Beyond the Backbone: The Next Generation of Pathwalking Utilities for Model Building in CryoEM Density Maps
Abstract
:1. Introduction
2. Materials and Methods
2.1. Workflow Overview
2.2. Probabilistic Models
2.3. Modeling Waters and Other Ligands
2.4. Evaluation and Assessment of Pathwalking
3. Results
3.1. Overall Results
3.2. Probabilistic Model Results
3.3. CryoEM Ligand Challenge Results
3.4. Ligand Identification at Lower Resolutions
3.5. Computing Times and Environment
4. Discussion
4.1. Probabilistic Models
4.2. Ligand Identification
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Callaway, E. Revolutionary Cryo-EM Is Taking over Structural Biology. Nature 2020, 578, 201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cressey, D.; Callaway, E. Cryo-Electron Microscopy Wins Chemistry Nobel. Nature 2017, 550, 167. [Google Scholar] [CrossRef] [PubMed]
- Wigge, C.; Stefanovic, A.; Radjainia, M. The Rapidly Evolving Role of Cryo-EM in Drug Design. Drug Discov. Today Technol. 2020, 38, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Egelman, E.H. The Current Revolution in Cryo-EM. Biophys. J. 2016, 110, 1008–1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henderson, R.; Sali, A.; Baker, M.L.; Carragher, B.; Devkota, B.; Downing, K.H.; Egelman, E.H.; Feng, Z.; Frank, J.; Grigorieff, N.; et al. Outcome of the First Electron Microscopy Validation Task Force Meeting. Structure 2012, 20, 205–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawson, C.L.; Kryshtafovych, A.; Adams, P.D.; Afonine, P.V.; Baker, M.L.; Barad, B.A.; Bond, P.; Burnley, T.; Cao, R.; Cheng, J.; et al. Cryo-EM Model Validation Recommendations Based on Outcomes of the 2019 EMDataResource Challenge. Nat. Methods 2021, 18, 156–164. [Google Scholar] [CrossRef]
- Kišonaitė, M.; Wild, K.; Lapouge, K.; Ruppert, T.; Sinning, I. High-Resolution Structures of a Thermophilic Eukaryotic 80S Ribosome Reveal Atomistic Details of Translocation. Nat. Commun. 2022, 13, 476. [Google Scholar] [CrossRef]
- Liao, M.; Cao, E.; Julius, D.; Cheng, Y. Structure of the TRPV1 Ion Channel Determined by Electron Cryo-Microscopy. Nature 2013, 504, 107–112. [Google Scholar] [CrossRef]
- Liang, Y.-L.; Khoshouei, M.; Radjainia, M.; Zhang, Y.; Glukhova, A.; Tarrasch, J.; Thal, D.M.; Furness, S.G.B.; Christopoulos, G.; Coudrat, T.; et al. Phase-Plate Cryo-EM Structure of a Class B GPCR-G-Protein Complex. Nature 2017, 546, 118–123. [Google Scholar] [CrossRef]
- Lapinaite, A.; Knott, G.J.; Palumbo, C.M.; Lin-Shiao, E.; Richter, M.F.; Zhao, K.T.; Beal, P.A.; Liu, D.R.; Doudna, J.A. DNA Capture by a CRISPR-Cas9–Guided Adenine Base Editor. Science 2020, 369, 566–571. [Google Scholar] [CrossRef]
- Yao, H.; Song, Y.; Chen, Y.; Wu, N.; Xu, J.; Sun, C.; Zhang, J.; Weng, T.; Zhang, Z.; Wu, Z.; et al. Molecular Architecture of the SARS-CoV-2 Virus. Cell 2020, 183, 730–738.e13. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y. Single-Particle Cryo-EM-How Did It Get Here and Where Will It Go. Science 2018, 361, 876–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakane, T.; Kotecha, A.; Sente, A.; McMullan, G.; Masiulis, S.; Brown, P.M.G.E.; Grigoras, I.T.; Malinauskaite, L.; Malinauskas, T.; Miehling, J.; et al. Single-Particle Cryo-EM at Atomic Resolution. Nature 2020, 587, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Yoshioka, C.K.; Chapman, M.S. Adeno-Associated Virus (AAV-DJ)-Cryo-EM Structure at 1.56 Å Resolution. Viruses 2020, 12, 1194. [Google Scholar] [CrossRef]
- Yip, K.M.; Fischer, N.; Paknia, E.; Chari, A.; Stark, H. Atomic-Resolution Protein Structure Determination by Cryo-EM. Nature 2020, 587, 157–161. [Google Scholar] [CrossRef]
- Zhang, K.; Pintilie, G.D.; Li, S.; Schmid, M.F.; Chiu, W. Resolving Individual Atoms of Protein Complex by Cryo-Electron Microscopy. Cell Res. 2020, 30, 1136–1139. [Google Scholar] [CrossRef]
- Saibil, H.R. Cryo-EM in Molecular and Cellular Biology. Mol. Cell 2022, 82, 274–284. [Google Scholar] [CrossRef]
- Jiang, W.; Baker, M.L.; Ludtke, S.J.; Chiu, W. Bridging the Information Gap: Computational Tools for Intermediate Resolution Structure Interpretation. J. Mol. Biol. 2001, 308, 1033–1044. [Google Scholar] [CrossRef]
