Current Challenges for Biological Treatment of Pharmaceutical-Based Contaminants with Oxidoreductase Enzymes: Immobilization Processes, Real Aqueous Matrices and Hybrid Techniques
Abstract
:1. Introduction
2. Occurrence and Toxicity of PhAC
3. Enzymatic Biodegradation
3.1. Laccase-Mediator Catalyzed System
3.2. Transformation Mechanisms and Toxicity Evaluation
3.3. Immobilized Biocatalytic System
4. Factors Affecting the Enzymatic Degradation
5. Bioreactors
6. Enzymatic Membrane Reactor (EMR)
7. Real Wastewater and Scale-Up
8. Hybrid Methods
9. Concluding Remarks and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABTS | 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt |
HWW | Hospital wastewater |
APAP | Acetaminophen |
IBP | Ibuprofen |
APTES | 3-aminopropyltriethoxysilane |
Lac | Laccase |
AS | Acetosyringone |
LiP | Lignin peroxidase |
ATL | Atenolol |
M-CLEA | Magnetic cross-linked enzyme aggregates |
CAP | Chloramphenicol |
MCF | Mesostructured cellular foam |
CBZ | Carbamazepine |
MF | Microfiltration membrane |
CLEA | Cross-linked enzyme aggregate |
MnP | Manganese peroxidase |
DCF | Diclofenac sodium |
MWCNT | Multi-walled carbon nanotubes |
DDM | Dichlorophen |
NF | Nanofiltration |
DHQ | 5,7-diiodo-8-hydroxyquinoline |
NPX | Naproxen |
DMBQ | 2,6-dimethoxy-1,4-benzoquinone |
NSAID | Non-steroidal anti-inflammatory drugs |
DOX | Doxorubicin |
OTC | Oxytetracycline |
EC | Emerging contaminants EC |
PhAC | Pharmaceutical active compounds |
EDG | Electron-donating groups |
PLCL | Poly(l-lactic acid)-co-poly(ε-caprolactone) |
EMR | Enzymatic membrane reactor |
PVDF | Polyvinylidene fluoride |
ET | Electron transfer |
SA | Syringaldehyde |
EWG | Electron withdrawing groups |
SMX | Sulfamethoxazole |
FLG | Few-layer graphene |
TC | Tetracycline |
GAC | Granular activated carbon |
TEMPO | 2, 2, 6, 6-tetramethyl-1-piperidinyloxy |
GO | Graphene oxide (GO) |
TNC | Trinuclear copper cluster |
HA | Humic acids |
UF | Ultrafiltration |
HAT | Hydrogen atom transfer |
VLA | Violuric acid |
HBR | Hybrid bioreactor |
VP | Versatile peroxidase |
HBT | Hydroxybenzotriazole |
WRF | White-rot fungi |
HPI | N-hydroxyphthalimide |
WWTP | Conventional wastewater treatment plants |
HRP | Horseradish peroxidase |
References
- Varsha, M.; Senthil Kumar, P.; Senthil Rathi, B. A Review on Recent Trends in the Removal of Emerging Contaminants from Aquatic Environment Using Low-Cost Adsorbents. Chemosphere 2022, 287, 132270. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wang, T.; Sun, X.; Bai, L.; Han, C.; Zhang, P. The Potential of Biochar and Lignin-Based Adsorbents for Wastewater Treatment: Comparison, Mechanism, and Application—A Review. Ind. Crops Prod. 2021, 166, 113473. [Google Scholar] [CrossRef]
- Dey, S.; Bano, F.; Malik, A. Pharmaceuticals and Personal Care Product (PPCP) Contamination-a Global Discharge Inventory. In Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology; Vara Prasad, M.N., Vithanage, M., Kapley, A., Eds.; Emerging Contaminants and Micro Pollutants: New Delhi, India, 2019; pp. 1–26. ISBN 9780128161890. [Google Scholar]
- Rout, P.R.; Zhang, T.C.; Bhunia, P.; Surampalli, R.Y. Treatment Technologies for Emerging Contaminants in Wastewater Treatment Plants: A Review. Sci. Total Environ. 2021, 753, 141990. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Narvaez, O.M.; Peralta-Hernandez, J.M.; Goonetilleke, A.; Bandala, E.R. Treatment Technologies for Emerging Contaminants in Water: A Review. Chem. Eng. J. 2017, 323, 361–380. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, M.; Frihling, B.E.F.; Velasques, J.; Filho, F.J.C.M.; Cavalheri, P.S.; Migliolo, L. Pharmaceuticals Residues and Xenobiotics Contaminants: Occurrence, Analytical Techniques and Sustainable Alternatives for Wastewater Treatment. Sci. Total Environ. 2020, 705, 135568. [Google Scholar] [CrossRef] [PubMed]
- Fekadu, S.; Alemayehu, E.; Dewil, R.; Van der Bruggen, B. Pharmaceuticals in Freshwater Aquatic Environments: A Comparison of the African and European Challenge. Sci. Total Environ. 2019, 654, 324–337. [Google Scholar] [CrossRef] [PubMed]
- Stadlmair, L.F.; Letzel, T.; Drewes, J.E.; Graßmann, J. Mass Spectrometry Based in Vitro Assay Investigations on the Transformation of Pharmaceutical Compounds by Oxidative Enzymes. Chemosphere 2017, 174, 466–477. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.H.; Reinhard, M.; Gin, K.Y.H. Occurrence and Fate of Emerging Contaminants in Municipal Wastewater Treatment Plants from Different Geographical Regions-a Review. Water Res. 2018, 133, 182–207. [Google Scholar] [CrossRef] [PubMed]
- Yadav, D.; Rangabhashiyam, S.; Verma, P.; Singh, P.; Devi, P.; Kumar, P.; Hussain, C.M.; Gaurav, G.K.; Kumar, K.S. Environmental and Health Impacts of Contaminants of Emerging Concerns: Recent Treatment Challenges and Approaches. Chemosphere 2021, 272, 129492. [Google Scholar] [CrossRef]
- Kanakaraju, D.; Glass, B.D.; Oelgemöller, M. Advanced Oxidation Process-Mediated Removal of Pharmaceuticals from Water: A Review. J. Environ. Manag. 2018, 219, 189–207. [Google Scholar] [CrossRef] [PubMed]
- Awfa, D.; Ateia, M.; Fujii, M.; Johnson, M.S.; Yoshimura, C. Photodegradation of Pharmaceuticals and Personal Care Products in Water Treatment Using Carbonaceous-TiO2 Composites: A Critical Review of Recent Literature. Water Res. 2018, 142, 26–45. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; van Hullebusch, E.D.; Rodrigo, M.A.; Esposito, G.; Oturan, M.A. Removal of Residual Anti-Inflammatory and Analgesic Pharmaceuticals from Aqueous Systems by Electrochemical Advanced Oxidation Processes. A Review. Chem. Eng. J. 2013, 228, 944–964. [Google Scholar] [CrossRef]
