Exome and Sputum Microbiota as Predictive Markers of Frequent Exacerbations in Chronic Obstructive Pulmonary Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Recruitment
2.2. Sample Collection
2.3. Whole-Exome Sequencing
2.4. 16S rRNA Gene Sequencing
2.5. Bioinformatics Analysis
2.6. Statistical Analysis
3. Results
3.1. Clinical Characteristics
3.2. Whole Exome Sequencing Analyses
3.3. Sputum Microbiota Profiling
3.4. Microbiome Network
3.5. Correlation between Candidate Genes and the Microbiome
3.6. Bacterial Taxonomic Differences
3.7. Functional Analysis of the Microbiome in FE-Associated Genes by PICRUSt Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Halpin, D.M.G.; Celli, B.R.; Criner, G.J.; Frith, P.; López Varela, M.R.; Salvi, S.; Vogelmeier, C.F.; Chen, R.; Mortimer, K.; Montes de Oca, M.; et al. The Gold Summit on Chronic Obstructive Pulmonary Disease in Low- and Middle-Income Countries. Int. J. Tuberc. Lung Dis. 2019, 23, 1131–1141. [Google Scholar] [CrossRef]
- Mathers, C.D.; Loncar, D. Projections of Global Mortality and Burden of Disease from 2002 to 2030. PLoS Med. 2006, 11, e442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wedzicha, J.A.; Seemungal, T.A. COPD Exacerbations: Defining Their Cause and Prevention. Lancet 2007, 370, 786–796. [Google Scholar] [CrossRef]
- Hurst, J.R.; Vestbo, J.; Anzueto, A.; Locantore, N.; Müllerova, H.; Tal-Singer, R.; Miller, B.; Lomas, D.A.; Agusti, A.; Macnee, W.; et al. Susceptibility to Exacerbation in Chronic Obstructive Pulmonary Disease. NEJM 2010, 363, 1128–1138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nachef, Z.; Mador, M.J. Copd Exacerbator Phenotype: Time for Reassessment? Lancet Respir. Med. 2017, 8, 600–601. [Google Scholar] [CrossRef]
- McCloskey, S.C.; Patel, B.D.; Hinchliffe, S.J.; Reid, E.D.; Wareham, N.J.; Lomas, D.A. Siblings of Patients with Severe Chronic Obstructive Pulmonary Disease Have a Significant Risk of Airflow Obstruction. Am. J. Respir. Crit. 2001, 164, 1419–1424. [Google Scholar] [CrossRef]
- Stoller, J.K.; Aboussouan, L.S. Alpha1-Antitrypsin Deficiency. Lancet 2005, 365, 2225–2236. [Google Scholar] [CrossRef]
- Ding, Z.; Wang, K.; Li, J.; Tan, Q.; Tan, W.; Guo, G. Association between Glutathione S-Transferase Gene M1 and T1 Polymorphisms and Chronic Obstructive Pulmonary Disease Risk: A Meta-Analysis. Clin. Genet. 2019, 95, 53–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pillai, S.G.; Kong, X.; Edwards, L.D.; Cho, M.H.; Anderson, W.H.; Coxson, H.O.; Lomas, D.A.; Silverman, E.K. Loci Identified by Genome-Wide Association Studies Influence Different Disease-Related Phenotypes in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2010, 182, 1498–1505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foreman, M.G.; DeMeo, D.L.; Hersh, C.P.; Carey, V.J.; Fan, V.S.; Reilly, J.J.; Shapiro, S.D.; Silverman, E.K. Polymorphic Variation in Surfactant Protein B Is Associated with Copd Exacerbations. Eur. Clin. Respir. J. 2008, 32, 938–944. [Google Scholar] [CrossRef] [PubMed]
- Ragland, M.F.; Benway, C.J.; Lutz, S.M.; Bowler, R.P.; Hecker, J.; Hokanson, J.E.; Crapo, J.D.; Castaldi, P.J.; DeMeo, D.L.; Hersh, C.P.; et al. Genetic Advances in Chronic Obstructive Pulmonary Disease. Insights from Copdgene. Am. J. Respir. Crit. Care Med. 2019, 200, 677–990. [Google Scholar] [CrossRef]
