]
Author, Year | Subjects | N | Study Design | Intervention | Outcome |
---|---|---|---|---|---|
Animal studies | |||||
Reiterer et al. 2005 [190] | LDL receptor knock-out (LDL-R-/-) mice, 5 wk | 11 (ZD) 11 (Z) 11 (ZS) | / | ZD: AIN-93 diets with 0 µmol Zn/g diet for 4 wk; Z: AIN-93 diets with 0.45 µmol Zn/g diet for 4 wk; ZS: AIN-93 diets with 1.529 µmol Zn/g diet for 4 wk | Zinc deficiency was associated with:
|
Shen et al. 2007 [191] | LDL receptor knock-out (LDL-R-/-) male mice, 5 wk | 2 (ZD) 2 (Z) | / | ZD: low-fat (LF) diet with 0.4 mg/kg of zinc for 21 d, and then high-fat (HF) diet with 0.4 mg/kg of zinc for 1 wk; Z: low-fat (LF) diet with 33.1 mg/kg of zinc for 21 d, and then high-fat (HF) diet with 33.1 mg/kg of zinc for 1 wk | Zinc deficiency was associated with:
|
Beattie et al. 2012 [192] | ApoE knock-out (AEKO) mice, 5 wk | 24 (ZD) 12 (Z) | / | ZD: high saturated fat (21% w/w) and high cholesterol (0.15%) semi-synthetic diets containing suboptimal zinc (3 or 8 mg/kg) for 25 wk; Z: high saturated fat (21% w/w) and high cholesterol (0.15%) semi-synthetic diets containing adequate zinc (35 mg/kg) for 25 wk | Zinc deficiency was associated with:
|
Alissa et al. 2004 [193] | Male New Zealand White rabbits, 6–10 wk | 8 (ZS) 8 (C) | / | ZS: diet containing 0.25–1% (w/w) cholesterol plus zinc as its sulfate at 0.5% (w/w) for 12 wk; C: diet containing 0.25–1% (w/w) cholesterol for 12 wk | Zinc supplementation was associated with:
|
Ren et al. 2006 [194] | Male New Zealand white rabbits,/ | 6 (ZS) 6 (C) | / | ZS: zinc-supplemented diet SF03-017 (modified guinea pig and rabbit + 1% cholesterol + 1000 ppm (1 g/kg) zinc as zinc carbonate) for 8 wk; C: high-cholesterol diet (HCD) SF00- 221 (modified guinea pig and rabbit + 1% cholesterol) for 8 wk | Zinc supplementation was associated with:
|
Abdelhalim et al. 2013 [195] | Male New Zealand white rabbits, 12 wk | 5 (ZS) 5 (C) | / | ZS: zinc-supplemented high-cholesterol diet: NOR Purina Certified Rabbit Chow no. 5321 with 1.0% cholesterol plus 1.0% olive oil (100 g/day), with 350 ppm zinc for 12 wk; C: high-cholesterol diet: NOR Purina Certified Rabbit Chow no. 5321 with 1.0% cholesterol plus 1.0% olive oil (100 g/day) for 12 wk. | Zinc supplementation was associated with:
|
Jenner et al. 2007 [196] | Male New Zealand white rabbits,/ | 5 (ZS) 6 (C) | / | ZS: zinc-supplemented high cholesterol diet [GPR + 1% cholesterol + 1000 ppm (1 g/kg of diet) zinc as zinc carbonate] for 8 wk; C: High cholesterol diet [GPR + 1% cholesterol] for 8 wk. | Zinc supplementation was associated with:
|
Beattie et al. 2008 [198] | Sprague–Dawley rats, 100 g, 4 wk | Study 1: 9(MZD) 9(MZA) Study 2: 10(AZD) 10(APF) 10(AZA) | / | AIN-76 diet that contained 35, 6 or, 1 mg Zn/kg; MZD: 6 mg zinc/kg for 43 days; MZA: 35 mg zinc/kg for 43 days; AZD: 1 mg zinc/kg for 39 days; APF: 35 mg zinc/kg for 39 days, pair-fed with AZD group; AZA: 35 mg zinc/kg for 39 days. | Zinc deficiency was associated with:
|
Human studies | |||||
Yang et al. 2010 [203] | Middle-aged and elderly Korean populations, 40–89 y | 4564 | Cross-sectional analyses | / |
|
Masley et al. 2015 [204] | Population attending an executive evaluation program, 23–65 y | 592 | Prospective cross-sectional analysis | / |
|