- Mirzaei, A.; Chen, Z.; Haghighat, F.; Yerushalmi, L. Removal of Pharmaceuticals from Water by Homo/Heterogonous Fenton-Type Processes–A Review. Chemosphere 2017, 174, 665–688. [Google Scholar] [CrossRef]
- Abejón, R.; De Cazes, M.; Belleville, M.P.; Sanchez-Marcano, J. Large-Scale Enzymatic Membrane Reactors for Tetracycline Degradation in WWTP Effluents. Water Res. 2015, 73, 118–131. [Google Scholar] [CrossRef]
- Celik, E.; Park, H.; Choi, H.; Choi, H. Carbon Nanotube Blended Polyethersulfone Membranes for Fouling Control in Water Treatment. Water Res. 2011, 45, 274–282. [Google Scholar] [CrossRef]
- Singh, J.; Saharan, V.; Kumar, S.; Gulati, P.; Kapoor, R.K. Laccase Grafted Membranes for Advanced Water Filtration Systems: A Green Approach to Water Purification Technology. Crit. Rev. Biotechnol. 2018, 38, 883–901. [Google Scholar] [CrossRef]
- Naghdi, M.; Taheran, M.; Brar, S.K.; Kermanshahi-pour, A.; Verma, M.; Surampalli, R.Y. Removal of Pharmaceutical Compounds in Water and Wastewater Using Fungal Oxidoreductase Enzymes. Environ. Pollut. 2018, 234, 190–213. [Google Scholar] [CrossRef] [PubMed]
- Alneyadi, A.H.; Rauf, M.A.; Ashraf, S.S. Oxidoreductases for the Remediation of Organic Pollutants in Water–a Critical Review. Crit. Rev. Biotechnol. 2018, 38, 971–988. [Google Scholar] [CrossRef]
- Tahmasbi, H.; Khoshayand, M.R.; Bozorgi-Koushalshahi, M.; Heidary, M.; Ghazi-Khansari, M.; Faramarzi, M.A. Biocatalytic Conversion and Detoxification of Imipramine by the Laccase-Mediated System. Int. Biodeterior. Biodegrad. 2016, 108, 1–8. [Google Scholar] [CrossRef]
- Kelbert, M.; Pereira, C.S.; Daronch, N.A.; Cesca, K.; Michels, C.; de Oliveira, D.; Soares, H.M. Laccase as an Efficacious Approach to Remove Anticancer Drugs: A Study of Doxorubicin Degradation, Kinetic Parameters, and Toxicity Assessment. J. Hazard. Mater. 2021, 409, 124520. [Google Scholar] [CrossRef]
- Bilal, M.; Rasheed, T.; Nabeel, F.; Iqbal, H.M.N.; Zhao, Y. Hazardous Contaminants in the Environment and Their Laccase-Assisted Degradation–A Review. J. Environ. Manag. 2019, 234, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Bonab, M.; Arjomandi Rad, F.; Talat Mehrabad, J. Preparation of Laccase-Graphene Oxide Nanosheet/Alginate Composite: Application for the Removal of Cetirizine from Aqueous Solution. J. Environ. Chem. Eng. 2016, 4, 3013–3020. [Google Scholar] [CrossRef]
- Daronch, N.A.; Kelbert, M.; Pereira, C.S.; de Araújo, P.H.H.; de Oliveira, D. Elucidating the Choice for a Precise Matrix for Laccase Immobilization: A Review. Chem. Eng. J. 2020, 397, 125506. [Google Scholar] [CrossRef]
- dos Santos, C.R.; Arcanjo, G.S.; de Souza Santos, L.V.; Koch, K.; Amaral, M.C.S. Aquatic Concentration and Risk Assessment of Pharmaceutically Active Compounds in the Environment. Environ. Pollut. 2021, 290, 118049. [Google Scholar] [CrossRef] [PubMed]
- Couto, C.F.; Lange, L.C.; Amaral, M.C.S. Occurrence, Fate and Removal of Pharmaceutically Active Compounds (PhACs) in Water and Wastewater Treatment Plants—A Review. J. Water Process. Eng. 2019, 32, 100927. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Zhao, J.L.; Liu, Y.S.; Liu, W.R.; Zhang, Q.Q.; Yao, L.; Hu, L.X.; Zhang, J.N.; Jiang, Y.X.; Ying, G.G. Pharmaceuticals and Personal Care Products (PPCPs) and Artificial Sweeteners (ASs) in Surface and Ground Waters and Their Application as Indication of Wastewater Contamination. Sci. Total Environ. 2018, 616–617, 816–823. [Google Scholar] [CrossRef]
- Quesada, H.B.; Baptista, A.T.A.; Cusioli, L.F.; Seibert, D.; de Oliveira Bezerra, C.; Bergamasco, R. Surface Water Pollution by Pharmaceuticals and an Alternative of Removal by Low-Cost Adsorbents: A Review. Chemosphere 2019, 222, 766–780. [Google Scholar] [CrossRef] [PubMed]
- Christou, A.; Agüera, A.; Bayona, J.M.; Cytryn, E.; Fotopoulos, V.; Lambropoulou, D.; Manaia, C.M.; Michael, C.; Revitt, M.; Schröder, P.; et al. The Potential Implications of Reclaimed Wastewater Reuse for Irrigation on the Agricultural Environment: The Knowns and Unknowns of the Fate of Antibiotics and Antibiotic Resistant Bacteria and Resistance Genes–A Review. Water Res. 2017, 123, 448–467. [Google Scholar] [CrossRef] [Green Version]
- O’Flaherty, E.; Cummins, E. Antibiotic Resistance in Surface Water Ecosystems: Presence in the Aquatic Environment, Prevention Strategies, and Risk Assessment. Hum. Ecol. Risk Assess. 2017, 23, 299–322. [Google Scholar] [CrossRef]
- Tijani, J.O.; Fatoba, O.O.; Babajide, O.O.; Petrik, L.F. Pharmaceuticals, Endocrine Disruptors, Personal Care Products, Nanomaterials and Perfluorinated Pollutants: A Review. Environ. Chem. Lett. 2016, 14, 27–49. [Google Scholar] [CrossRef]
- Gore, A.C.; Chappell, V.A.; Fenton, S.E.; Flaws, J.A.; Nadal, A.; Prins, G.S.; Toppari, J.; Zoeller, R.T. Executive Summary to EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr. Rev. 2015, 36, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Commission Implementing Decision (EU) 2020/1161 of 4 August 2020 Establishing a Watch List of Substances for Union-Wide Monitoring in the Field of Water Policy Pursuant to Directive 2008/105/EC of the European Parliament and of the Council. Available online: http://data.europa.eu/eli/dec_impl/2020/1161/oj (accessed on 29 April 2021).