- Qiao, D.; Lange, C.; Beaty, T.H.; Crapo, J.D.; Barnes, K.C.; Bamshad, M.; Hersh, C.P.; Morrow, J.; Pinto-Plata, V.M.; Marchetti, N.; et al. Exome Sequencing Analysis in Severe, Early-Onset Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. 2016, 193, 1353–1363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wain, L.V.; Sayers, I.; Soler Artigas, M.; Portelli, M.A.; Zeggini, E.; Obeidat, M.; Sin, D.D.; Bossé, Y.; Nickle, D.; Brandsma, C.A.; et al. Whole Exome Re-Sequencing Implicates Ccdc38 and Cilia Structure and Function in Resistance to Smoking Related Airflow Obstruction. PLoS Genet. 2014, 10, e1004314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sethi, S.; Murphy, T.F. Infection in the Pathogenesis and Course of Chronic Obstructive Pulmonary Disease. NEJM 2008, 359, 2355–2365. [Google Scholar] [CrossRef] [PubMed]
- Han, M.K.; Huang, J.Y.; Lipuma, J.J.; Boushey, H.A.; Boucher, R.C.; Cookson, W.O.; Curtis, J.L.; Erb-Downward, J.; Lynch, S.V.; Sethi, S.; et al. Significance of the Microbiome in Obstructive Lung Disease. Thorax 2012, 67, 456–463. [Google Scholar] [CrossRef] [Green Version]
- Sze, M.A.; Dimitriu, P.A.; Hayashi, S.; Elliott, W.M.; McDonough, J.E.; Gosselink, J.V.; Cooper, J.; Sin, D.D.; Mohn, W.W.; Hogg, J.C. The Lung Tissue Microbiome in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. 2012, 185, 1073–1080. [Google Scholar] [CrossRef] [Green Version]
- Leitao Filho, F.S.; Alotaibi, N.M.; Ngan, D.; Tam, S.; Yang, J.; Hollander, Z.; Chen, V.; FitzGerald, J.M.; Nislow, C.; Leung, J.M.; et al. Sputum Microbiome Is Associated with 1-Year Mortality after Chronic Obstructive Pulmonary Disease Hospitalizations. Am. J. Respir. Crit. 2019, 199, 1205–1213. [Google Scholar] [CrossRef] [PubMed]
- Vogelmeier, C.F.; Criner, G.J.; Martinez, F.J.; Anzueto, A.; Barnes, P.J.; Bourbeau, J.; Celli, B.R.; Chen, R.; Decramer, M.; Fabbri, L.M.; et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report: Gold Executive Summary. Am. J. Respir. Crit. Care Med. 2017, 195, 557–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pin, I.; Gibson, P.G.; Kolendowicz, R.; Girgis-Gabardo, A.; Denburg, J.A.; Hargreave, F.E.; Dolovich, J. Use of Induced Sputum Cell Counts to Investigate Airway Inflammation in Asthma. Thorax 1992, 47, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Terranova, L.; Oriano, M.; Teri, A.; Ruggiero, L.; Tafuro, C.; Marchisio, P.; Gramegna, A.; Contarini, M.; Franceschi, E.; Sottotetti, S.; et al. How to Process Sputum Samples and Extract Bacterial DNA for Microbiota Analysis. Int. J. Mol. Sci. 2018, 19, 3296. [Google Scholar] [CrossRef]
- Parks, D.H.; Tyson, G.W.; Hugenholtz, P.; Beiko, R.G. Stamp: Statistical Analysis of Taxonomic and Functional Profiles. Bioinformatics 2014, 30, 3123–3124. [Google Scholar] [CrossRef] [Green Version]
- Gomez, C.; Chanez, P. The Lung Microbiome: The Perfect Culprit for Copd Exacerbations? Eur. Respir. J. 2016, 47, 1034–1036. [Google Scholar] [CrossRef] [Green Version]
- Galiana, A.; Aguirre, E.; Rodriguez, J.C.; Mira, A.; Santibañez, M.; Candela, I.; Llavero, J.; Garcinuño, P.; López, F.; Ruiz, M.; et al. Sputum Microbiota in Moderate Versus Severe Patients with Copd. Eur. Clin. Respir. J. 2014, 43, 1787–1790. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Nuñez, M.; Millares, L.; Pomares, X.; Ferrari, R.; Pérez-Brocal, V.; Gallego, M.; Espasa, M.; Moya, A.; Monsó, E. Severity-Related Changes of Bronchial Microbiome in Chronic Obstructive Pulmonary Disease. JCM 2014, 52, 4217–4223. [Google Scholar] [CrossRef] [Green Version]
- Ditz, B.; Christenson, S.; Rossen, J.; Brightling, C.; Kerstjens, H.A.M.; van den Berge, M.; Faiz, A. Sputum Microbiome Profiling in Copd: Beyond Singular Pathogen Detection. Thorax 2020, 75, 338–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Zhang, Q.; Zhang, J.; Ouyang, Y.; Sun, Z.; Liu, X.; Qaio, F.; Xu, L.Q.; Niu, Y.; Li, J. Exploring the Change of Host and Microorganism in Chronic Obstructive Pulmonary Disease Patients Based on Metagenomic and Metatranscriptomic Sequencing. Front. Microbiol. 2022, 13, 818281. [Google Scholar] [CrossRef] [PubMed]