Chen et al. 2020 [205] | Noninstitutionalized civilian US populations, ≥40 y | 1764 (AAC) 771 (noAAC) | Cross-sectional analyses | / |
|
Dziedzic et al. 2022 [206] | Patients with a history of previous MI who were treated with coronary Angioplasty, 37–95 y | 133 | Cross-sectional analyses | / |
|
Giannoglou et al. 2010 [207] | Underwent diagnostic coronary angiography for evaluating chest pain. CAD: 66 ± 43 y; control: 61 ± 51 y | 40 (CAD) 32 (control) | A pilot study | / |
|
Milton et al. 2018 [208] | Mid-age Australian women, 50–61 y | 9264 | Large longitudinal study | / |
|
Mattern et al. 2021 [209] | Black and White participants, ≥45 y | 2944 | Population-based prospective longitudinal study | / |
|
Gao et al. 2021 [210] | Multi-ethnic participants, 45–84 y | 6814 | Prospective population-based observational cohort study | / |
|
de Oliveira Otto et al. 2012 [211] | Adults free of clinical CVD from six U.S. communities, 45–84 y | 6814 | Prospective population-based study | / |
|
Jung et al. 2013 [212] | Populations from multi-rural Korean communities, ≥40 y | 5532 | Cross-sectional analysis | / |
|
Alissa et al. 2006 [213] | Saudi male subjects with established CVD, 55.6 ± 12.1 y age-matched controls, 55.0 ± 11.6 y | 130 (CVD) 130 (control) | Population-based study | / |
|
Qazmooz et al. 2021 [214] | Patients with atherosclerosis and age, sex-matched healthy controls | 120 (atherosclerosis) 58 (control) | Machine learning studies | / |
|
Lee et al. 2005 [215] | Postmenopausal women, 55–69 y | 34,492 | Population-based study | / |
|
Eshak et al. 2018 [216] | Middle-aged residents in 45 Japanese communities, ≥40 y | 58,646 | Population-based prospective cohort study | / |
|
Shi et al. 2018 [217] | Based on a subsample of the Chinese national nutrition and health survey representing Jiangsu province, ≥20 y | 2832 | Population-based prospective cohort study | / |
|
Bao et al. 2010 [218] | 40 healthy elderly, 56–83 y | 20(ZS) 20(C) | RCT | ZS: 45 mg zinc/d as gluconate for 6 mo; C: placebo for 6 mo |
|
Costarelli et al. 2010 [219] | Overweight/obese individuals (BMI ≥25 kg/m2), 43 ± 5 y | 100 (Group 1) 123 (Group 2) | Clinical trial | Group 1: low-zinc dietary intake (<7 mg/day for females and <9.5 for males); Group 2: normal-zinc dietary intake (≥7 mg/day for females and ≥9.5 for males) |
|
Seet et al. 2011 [220] | Male T2DM patients, ≥21 y | 20(ZS) 20(C) | RCT | ZS: 240 mg zinc/day as gluconate for 3 mo; C: 2 tablets of placebo (99% microcrystalline cellulose, 1% magnesium stearate) for 3 mo |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, T.; Zhao, Q.; Luo, Y.; Wang, T. Investigating the Role of Zinc in Atherosclerosis: A Review. Biomolecules 2022, 12, 1358. https://doi.org/10.3390/biom12101358
Shen T, Zhao Q, Luo Y, Wang T. Investigating the Role of Zinc in Atherosclerosis: A Review. Biomolecules. 2022; 12(10):1358. https://doi.org/10.3390/biom12101358
Chicago/Turabian StyleShen, Tong, Qing Zhao, Yumin Luo, and Tao Wang. 2022. "Investigating the Role of Zinc in Atherosclerosis: A Review" Biomolecules 12, no. 10: 1358. https://doi.org/10.3390/biom12101358
APA StyleShen, T., Zhao, Q., Luo, Y., & Wang, T. (2022). Investigating the Role of Zinc in Atherosclerosis: A Review. Biomolecules, 12(10), 1358. https://doi.org/10.3390/biom12101358