- Stackelberg, P.E.; Furlong, E.T.; Meyer, M.T.; Zaugg, S.D.; Henderson, A.K.; Reissman, D.B. Persistence of Pharmaceutical Compounds and Other Organic Wastewater Contaminants in a Conventional Drinking-Water-Treatment Plant. Sci. Total Environ. 2004, 329, 99–113. [Google Scholar] [CrossRef] [Green Version]
- Stadlmair, L.F.; Letzel, T.; Drewes, J.E.; Grassmann, J. Enzymes in Removal of Pharmaceuticals from Wastewater: A Critical Review of Challenges, Applications and Screening Methods for Their Selection. Chemosphere 2018, 205, 649–661. [Google Scholar] [CrossRef]
- Zdarta, J.; Meyer, A.S.; Jesionowski, T.; Pinelo, M. Developments in Support Materials for Immobilization of Oxidoreductases: A Comprehensive Review. Adv. Colloid Interface Sci. 2018, 258, 1–20. [Google Scholar] [CrossRef]
- Bilal, M.; Lam, S.S.; Iqbal, H.M.N. Biocatalytic Remediation of Pharmaceutically Active Micropollutants for Environmental Sustainability. Environ. Pollut. 2022, 293, 118582. [Google Scholar] [CrossRef]
- Peralta, R.M.; da Silva, B.P.; Gomes Côrrea, R.C.; Kato, C.G.; Vicente Seixas, F.A.; Bracht, A. Enzymes from Basidiomycetes-Peculiar and Efficient Tools for Biotechnology. In Biotechnology of Microbial Enzymes; Brahmachari, G., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 119–149. ISBN 9780128037461. [Google Scholar]
- Varga, B.; Somogyi, V.; Meiczinger, M.; Kováts, N.; Domokos, E. Enzymatic Treatment and Subsequent Toxicity of Organic Micropollutants Using Oxidoreductases-A Review. J. Clean. Prod. 2019, 221, 306–322. [Google Scholar] [CrossRef]
- Morsi, R.; Bilal, M.; Iqbal, H.M.N.; Ashraf, S.S. Laccases and Peroxidases: The Smart, Greener and Futuristic Biocatalytic Tools to Mitigate Recalcitrant Emerging Pollutants. Sci. Total Environ. 2020, 714, 136572. [Google Scholar] [CrossRef]
- Tian, Q.; Dou, X.; Huang, L.; Wang, L.; Meng, D.; Zhai, L.; Shen, Y.; You, C.; Guan, Z.; Liao, X. Characterization of a Robust Cold-Adapted and Thermostable Laccase from Pycnoporus sp. SYBC-L10 with a Strong Ability for the Degradation of Tetracycline and Oxytetracycline by Laccase-Mediated Oxidation. J. Hazard. Mater. 2020, 382, 121084. [Google Scholar] [CrossRef]
- Monssef, R.; Hassan, E.; Ramadan, E. Production of Laccase Enzyme for Their Potential Application to Decolorize Fungal Pigments on Aging Paper and Parchment. Ann. Agric. Sci. 2016, 61, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Huang, K.; Jiang, G. Enhanced Removal of Aqueous Acetaminophen by a Laccase-Catalyzed Oxidative Coupling Reaction under a Dual-PH Optimization Strategy. Sci. Total Environ. 2018, 616–617, 1270–1278. [Google Scholar] [CrossRef]
- Jones, S.M.; Solomon, E.I. Electron Transfer and Reaction Mechanism of Laccases. Cell. Mol. Life Sci. 2015, 72, 869–883. [Google Scholar] [CrossRef] [Green Version]
- Su, J.; Fu, J.; Wang, Q.; Silva, C.; Cavaco-Paulo, A. Laccase: A Green Catalyst for the Biosynthesis of Poly-Phenols. Crit. Rev. Biotechnol. 2018, 38, 294–307. [Google Scholar] [CrossRef] [Green Version]
- Arregui, L.; Ayala, M.; Gómez-Gil, X.; Gutiérrez-Soto, G.; Hernández-Luna, C.E.; Herrera De Los Santos, M.; Levin, L.; Rojo-Domínguez, A.; Romero-Martínez, D.; Saparrat, M.C.N.; et al. Laccases: Structure, Function, and Potential Application in Water Bioremediation. Microb. Cell. Fact. 2019, 18, 200. [Google Scholar] [CrossRef] [Green Version]
- Rodgers, C.J.; Blanford, C.F.; Giddens, S.R.; Skamnioti, P.; Armstrong, F.A.; Gurr, S.J. Designer Laccases: A Vogue for High-Potential Fungal Enzymes? Trends Biotechnol. 2010, 28, 63–72. [Google Scholar] [CrossRef]
- Zimbardi, A.L.R.L.; Camargo, P.F.; Carli, S.; Neto, S.A.; Meleiro, L.P.; Rosa, J.C.; De Andrade, A.R.; Jorge, J.A.; Furriel, R.P.M. A High Redox Potential Laccase from Pycnoporus Sanguineus RP15: Potential Application for Dye Decolorization. Int. J. Mol. Sci. 2016, 17, 672. [Google Scholar] [CrossRef] [Green Version]
- Apriceno, A.; Astolfi, M.L.; Girelli, A.M.; Scuto, F.R. A New Laccase-Mediator System Facing the Biodegradation Challenge: Insight into the NSAIDs Removal. Chemosphere 2019, 215, 535–542. [Google Scholar] [CrossRef]
- Sun, K.; Cheng, X.; Yu, J.; Chen, L.; Wei, J.; Chen, W.; Wang, J.; Li, S.; Liu, Q.; Si, Y. Isolation of Trametes Hirsuta La-7 with High Laccase-Productivity and Its Application in Metabolism of 17β-Estradiol. Environ. Pollut. 2020, 263, 114381. [Google Scholar] [CrossRef]
- Navada, K.K.; Kulal, A. Enzymatic Degradation of Chloramphenicol by Laccase from Trametes Hirsuta and Comparison among Mediators. Int. Biodeterior. Biodegrad. 2019, 138, 63–69. [Google Scholar] [CrossRef]
- Nguyen, L.; Hai, F.; Kang, J.; Leusch, F.; Roddick, F.; Magram, S.; Price, W.; Nghiem, L. Enhancement of Trace Organic Contaminant Degradation by Crude Enzyme Extract from Trametes Versicolor Culture: Effect of Mediator Type and Concentration. J. Taiwan Inst. Chem. Eng. 2014, 45, 1855–1862. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Geißen, S.U. In Vitro Degradation of Carbamazepine and Diclofenac by Crude Lignin Peroxidase. J. Hazard. Mater. 2010, 176, 1089–1092. [Google Scholar] [CrossRef]
- Lonappan, L.; Rouissi, T.; Laadila, M.A.; Brar, S.K.; Hernandez Galan, L.; Verma, M.; Surampalli, R.Y. Agro-Industrial-Produced Laccase for Degradation of Diclofenac and Identification of Transformation Products. ACS Sustain. Chem. Eng. 2017, 5, 5772–5781. [Google Scholar] [CrossRef]
- Rodríguez-Delgado, M.; Orona-Navar, C.; García-Morales, R.; Hernandez-Luna, C.; Parra, R.; Mahlknecht, J.; Ornelas-Soto, N. Biotransformation Kinetics of Pharmaceutical and Industrial Micropollutants in Groundwaters by a Laccase Cocktail from Pycnoporus Sanguineus CS43 Fungi. Int. Biodeterior. Biodegrad. 2016, 108, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Naghdi, M.; Taheran, M.; Brar, S.K.; Kermanshahi-pour, A.; Verma, M.; Surampalli, R.Y. Biotransformation of Carbamazepine by Laccase-Mediator System: Kinetics, by-Products and Toxicity Assessment. Process. Biochem. 2018, 67, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Spina, F.; Cordero, C.; Schilirò, T.; Sgorbini, B.; Pignata, C.; Gilli, G.; Bicchi, C.; Varese, G.C. Removal of Micropollutants by Fungal Laccases in Model Solution and Municipal Wastewater: Evaluation of Estrogenic Activity and Ecotoxicity. J. Clean. Prod. 2015, 100, 185–194. [Google Scholar] [CrossRef]