- Mayhew, D.; Devos, N.; Lambert, C.; Brown, J.R.; Clarke, S.C.; Kim, V.L.; Magid-Slav, M.; Miller, B.E.; Ostridge, K.K.; Patel, R.; et al. Longitudinal Profiling of the Lung Microbiome in the Aeris Study Demonstrates Repeatability of Bacterial and Eosinophilic Copd Exacerbations. Thorax 2018, 73, 422–430. [Google Scholar] [CrossRef] [Green Version]
- Leung, J.M.; Tiew, P.Y.; Mac Aogain, M.; Budden, K.F.; Yong, V.F.; Thomas, S.S.; Pethe, K.; Hansbro, P.M.; Chotirmall, S.H. The Role of Acute and Chronic Respiratory Colonization and Infections in the Pathogenesis of Copd. Respirology 2017, 22, 634–650. [Google Scholar] [CrossRef] [Green Version]
- Garcha, D.S.; Thurston, S.J.; Patel, A.R.; Mackay, A.J.; Goldring, J.J.; Donaldson, G.C.; McHugh, T.D.; Wedzicha, J.A. Changes in Prevalence and Load of Airway Bacteria Using Quantitative Pcr in Stable and Exacerbated Copd. Thorax 2012, 67, 1075–1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erb-Downward, J.R.; Thompson, D.L.; Han, M.K.; Freeman, C.M.; McCloskey, L.; Schmidt, L.A.; Young, V.B.; Toews, G.B.; Curtis, J.L.; Sundaram, B.; et al. Analysis of the Lung Microbiome in the “Healthy Smoker and in Copd. PLoS ONE 2011, 6, e16384. [Google Scholar] [CrossRef] [PubMed]
- Welcker, D.; Jain, M.; Khurshid, S.; Jokic, M.; Hohne, M.; Schmitt, A.; Frommolt, P.; Niessen, C.M.; Spiro, J.; Persigehl, T.; et al. Aatf Suppresses Apoptosis, Promotes Proliferation and Is Critical for Kras-Driven Lung Cancer. Oncogene 2018, 37, 1503–1518. [Google Scholar] [CrossRef]
- Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Proteomics. Tissue-Based Map of the Human Proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef]
- Bein, K.; Ganguly, K.; Martin, T.M.; Concel, V.J.; Brant, K.A.; Di, Y.P.P.; Upadhyay, S.; Fabisiak, J.P.; Vuga, L.J.; Kaminski, N.; et al. Genetic Determinants of Ammonia-Induced Acute Lung Injury in Mice. Am. J. Physiol. Lung Cell Mol. 2021, 320, L41–L62. [Google Scholar] [CrossRef]
- Desantis, A.; Bruno, T.; Catena, V.; De Nicola, F.; Goeman, F.; Iezzi, S.; Sorino, C.; Ponzoni, M.; Bossi, G.; Federico, V.; et al. Che-1-Induced Inhibition of Mtor Pathway Enables Stress-Induced Autophagy. EMBO J. 2015, 34, 1214–1230. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Ke, J.; Peng, C.; Wu, F.; Song, Y. Microrna-300/Nampt Regulates Inflammatory Responses through Activation of Ampk/Mtor Signaling Pathway in Neonatal Sepsis. Biomed. Pharmacother. 2018, 108, 271–279. [Google Scholar] [CrossRef]
- Hu, S.; Vich Vila, A.; Gacesa, R.; Collij, V.; Stevens, C.; Fu, J.M.; Wong, I.M.; Talkowski, E.; Rivas, M.A.; Imhann, F.; et al. Whole Exome Sequencing Analyses Reveal Gene-Microbiota Interactions in the Context of Ibd. Gut 2021, 70, 285–296. [Google Scholar] [CrossRef]
- Liao, B.; Ye, X.; Chen, X.; Zhou, Y.; Cheng, L.; Zhou, X.; Ren, B. Candida Albicansthe Two-Component Signal Transduction System and Its Regulation In. Virulence 2021, 12, 1884–1899. [Google Scholar] [CrossRef]
- Izawa, K.; Okamoto-Shibayama, K.; Kita, D.; Tomita, S.; Saito, A.; Ishida, T.; Ohue, M.; Akiyama, Y.; Ishihara, K. Taxonomic and Gene Category Analyses of Subgingival Plaques from a Group of Japanese Individuals with and without Periodontitis. Int. J. Mol. Sci. 2021, 22, 5298. [Google Scholar] [CrossRef]
Variables | All | Infrequent Exacerbator | Frequent Exacerbator | p-Value |