- Guo, X.L.; Zhu, Z.W.; Li, H.L. Biodegradation of Sulfamethoxazole by Phanerochaete Chrysosporium. J. Mol. Liq. 2014, 198, 169–172. [Google Scholar] [CrossRef]
- Gao, N.; Liu, C.X.; Xu, Q.M.; Cheng, J.S.; Yuan, Y.J. Simultaneous Removal of Ciprofloxacin, Norfloxacin, Sulfamethoxazole by Co-Producing Oxidative Enzymes System of Phanerochaete Chrysosporium and Pycnoporus Sanguineus. Chemosphere 2018, 195, 146–155. [Google Scholar] [CrossRef]
- Wen, X.; Jia, Y.; Li, J. Enzymatic Degradation of Tetracycline and Oxytetracycline by Crude Manganese Peroxidase Prepared from Phanerochaete Chrysosporium. J. Hazard. Mater. 2010, 177, 924–928. [Google Scholar] [CrossRef]
- Kang, B.R.; Kim, S.Y.; Kang, M.; Lee, T.K. Removal of Pharmaceuticals and Personal Care Products Using Native Fungal Enzymes Extracted during the Ligninolytic Process. Environ. Res. 2021, 195, 110878. [Google Scholar] [CrossRef]
- Sun, K.; Li, S.; Yu, J.; Gong, R.; Si, Y.; Liu, X.; Chu, G. Cu2+-Assisted Laccase from Trametes Versicolor Enhanced Self-Polyreaction of Triclosan. Chemosphere 2019, 225, 745–754. [Google Scholar] [CrossRef]
- Elegbede, J.A.; Ajayi, V.A.; Lateef, A. Microbial Valorization of Corncob: Novel Route for Biotechnological Products for Sustainable Bioeconomy. Environ. Technol. Innov. 2021, 24, 102073. [Google Scholar] [CrossRef]
- Pulicharla, R.; Das, R.K.; Kaur Brar, S.; Drogui, P.; Surampalli, R.Y. Degradation Kinetics of Chlortetracycline in Wastewater Using Ultrasonication Assisted Laccase. Chem. Eng. J. 2018, 347, 828–835. [Google Scholar] [CrossRef]
- Patel, H.; Gupte, A. Optimization of Different Culture Conditions for Enhanced Laccase Production and Its Purification from Tricholoma Giganteum AGHP. Bioresour. Bioprocess. 2016, 3, 11. [Google Scholar] [CrossRef] [Green Version]
- Lassouane, F.; Aït-Amar, H.; Amrani, S.; Rodriguez-Couto, S. A Promising Laccase Immobilization Approach for Bisphenol A Removal from Aqueous Solutions. Bioresour. Technol. 2019, 271, 360–367. [Google Scholar] [CrossRef]
- Karp, S.G.; Faraco, V.; Amore, A.; Birolo, L.; Giangrande, C.; Soccol, V.T.; Pandey, A.; Soccol, C.R. Characterization of Laccase Isoforms Produced by Pleurotus Ostreatus in Solid State Fermentation of Sugarcane Bagasse. Bioresour. Technol. 2012, 114, 735–739. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Sun, K.; Wang, F.; Zhao, L.; Hu, J.; Ma, H.; Ding, Z. Laccase Production by Trametes Versicolor in Solid-State Fermentation Using Tea Residues as Substrate and Its Application in Dye Decolorization. J. Environ. Manag. 2020, 270, 110904. [Google Scholar] [CrossRef]
- Omeje, K.O.; Nnolim, N.E.; Ezema, B.O.; Ozioko, J.N.; Eze, S.O.O. Synthetic Dyes Decolorization Potential of Agroindustrial Waste-Derived Thermo-Active Laccase from Aspergillus Species. Biocatal. Agric. Biotechnol. 2020, 29, 101800. [Google Scholar] [CrossRef]
- Songulashvili, G.; Elisashvili, V.; Wasser, S.P.; Nevo, E.; Hadar, Y. Basidiomycetes Laccase and Manganese Peroxidase Activity in Submerged Fermentation of Food Industry Wastes. Enzyme Microb. Technol. 2007, 41, 57–61. [Google Scholar] [CrossRef]
- Atilano-Camino, M.M.; Álvarez-Valencia, L.H.; García-González, A.; García-Reyes, R.B. Improving Laccase Production from Trametes Versicolor Using Lignocellulosic Residues as Cosubstrates and Evaluation of Enzymes for Blue Wastewater Biodegradation. J. Environ. Manag. 2020, 275, 111231. [Google Scholar] [CrossRef]
- Li, G.; Liu, X.; Yuan, L. Improved Laccase Production by Funalia Trogii in Absorbent Fermentation with Nutrient Carrier. J. Biosci. Bioeng. 2017, 124, 381–385. [Google Scholar] [CrossRef]
- Junior, J.A.; Vieira, Y.A.; Cruz, I.A.; da Silva Vilar, D.; Aguiar, M.M.; Torres, N.H.; Bharagava, R.N.; Lima, Á.S.; de Souza, R.L.; Romanholo Ferreira, L.F. Sequential Degradation of Raw Vinasse by a Laccase Enzyme Producing Fungus Pleurotus Sajor-Caju and Its ATPS Purification. Biotechnol. Rep. 2020, 25, e00411. [Google Scholar] [CrossRef]
- Hultberg, M.; Ahrens, L.; Golovko, O. Use of Lignocellulosic Substrate Colonized by Oyster Mushroom (Pleurotus Ostreatus) for Removal of Organic Micropollutants from Water. J. Environ. Manage. 2020, 272, 111087. [Google Scholar] [CrossRef]
- Xu, G.; Wang, J.; Yin, Q.; Fang, W.; Xiao, Y.; Fang, Z. Expression of a Thermo- and Alkali-Philic Fungal Laccase in Pichia Pastoris and Its Application. Protein Expr. Purif. 2019, 154, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Debaste, F.; Flahaut, S.; Penninckx, M.; Songulashvili, G. Chapter 15-Using Laccases for Food Preservation. In Handbook of Food Bioengineering; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 501–541. [Google Scholar]
- Sondhi, S.; Sharma, P.; George, N.; Chauhan, P.S.; Puri, N.; Gupta, N. An Extracellular Thermo-Alkali-Stable Laccase from Bacillus Tequilensis SN4, with a Potential to Biobleach Softwood Pulp. 3 Biotech 2015, 5, 175–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.H.; Qiao, B.; Xu, Q.M.; Liu, S.; Yuan, Y.; Cheng, J.S. Biodegradation of Sulfonamide Antibiotics through the Heterologous Expression of Laccases from Bacteria and Investigation of Their Potential Degradation Pathways. J. Hazard. Mater. 2021, 416, 125815. [Google Scholar] [CrossRef]
- Cañas, A.I.; Camarero, S. Laccases and Their Natural Mediators: Biotechnological Tools for Sustainable Eco-Friendly Processes. Biotechnol. Adv. 2010, 28, 694–705. [Google Scholar] [CrossRef]
- Yang, S.; Hai, F.I.; Nghiem, L.D.; Price, W.E.; Roddick, F.; Moreira, M.T.; Magram, S.F. Understanding the Factors Controlling the Removal of Trace Organic Contaminants by White-Rot Fungi and Their Lignin Modifying Enzymes: A Critical Review. Bioresour. Technol. 2013, 141, 97–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margot, J.; Copin, P.J.; von Gunten, U.; Barry, D.A.; Holliger, C. Sulfamethoxazole and Isoproturon Degradation and Detoxification by a Laccase-Mediator System: Influence of Treatment Conditions and Mechanistic Aspects. Biochem. Eng. J. 2015, 103, 47–59. [Google Scholar] [CrossRef]
- Ashe, B.; Nguyen, L.N.; Hai, F.I.; Lee, D.J.; van de Merwe, J.P.; Leusch, F.D.L.; Price, W.E.; Nghiem, L.D. Impacts of Redox-Mediator Type on Trace Organic Contaminants Degradation by Laccase: Degradation Efficiency, Laccase Stability and Effluent Toxicity. Int. Biodeterior. Biodegrad. 2016, 113, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Yousefi-Ahmadipour, A.; Bozorgi-Koshalshahi, M.; Mogharabi, M.; Amini, M.; Ghazi-Khansari, M.; Faramarzi, M.A. Laccase-Catalyzed Treatment of Ketoconazole, Identification of Biotransformed Metabolites, Determination of Kinetic Parameters, and Evaluation of Micro-Toxicity. J. Mol. Catal. B Enzym 2016, 133, 77–84. [Google Scholar] [CrossRef]
- Bankole, P.O.; Semple, K.T.; Jeon, B.H.; Govindwar, S.P. Impact of Redox-Mediators in the Degradation of Olsalazine by Marine-Derived Fungus, Aspergillus Aculeatus Strain Bpo2: Response Surface Methodology, Laccase Stability and Kinetics. Ecotoxicol. Environ. Saf. 2021, 208, 111742. [Google Scholar] [CrossRef]
- Feng, Y.; Shen, M.; Wang, Z.; Liu, G. Transformation of Atenolol by a Laccase-Mediator System: Efficiencies, Effect of Water Constituents, and Transformation Pathways. Ecotoxicol. Environ. Saf. 2019, 183, 109555. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.; Hai, F.; Yang, S.; Kang, J.; Leusch, F.; Roddick, F.; Price, W.; Nghiem, L. Removal of Pharmaceuticals, Steroid Hormones, Phytoestrogens, UV-Filters, Industrial Chemicals and Pesticides by Trametes Versicolor: Role of Biosorption and Biodegradation. Int. Biodeterior. Biodegrad. 2014, 88, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Kózka, B.; Nałęcz-Jawecki, G.; Turło, J.; Giebułtowicz, J. Application of Pleurotus Ostreatus to Efficient Removal of Selected Antidepressants and Immunosuppressant. J. Environ. Manag. 2020, 273, 111131. [Google Scholar] [CrossRef] [PubMed]
- Kasonga, T.K.; Coetzee, M.A.A.; Kamika, I.; Momba, M.N.B. Assessing a Co-Culture Fungal Granule Ability to Remove Pharmaceuticals in a Sequencing Batch Reactor. Environ. Technol. 2020, 43, 1684–1699. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Lin, Y.; Yang, X.; Ng, T.B.; Ye, X.; Lin, J. Degradation of Tetracycline by Immobilized Laccase and the Proposed Transformation Pathway. J. Hazard. Mater. 2017, 322, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Spina, F.; Gea, M.; Bicchi, C.; Cordero, C.; Schilirò, T.; Varese, G.C. Ecofriendly Laccases Treatment to Challenge Micropollutants Issue in Municipal Wastewaters. Environ. Pollut. 2020, 257, 113579. [Google Scholar] [CrossRef] [PubMed]
- Becker, D.; Varela Della Giustina, S.; Rodriguez-Mozaz, S.; Schoevaart, R.; Barceló, D.; de Cazes, M.; Belleville, M.P.; Sanchez-Marcano, J.; de Gunzburg, J.; Couillerot, O.; et al. Removal of Antibiotics in Wastewater by Enzymatic Treatment with Fungal Laccase–Degradation of Compounds Does Not Always Eliminate Toxicity. Bioresour. Technol. 2016, 219, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Naghdi, M.; Taheran, M.; Brar, S.K.; Kermanshahi-pour, A.; Verma, M.; Surampalli, R.Y. Immobilized Laccase on Oxygen Functionalized Nanobiochars through Mineral Acids Treatment for Removal of Carbamazepine. Sci. Total Environ. 2017, 584–585, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Zdarta, J.; Jankowska, K.; Wyszowska, M.; Kijeńska-Gawrońska, E.; Zgoła-Grześkowiak, A.; Pinelo, M.; Meyer, A.S.; Moszyński, D.; Jesionowski, T. Robust Biodegradation of Naproxen and Diclofenac by Laccase Immobilized Using Electrospun Nanofibers with Enhanced Stability and Reusability. Mater. Sci. Eng. C 2019, 103, 109789. [Google Scholar] [CrossRef] [PubMed]
- Masjoudi, M.; Golgoli, M.; Ghobadi Nejad, Z.; Sadeghzadeh, S.; Borghei, S.M. Pharmaceuticals Removal by Immobilized Laccase on Polyvinylidene Fluoride Nanocomposite with Multi-Walled Carbon Nanotubes. Chemosphere 2021, 263, 128043. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.M.; Chen, J.; Shi, Y.P. Advances on Methods and Easy Separated Support Materials for Enzymes Immobilization. TrAC-Trends Anal. Chem. 2018, 102, 332–342. [Google Scholar] [CrossRef]
- Nguyen, L.N.; Hai, F.I.; Dosseto, A.; Richardson, C.; Price, W.E.; Nghiem, L.D. Continuous Adsorption and Biotransformation of Micropollutants by Granular Activated Carbon-Bound Laccase in a Packed-Bed Enzyme Reactor. Bioresour. Technol. 2016, 210, 108–116. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Fernández, M.; Sanromán, M.Á.; Moldes, D. Recent Developments and Applications of Immobilized Laccase. Biotechnol. Adv. 2013, 31, 1808–1825. [Google Scholar] [CrossRef]
- Lonappan, L.; Liu, Y.; Rouissi, T.; Pourcel, F.; Brar, S.K.; Verma, M.; Surampalli, R.Y. Covalent Immobilization of Laccase on Citric Acid Functionalized Micro-Biochars Derived from Different Feedstock and Removal of Diclofenac. Chem. Eng. J. 2018, 351, 985–994. [Google Scholar] [CrossRef]
- Primožič, M.; Kravanja, G.; Knez, Ž.; Crnjac, A.; Leitgeb, M. Immobilized Laccase in the Form of (Magnetic) Cross-Linked Enzyme Aggregates for Sustainable Diclofenac (Bio)Degradation. J. Clean. Prod. 2020, 275, 124121. [Google Scholar] [CrossRef]
- Wen, X.; Zeng, Z.; Du, C.; Huang, D.; Zeng, G.; Xiao, R.; Lai, C.; Xu, P.; Zhang, C.; Wan, J.; et al. Immobilized Laccase on Bentonite-Derived Mesoporous Materials for Removal of Tetracycline. Chemosphere 2019, 222, 865–871. [Google Scholar] [CrossRef]
- García-Morales, R.; García-García, A.; Orona-Navar, C.; Osma, J.F.; Nigam, K.D.P.; Ornelas-Soto, N. Biotransformation of Emerging Pollutants in Groundwater by Laccase from P. Sanguineus CS43 Immobilized onto Titania Nanoparticles. J. Environ. Chem. Eng. 2018, 6, 710–717. [Google Scholar] [CrossRef]
- Taheran, M.; Naghdi, M.; Brar, S.K.; Knystautas, E.J.; Verma, M.; Surampalli, R.Y. Covalent Immobilization of Laccase onto Nanofibrous Membrane for Degradation of Pharmaceutical Residues in Water. ACS Sustain. Chem. Eng. 2017, 5, 10430–10438. [Google Scholar] [CrossRef] [Green Version]
- Pylypchuk, I.V.; Daniel, G.; Kessler, V.G.; Seisenbaeva, G.A. Removal of Diclofenac, Paracetamol, and Carbamazepine from Model Aqueous Solutions by Magnetic Sol–Gel Encapsulated Horseradish Peroxidase and Lignin Peroxidase Composites. Nanomaterials 2020, 10, 282. [Google Scholar] [CrossRef] [Green Version]
- Simón-Herrero, C.; Naghdi, M.; Taheran, M.; Kaur Brar, S.; Romero, A.; Valverde, J.L.; Avalos Ramirez, A.; Sánchez-Silva, L. Immobilized Laccase on Polyimide Aerogels for Removal of Carbamazepine. J. Hazard. Mater. 2019, 376, 83–90. [Google Scholar] [CrossRef]