---|---|---|---|---|
n | 82 | 32 | 50 | |
Age at inclusion (years) (mean ± SD) | 69.77 ± 8.14 | 67.91 ± 7.97 | 70.96 ± 8.18 | 0.100 |
Age at onset of COPD (years) | 60.44 ± 8.83 | 59.28 ± 6.31 | 61.18 ± 10.19 | 0.348 |
COPD duration, years (median, range) | 10.00 (5.00–10.00) | 7.50(3.50–10.00) | 10.00 (5.00–11.25) | 0.513 |
Sex, male, n (%) | 67 (81.71) | 28 (87.50) | 39 (78.00) | 0.278 |
BMI (kg/m2) (median, range) | 23.29 (21.50–25.95) | 24.49 (22.15–26.42) | 22.88 (21.16–25.97) | 0.116 |
Current smoker No. (%) | 19 (23.17) | 9 (28.13) | 10 (20.00) | 0.395 |
FEV1% pred | 53.38 ± 20.54 | 60.74 ± 22.34 | 48.67 ± 18.23 | 0.009 |
FEV1/FVC | 52.05 ± 12.42 | 51.10 ± 13.56 | 52.73 ± 11.81 | 0.577 |
Sputum culture positive, n (%) | 6 (7.3) | 1 (3.1) | 5 (10.0) | 0.244 |
Acute exacerbation (median, range) | 1.00 (0.00–2.00) | 0.00 (0.00–1.00) | 2.00 (1.00–3.00) | <0.001 |
GOLD Classification, n (%) | 0.508 | |||
Ⅰ | 13 (15.9) | 7 (21.9) | 6 (12.0) | |
Ⅱ | 32 (39.0) | 13 (40.6) | 19 (38.0) | |
Ⅲ | 25 (30.5) | 9 (28.1) | 16 (32.0) | |
Ⅳ | 12 (14.6) | 3 (9.4) | 9 (18.0) |
CHR | Gene Name | Description | Exon Variant Types | Frequency in FE | Frequency in IE | Expression Summary | r | p-Value |
---|---|---|---|---|---|---|---|---|
17 | AATF | Apoptosis-antagonizing transcription factor | Missense | 9/50 | 0/32 | Ubiquitous granular cytoplasmic expression | 0.463 | <0.001 |
4 | HTT | Huntingtin | Missense, Nonframeshift insertion | 8/50 | 0/32 | Cytoplasmic expression in most tissues | 0.246 | 0.026 |
1 | CEP350 | Centrosomal protein 350 | Missense, Nonframeshift deletion | 7/50 | 0/32 | Ubiquitous cytoplasmic expression | 0.051 | 0.648 |
3 | ADAMTS9 | ADAM metallopeptidase with thrombospondin type 1 motif 9 | Missense | 7/50 | 0/32 | Cytoplasmic expression in most tissues at variable levels | 0.193 | 0.082 |
10 | TLL2 | Tolloid-like 2 | Nonframeshift insertion | 7/50 | 0/32 | NA | 0.221 | 0.046 |
1 | USP24 | Ubiquitin-specific protease 24 | Stopgain | 6/50 | 0/32 | Cytoplasmic expression in most cell types | 0.192 | 0.084 |
2 | ANKZF1 | Ankyrin repeat- and zinc finger domain-containing 1 | Frameshift deletion | 6/50 | 0/32 | Cytoplasmic expression in all tissues | 0.213 | 0.055 |
3 | USF3 | Upstream transcription factor family, member 3 | Missense | 6/50 | 0/32 | NA | 0.102 | 0.363 |
5 | FNIP1 | Folliculin-interacting protein 1 | Missense | 6/50 | 0/32 | Mainly cytoplasmic expression at variable levels in all cell types | 0.162 | 0.147 |
7 | KMT2C | Lysine (K)-specific methyltransferase 2C | Missense | 6/50 | 0/32 | NA | 0.205 | 0.065 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, L.; Qiao, Y.; Luo, J.; Huang, R.; Xiao, Y. Exome and Sputum Microbiota as Predictive Markers of Frequent Exacerbations in Chronic Obstructive Pulmonary Disease. Biomolecules 2022, 12, 1481. https://doi.org/10.3390/biom12101481
Su L, Qiao Y, Luo J, Huang R, Xiao Y. Exome and Sputum Microbiota as Predictive Markers of Frequent Exacerbations in Chronic Obstructive Pulmonary Disease. Biomolecules. 2022; 12(10):1481. https://doi.org/10.3390/biom12101481
Chicago/Turabian StyleSu, Linfan, Yixian Qiao, Jinmei Luo, Rong Huang, and Yi Xiao. 2022. "Exome and Sputum Microbiota as Predictive Markers of Frequent Exacerbations in Chronic Obstructive Pulmonary Disease" Biomolecules 12, no. 10: 1481. https://doi.org/10.3390/biom12101481
APA StyleSu, L., Qiao, Y., Luo, J., Huang, R., & Xiao, Y. (2022). Exome and Sputum Microbiota as Predictive Markers of Frequent Exacerbations in Chronic Obstructive Pulmonary Disease. Biomolecules, 12(10), 1481. https://doi.org/10.3390/biom12101481