- Maryšková, M.; Schaabová, M.; Tománková, H.; Vít, N.; Miroslava, R. Wastewater Treatment by Novel Polyamide/Polyethylenimine Nanofibers with Immobilized Laccase. Water 2020, 12, 588. [Google Scholar] [CrossRef] [Green Version]
- Guardado, A.L.P.; Druon-Bocquet, S.; Belleville, M.P.; Sanchez-Marcano, J. A Novel Process for the Covalent Immobilization of Laccases on Silica Gel and Its Application for the Elimination of Pharmaceutical Micropollutants. Environ. Sci. Pollut. Res. 2021, 28, 25579–25593. [Google Scholar] [CrossRef]
- Zdarta, J.; Feliczak-Guzik, A.; Siwińska-Ciesielczyk, K.; Nowak, I.; Jesionowski, T. Mesostructured Cellular Foam Silica Materials for Laccase Immobilization and Tetracycline Removal: A Comprehensive Study. Microporous Mesoporous Mater. 2020, 291, 109688. [Google Scholar] [CrossRef]
- Yaohua, G.; Ping, X.; Feng, J.; Keren, S. Co-Immobilization of Laccase and ABTS onto Novel Dual-Functionalized Cellulose Beads for Highly Improved Biodegradation of Indole. J. Hazard. Mater. 2019, 365, 118–124. [Google Scholar] [CrossRef]
- Huber, D.; Bleymaier, K.; Pellis, A.; Vielnascher, R.; Daxbacher, A.; Greimel, K.J.; Guebitz, G.M. Laccase Catalyzed Elimination of Morphine from Aqueous Systems. New Biotechnol. 2018, 42, 19–25. [Google Scholar] [CrossRef]
- Dong, S.; Jing, X.; Cao, Y.; Xia, E.; Gao, S.; Mao, L. Non-Covalent Assembled Laccase-Graphene Composite: Property, Stability and Performance in Beta-Blocker Removal. Environ. Pollut. 2019, 252, 907–916. [Google Scholar] [CrossRef]
- Jia, Y.; Chen, Y.; Luo, J.; Hu, Y. Immobilization of Laccase onto Meso-MIL-53(Al) via Physical Adsorption for the Catalytic Conversion of Triclosan. Ecotoxicol. Environ. Saf. 2019, 184, 109670. [Google Scholar] [CrossRef]
- Bhattacharya, S.S.; Banerjee, R. Laccase Mediated Biodegradation of 2,4-Dichlorophenol Using Response Surface Methodology. Chemosphere 2008, 73, 81–85. [Google Scholar] [CrossRef]
- Strong, P.J.; Claus, H. Laccase: A Review of Its Past and Its Future in Bioremediation. Crit. Rev. Environ. Sci. Technol. 2011, 41, 373–434. [Google Scholar] [CrossRef]
- Margot, J.; Granier, C.; Maillard, J.; Blánquez, P.; Barry, D.A.; Holliger, C. Bacterial versus Fungal Laccase: Potential for Micropollutant Degradation. AMB Express 2013, 3, 63. [Google Scholar] [CrossRef]
- Arca-Ramos, A.; Eibes, G.; Feijoo, G.; Lema, J.M.; Moreira, M.T. Enzymatic Reactors for the Removal of Recalcitrant Compounds in Wastewater. Biocatal. Biotransform. 2018, 36, 195–215. [Google Scholar] [CrossRef]
- Jaén-Gil, A.; Castellet-Rovira, F.; Llorca, M.; Villagrasa, M.; Sarrà, M.; Rodríguez-Mozaz, S.; Barceló, D. Fungal Treatment of Metoprolol and Its Recalcitrant Metabolite Metoprolol Acid in Hospital Wastewater: Biotransformation, Sorption and Ecotoxicological Impact. Water Res. 2019, 152, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.; Hai, F.; Price, W.; Kang, J.; Leusch, F.; Roddick, F.; Merwe, J.; Magram, S.; Nghiem, L. Degradation of a Broad Spectrum of Trace Organic Contaminants by Anenzymatic Membrane Reactor: Complementary Role of Membrane Retention and Enzymatic Degradation. Int. Biodeterior. Biodegrad. 2015, 99, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Tamborini, L.; Fernandes, P.; Paradisi, F.; Molinari, F. Flow Bioreactors as Complementary Tools for Biocatalytic Process Intensification. Trends Biotechnol. 2018, 36, 73–88. [Google Scholar] [CrossRef]
- Lonappan, L.; Rouissi, T.; Liu, Y.; Brar, S.K.; Surampalli, R.Y. Removal of Diclofenac Using Microbiochar Fixed-Bed Column Bioreactor. J. Environ. Chem. Eng. 2019, 7, 102894. [Google Scholar] [CrossRef]
- Li, X.; de Toledo, R.A.; Wang, S.; Shim, H. Removal of Carbamazepine and Naproxen by Immobilized Phanerochaete Chrysosporium under Non-Sterile Condition. New Biotechnol. 2015, 32, 282–289. [Google Scholar] [CrossRef]
- Torán, J.; Blánquez, P.; Caminal, G. Comparison between Several Reactors with Trametes Versicolor Immobilized on Lignocellulosic Support for the Continuous Treatments of Hospital Wastewater. Bioresour. Technol. 2017, 243, 966–974. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Xu, J.; de Toledo, R.A.; Shim, H. Enhanced Carbamazepine Removal by Immobilized Phanerochaete Chrysosporium in a Novel Rotating Suspension Cartridge Reactor under Non-Sterile Condition. Int. Biodeterior. Biodegrad. 2016, 115, 102–109. [Google Scholar] [CrossRef]
- Tormo-Budowski, R.; Cambronero-Heinrichs, J.C.; Durán, J.E.; Masís-Mora, M.; Ramírez-Morales, D.; Quirós-Fournier, J.P.; Rodríguez-Rodríguez, C.E. Removal of Pharmaceuticals and Ecotoxicological Changes in Wastewater Using Trametes Versicolor: A Comparison of Fungal Stirred Tank and Trickle-Bed Bioreactors. Chem. Eng. J. 2021, 410, 128210. [Google Scholar] [CrossRef]
- Asif, M.B.; Hai, F.I.; Dhar, B.R.; Ngo, H.H.; Guo, W.; Jegatheesan, V.; Price, W.E.; Nghiem, L.D.; Yamamoto, K. Impact of Simultaneous Retention of Micropollutants and Laccase on Micropollutant Degradation in Enzymatic Membrane Bioreactor. Bioresour. Technol. 2018, 267, 473–480. [Google Scholar] [CrossRef]
- De Cazes, M.; Belleville, M.P.; Petit, E.; Llorca, M.; Rodríguez-Mozaz, S.; De Gunzburg, J.; Barceló, D.; Sanchez-Marcano, J. Design and Optimization of an Enzymatic Membrane Reactor for Tetracycline Degradation. Catal. Today 2014, 236, 146–152. [Google Scholar] [CrossRef]
- Nguyen, L.N.; Vu, M.T.; Johir, M.A.H.; Pathak, N.; Zdarta, J.; Jesionowski, T.; Semblante, G.U.; Hai, F.I.; Nguyen, H.K.D.; Nghiem, L.D. A Novel Approach in Crude Enzyme Laccase Production and Application in Emerging Contaminant Bioremediation. Processes 2020, 8, 648. [Google Scholar] [CrossRef]
- Asif, M.; Hou, J.; Price, W.E.; Chen, V.; Hai, F.I. Removal of Trace Organic Contaminants by Enzymatic Membrane Bioreactors: Role of Membrane Retention and Biodegradation. J. Memb. Sci. 2020, 611, 118345. [Google Scholar] [CrossRef]
- Ba, S.; Jones, J.P.; Cabana, H. Hybrid Bioreactor (HBR) of Hollow Fiber Microfilter Membrane and Cross-Linked Laccase Aggregates Eliminate Aromatic Pharmaceuticals in Wastewaters. J. Hazard. Mater. 2014, 280, 662–670. [Google Scholar] [CrossRef]
- Ba, S.; Haroune, L.; Soumano, L.; Bellenger, J.P.; Jones, J.P.; Cabana, H. A Hybrid Bioreactor Based on Insolubilized Tyrosinase and Laccase Catalysis and Microfiltration Membrane Remove Pharmaceuticals from Wastewater. Chemosphere 2018, 201, 749–755. [Google Scholar] [CrossRef] [PubMed]
- Becker, D.; Rodriguez-Mozaz, S.; Insa, S.; Schoevaart, R.; Barceló, D.; De Cazes, M.; Belleville, M.P.; Sanchez-Marcano, J.; Misovic, A.; Oehlmann, J.; et al. Removal of Endocrine Disrupting Chemicals in Wastewater by Enzymatic Treatment with Fungal Laccases. Org. Process. Res. Dev. 2017, 21, 480–491. [Google Scholar] [CrossRef]
- Arca-Ramos, A.; Kumar, V.V.; Eibes, G.; Moreira, M.T.; Cabana, H. Recyclable Cross-Linked Laccase Aggregates Coupled to Magnetic Silica Microbeads for Elimination of Pharmaceuticals from Municipal Wastewater. Environ. Sci. Pollut. Res. 2016, 23, 8929–8939. [Google Scholar] [CrossRef] [PubMed]
- Le, T.T.; Murugesan, K.; Lee, C.S.; Vu, C.H.; Chang, Y.S.; Jeon, J.R. Degradation of Synthetic Pollutants in Real Wastewater Using Laccase Encapsulated in Core-Shell Magnetic Copper Alginate Beads. Bioresour. Technol. 2016, 216, 203–210. [Google Scholar] [CrossRef]
- Mayans, B.; Camacho-Arévalo, R.; García-Delgado, C.; Antón-Herrero, R.; Escolástico, C.; Segura, M.L.; Eymar, E. An Assessment of Pleurotus Ostreatus to Remove Sulfonamides, and Its Role as a Biofilter Based on Its Own Spent Mushroom Substrate. Environ. Sci. Pollut. Res. 2021, 28, 7032–7042. [Google Scholar] [CrossRef] [PubMed]
- Křesinová, Z.; Linhartová, L.; Filipová, A.; Ezechiáš, M.; Mašín, P.; Cajthaml, T. Biodegradation of Endocrine Disruptors in Urban Wastewater Using Pleurotus Ostreatus Bioreactor. New Biotechnol. 2018, 43, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Mir-Tutusaus, J.A.; Parladé, E.; Llorca, M.; Villagrasa, M.; Barceló, D.; Rodriguez-Mozaz, S.; Martinez-Alonso, M.; Gaju, N.; Caminal, G.; Sarrà, M. Pharmaceuticals Removal and Microbial Community Assessment in a Continuous Fungal Treatment of Non-Sterile Real Hospital Wastewater after a Coagulation-Flocculation Pretreatment. Water Res. 2017, 116, 65–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrando-Climent, L.; Cruz-Morató, C.; Marco-Urrea, E.; Vicent, T.; Sarrà, M.; Rodriguez-Mozaz, S.; Barceló, D. Non Conventional Biological Treatment Based on Trametes Versicolor for the Elimination of Recalcitrant Anticancer Drugs in Hospital Wastewater. Chemosphere 2015, 136, 9–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maryskova, M.; Linhartova, L.; Novotny, V.; Rysova, M.; Cajthaml, T.; Sevcu, A. Laccase and Horseradish Peroxidase for Green Treatment of Phenolic Micropollutants in Real Drinking Water and Wastewater. Environ. Sci. Pollut. Res. 2021, 28, 31566–31574. [Google Scholar] [CrossRef]
- Chakma, S.; Moholkar, V.S. Investigations in Sono-Enzymatic Degradation of Ibuprofen. Ultrason. Sonochem. 2016, 29, 485–494. [Google Scholar] [CrossRef]
- Sutar, R.S.; Rathod, V.K. Ultrasound Assisted Laccase Catalyzed Degradation of Ciprofloxacin Hydrochloride. J. Ind. Eng. Chem. 2015, 31, 276–282. [Google Scholar] [CrossRef]
- Vasiliadou, I.A.; Molina, R.; Pariente, M.I.; Christoforidis, K.C.; Martinez, F.; Melero, J.A. Understanding the Role of Mediators in the Efficiency of Advanced Oxidation Processes Using White-Rot Fungi. Chem. Eng. J. 2019, 359, 1427–1435. [Google Scholar] [CrossRef]
- Shi, H.; Wang, G.; Huang, Q.; Li, J.; Yang, Y.; Gao, S.; Wang, Z. The Mutual Promotion of Photolysis and Laccase-Catalysis on Removal of Dichlorophen from Water under Simulated Sunlight Irradiation. Chem. Eng. J. 2018, 338, 392–400. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, X.; Wang, L.; Fan, X.; Li, X.; Jiang, Y. Biodegradation of Lincomycin in Wastewater by Two-Level Bio-Treatment Using Chloroperoxidase and Activated Sludge: Degradation Route and Eco-Toxicity Evaluation. Environ. Technol. Innov. 2020, 20, 101114. [Google Scholar] [CrossRef]
Compound | Enzyme | Source | PhAC (mg/L) | Reaction Conditions | Enzyme Load (U/L) | Efficiency (%) | Ref. |
---|---|---|---|---|---|---|---|
Diclofenac | LiP | Phanerochaete chrysosporium | 5 | pH 4, 24 mg/L H2O2, 25 °C, 2 h. | 180 | 100 | [53] |
Lac | Trametes versicolor | 1 | pH 6.5, 25 °C, 5 h. | 500 | >90 | [54] | |
Lac | Pycnoporus sanguineus | 100 | pH 5, 25 °C, 8 h. | 100 | 50 | [55] | |
5,7-Diiodo-8-hydroxyquinoline | Lac | Pycnoporus sanguineus | 100 | pH 5, 25 °C, 3.5 h. | 100 | 78 | [55] |
Carbamazepine | Lac | Trametes versicolor | 1 | pH 6, 35 °C, 24 h. | 60 | 30 | [56] |
Salicylic acid | Lac | Trametes pubescens | 0.001 | pH 6.9, 25 °C, 24 h. | 100 | >90 | [57] |
17-α-ethynyl estradiol | Lac | Trametes pubescens | 0.001 | pH 6.9, 25 °C, 24 h. | 100 | >90 | [57] |
Sulfamethoxazole | Lac | Phanerochaete chrysosporium | 10 | pH 4.5, 30 °C, 48 h. | 6076 | 50 | [58] |
Lac | Pycnoporus sanguineus | 10 | 30 °C, 72 h. | 170 | 29 | [59] | |
17-β-estradiol | Lac | Trametes hirsuta | 5 | pH 5, 25 °C, 120 min. | 5000 | 99 | [50] |
Lac | Trametes pubescens | 0.001 | pH 6.9, 25 °C, 24 h. | 100 | >90 | [57] | |
Tetracycline 1 Oxytetracycline 2 | MnP | Phanerochaete chrysosporium | 50 | pH 4.8, 0.1 mM Mn2+, 0.1 mM H2O2, 37 °C, 4 h. | 40 | 73 1 84 2 | [60] |
Acetaminophen | Lac | Bjerkandera adusta TBB-03 | 20 | pH 5–7, 25 °C, 2 h. | 270 | 100 | [61] |
HRP | Horseradish | 6 | pH 7.4, 400 μM H2O2, 25 °C, 4 h. | 12800 | 100 | [8] | |
Triclosan | Lac | Trametes versicolor | 3 | pH 6, 25 °C, 4 h. | 2000 | 52 | [62] |
Doxorubicin | Lac | Trametes Versicolor | 0.25 | pH 7, 30 °C, 2 h. | 900 | 100 | [21] |
Imipramine | Lac | Paraconiothyrium variabile | 0.12 | pH 5, 37 °C, 6 h. | 1600 | 98 | [20] |
Oxidation Mechanism | Redox Mediator | Origin | Type of Mediator | Free Radical Generated |
---|---|---|---|---|
Electron transfer | 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt | Synthetic | ABTS | ABTS•+ ABTS2+ |
Hydrogen atom transfer | Hydroxybenzotriazole | Synthetic | N–OH | =N–O• Aminoxyl |
N-hydroxyphthalimide | Synthetic | N–OH | =N–O• Aminoxyl | |
Violuric acid | Natural | N–OH | =N–O• Aminoxyl | |
Vanillin | Natural | C6H4(OH)(OCH3) | C6H5O• Phenoxyl | |
Syringaldehyde | Natural | C6H4(OH)(OCH3) | C6H5O• Phenoxyl | |
Acetosyringone | Natural | C6H4(OH)(OCH3) | C6H5O• Phenoxyl | |
p-coumaric acid | Natural | C6H4(OH)(OCH3) | C6H5O• Phenoxyl | |
Ionic oxidation | 2,2,6,6-tetramethylpiperidinyloxyl | Synthetic | N-O | N=O• Oxo-ammonium |
Compound | Lac Source | Mediator | Reaction Conditions | Enzyme Load (U/L) | Efficiency (%) | Ref. |
---|---|---|---|---|---|---|
Diclofenac | Trametes versicolor | 1 mM of HBT 1 and SA 2 | 0.1 mg/L PhAC. 25 °C, 24 h. | 1440 | >95 1 80 2 | [52] |
Carbamazepine | Trametes versicolor | 0.018 mM of ABTS | 1 mg/L PhAC. pH 6, 35 °C, 24 h. | 60 | 95 | [56] |
Sulfamethoxazole | Trametes versicolor | 0.5 mM ABTS, SA and AS | 20-25 mg/L PhAC. pH 6–7, 25 °C, 2–6 h. | 560 | 100 | [81] |
Tetracycline Oxytetracycline | Pycnoporus sp. SYBC-L10 | 1 mM of ABTS | 50 mg/L PhAC. pH 6, 5 min, 0 °C. | 10,000 | 100 | [41] |
Chloramphenicol | Trametes hirsuta | 0.5 mM of SA, vanillin, ABTS and α-naphthol | 10 mg/L PhAC. pH 5, 25 °C, 48 h. | 50,220 | 100 | [51] |
Ketoconazole | Trametes versicolor | 1 mM of HBT | 300 mg/L PhAC. pH 4.5, 45 °C, 6 h. | 1000 | 98 | [83] |
Naproxen | Pleurotus ostreatus | 1 mM of ABTS | 0.5 mg/L PhAC. 25 °C, 8 h. | 0.26 | 80 | [82] |
Olsalazine | Aspergillus aculeatus | 2 mM of ABTS 1, p-Coumaric acid 2 and HBT 3 | 100 mg/L PhAC. pH 5, 29 °C, 48 h. | - | 99 1 98 2 94 3 | [84] |
Atenolol | Trametes versicolor | 0.5 mM of TEMPO | 2.7 mg/L PhAC. pH 7, 25 °C, 4 h. | 5000 | 80 | [85] |
Support Material | Enzyme | Immobilization Method | PhAC | Reaction Conditions | Efficiency (%) | Ref. |
---|---|---|---|---|---|---|
Poly(l-lactic acid)-co-poly(ε-caprolactone) nanofibers | Lac from Trametes versicolor | Encapsulation | Naproxen | 1 mg/L PhAC. pH 5, 25 °C, 24 h, 100 rpm. | 90 | [93] |
Poly(l-lactic acid)-co-poly(ε-caprolactone) nanofibers | Lac from Trametes versicolor | Encapsulation | Diclofenac | 1 mg/L PhAC. pH 3, 25 °C, 24 h, 100 rpm. | 90 | [93] |
Polyvinylidene fluoride membrane with multi-walled carbon nanotubes | Lac from Trametes hirsuta | Covalent bonding | 5 mg/L PhAC. pH 5, 25 °C, 4 h. | 95 | [94] | |
Titania nanoparticles | Lac from Pycnoporus sanguineus CS43 | Covalent bonding | 10 mg/L PhAC. pH 4, 25 °C, 4 h. | 50 | [101] | |
Micro-biochar from pine wood (PW) and pig manure (PM) | Lac from Trametes versicolor | Covalent bonding | 0.5 mg/L PhAC. pH 6.5, 25 °C, 5 h (PW) or 2 h (PM). | 99 | [98] | |
Chitosan macro-beads | Lac from Trametes versicolor | Covalent bonding | 50 mg/L PhAC. pH 3, 25 °C, 4 h, 1:1 M ratio for ABTS:drug. | 90 | [49] | |
CLEA | Lac from Trametes versicolor | Cross-linking | 0.001 mg/L PhAC. pH 5, 24 h, 22 °C. | 90 | [99] | |
Polyacrylonitrile−biochar composite nanofibrous membrane | Lac from Trametes versicolor | Covalent bonding | 0.2 mg/L PhAC, pH 4, 8 h, 35 °C. | 73 | [102] | |
Polyacrylonitrile−biochar composite nanofibrous membrane | Lac from Trametes versicolor | Covalent bonding | Chlortetracycline | 0.2 mg/L PhAC, pH 4, 8 h, 35 °C. | 63 | [102] |
Polyvinylidene fluoride membrane with multi-walled carbon nanotubes | Lac from Trametes hirsuta | Covalent bonding | Carbamazepine | 5 mg/L PhAC. pH 5, 25 °C, 48 h. | 27 | [94] |
Magnetite nanoparticles | HRP LiP | Adsorption | 0.35 mg/L PhAC. pH 3, 55 °C, 3 days. | 100 | [103] | |
Polyimide aerogels | Lac from Trametes versicolor | Covalent bonding | 0.02 mg/L PhAC. pH 3, 25 °C, 24 h, 200 rpm. | 74 | [104] | |
Pinewood nanobiochar | Lac from Trametes versicolor | Adsorption | 0.02 mg/L PhAC. pH 3.5, 25 °C, 24 h, 200 rpm. | 80 | [92] | |
Polyamide/polyethylenimine nanofibers | Lac from Trametes versicolor | Covalent bonding | Triclosan | 10 mg/L PhAC. pH 7, 25 °C, 20 h, 80 rpm. | 74 | [105] |
Titania nanoparticles | Lac from Pycnoporus sanguineus CS43 | Covalent bonding | Acetaminophen | 10 mg/L PhAC. pH 4, 25 °C, 4 h. | 90 | [101] |
Commercial silica gel particles | Lac from Trametes versicolor | Covalent bonding | Sulfamethoxazole | 20 mg/L PhAC. pH 7, 25 °C, 0.5 h. 520 μM of ABTS. | 53 | [106] |
Commercial silica gel particles | Lac from Trametes versicolor | Covalent bonding | Amoxicillin | 20 mg/L PhAC. pH 7, 25 °C, 4 h. 520 μM of ABTS. | 80 | [106] |
M-CLEA | Lac from Cerrena unicolor | Cross-linking | Tetracycline | 100 mg/L PhAC. pH 6, 25 °C, 48 h. | 100 | [89] |
Mesostructured cellular foam | Lac from Trametes versicolor | Adsorption | 1 mg/L PhAC. pH 5, 25 °C, 1 h. | 100 | [107] | |
Bentonite-derived mesoporous materials | Lac from Trametes versicolor | Adsorption | 10 mg/L PhAC. 30 °C, 3 h. | 60 | [100] | |
Cellulose beads | Lac from Trametes versicolor | Covalent bonding | Indole | 15 mg/L PhAC. pH 5, 30 °C, 18 h. | 100 | [108] |
Polypropylene beads | Lac from Myceliophthora thermophila | Adsorption | Morphine | 1 mg/L PhAC. pH 6, 25 °C, 0.5 h. | 100 | [109] |
Graphene oxide and alginate matrix | Lac from Aspergillus niger | Adsorption/entrapment | Cetirizine dihydrochloride | 20 mg/L PhAC. pH 4.5, 25 °C, 1 h. | 100 | [23] |
Pristine few layers graphene | Lac from Trametes versicolor | Adsorption | Labetalol hydrochloride | 1 mg/L PhAC pH 7, 25 °C, 1.5 h. 5 μM of ABTS. | 100 | [110] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sá, H.; Michelin, M.; Tavares, T.; Silva, B. Current Challenges for Biological Treatment of Pharmaceutical-Based Contaminants with Oxidoreductase Enzymes: Immobilization Processes, Real Aqueous Matrices and Hybrid Techniques. Biomolecules 2022, 12, 1489. https://doi.org/10.3390/biom12101489
Sá H, Michelin M, Tavares T, Silva B. Current Challenges for Biological Treatment of Pharmaceutical-Based Contaminants with Oxidoreductase Enzymes: Immobilization Processes, Real Aqueous Matrices and Hybrid Techniques. Biomolecules. 2022; 12(10):1489. https://doi.org/10.3390/biom12101489
Chicago/Turabian StyleSá, Helena, Michele Michelin, Teresa Tavares, and Bruna Silva. 2022. "Current Challenges for Biological Treatment of Pharmaceutical-Based Contaminants with Oxidoreductase Enzymes: Immobilization Processes, Real Aqueous Matrices and Hybrid Techniques" Biomolecules 12, no. 10: 1489. https://doi.org/10.3390/biom12101489
APA StyleSá, H., Michelin, M., Tavares, T., & Silva, B. (2022). Current Challenges for Biological Treatment of Pharmaceutical-Based Contaminants with Oxidoreductase Enzymes: Immobilization Processes, Real Aqueous Matrices and Hybrid Techniques. Biomolecules, 12(10), 1489. https://doi.org/10.3390/biom12101489