- Rossmann, M.G. Fitting Atomic Models into Electron-Microscopy Maps. Acta Crystallogr. D Biol. Crystallogr. 2000, 56, 1341–1349. [Google Scholar] [CrossRef] [Green Version]
- Tama, F.; Miyashita, O.; Brooks, C.L. Flexible Multi-Scale Fitting of Atomic Structures into Low-Resolution Electron Density Maps with Elastic Network Normal Mode Analysis. J. Mol. Biol. 2004, 337, 985–999. [Google Scholar] [CrossRef]
- Topf, M.; Baker, M.L.; John, B.; Chiu, W.; Sali, A. Structural Characterization of Components of Protein Assemblies by Comparative Modeling and Electron Cryo-Microscopy. J. Struct. Biol. 2005, 149, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.L.; Baker, M.R.; Hryc, C.F.; Dimaio, F. Analyses of Subnanometer Resolution Cryo-EM Density Maps. Methods Enzymol. 2010, 483, 1–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DiMaio, F.; Tyka, M.D.; Baker, M.L.; Chiu, W.; Baker, D. Refinement of Protein Structures into Low-Resolution Density Maps Using Rosetta. J. Mol. Biol. 2009, 392, 181–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and Development of Coot. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 486–501. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Hryc, C.F.; Bammes, B.; Afonine, P.V.; Jakana, J.; Chen, D.-H.; Liu, X.; Baker, M.L.; Kao, C.; Ludtke, S.J.; et al. An Atomic Model of Brome Mosaic Virus Using Direct Electron Detection and Real-Space Optimization. Nat. Commun. 2014, 5, 4808. [Google Scholar] [CrossRef] [Green Version]
- Hryc, C.F.; Baker, M.L. Model Building and Validation. In Single-Particle Cryo-EM of Biological Macromolecules, 1st ed.; Glaeser, R.M., Nogales, E., Chiu, W., Eds.; IOP Publishing Ltd.: Pasadena, CA, USA, 2021; Chapters 6-1–6-77. [Google Scholar]
- Terwilliger, T.C.; Adams, P.D.; Afonine, P.V.; Sobolev, O.V. A Fully Automatic Method Yielding Initial Models from High-Resolution Cryo-Electron Microscopy Maps. Nat. Methods 2018, 15, 905–908. [Google Scholar] [CrossRef]
- Terashi, G.; Kihara, D. De Novo Main-Chain Modeling for EM Maps Using MAINMAST. Nat. Commun. 2018, 9, 1618. [Google Scholar] [CrossRef] [Green Version]
- Pfab, J.; Phan, N.M.; Si, D. DeepTracer for Fast de Novo Cryo-EM Protein Structure Modeling and Special Studies on CoV-Related Complexes. Proc. Natl. Acad. Sci. USA 2021, 118, e2017525118. [Google Scholar] [CrossRef]
- Baker, M.R.; Rees, I.; Ludtke, S.J.; Chiu, W.; Baker, M.L. Constructing and Validating Initial Cα Models from Subnanometer Resolution Density Maps with Pathwalking. Structure 2012, 20, 450–463. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Baker, M.L. Automation and Assessment of de Novo Modeling with Pathwalking in near Atomic Resolution CryoEM Density Maps. J. Struct. Biol. 2018, 204, 555–563. [Google Scholar] [CrossRef]
- Chen, M.; Baldwin, P.R.; Ludtke, S.J.; Baker, M.L. De Novo Modeling in Cryo-EM Density Maps with Pathwalking. J. Struct. Biol. 2016, 196, 289–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helsgaun, K. General K-Opt Submoves for the Lin–Kernighan TSP Heuristic. Math. Program. Comput. 2009, 1, 119–163. [Google Scholar] [CrossRef]
- Barad, B.A.; Echols, N.; Wang, R.Y.-R.; Cheng, Y.; DiMaio, F.; Adams, P.D.; Fraser, J.S. EMRinger: Side Chain-Directed Model and Map Validation for 3D Cryo-Electron Microscopy. Nat. Methods 2015, 12, 943–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, C.J.; Headd, J.J.; Moriarty, N.W.; Prisant, M.G.; Videau, L.L.; Deis, L.N.; Verma, V.; Keedy, D.A.; Hintze, B.J.; Chen, V.B.; et al. MolProbity: More and Better Reference Data for Improved All-Atom Structure Validation. Protein Sci. Publ. Protein Soc. 2018, 27, 293–315. [Google Scholar] [CrossRef] [PubMed]
- Liebschner, D.; Afonine, P.V.; Baker, M.L.; Bunkóczi, G.; Chen, V.B.; Croll, T.I.; Hintze, B.; Hung, L.W.; Jain, S.; McCoy, A.J.; et al. Macromolecular Structure Determination Using X-Rays, Neutrons and Electrons: Recent Developments in Phenix. Acta Crystallogr. Sect. Struct. Biol. 2019, 75, 861–877. [Google Scholar] [CrossRef] [Green Version]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Meng, E.C.; Couch, G.S.; Croll, T.I.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Structure Visualization for Researchers, Educators, and Developers. Protein Sci. Publ. Protein Soc. 2021, 30, 70–82. [Google Scholar] [CrossRef]
- Baker, M.R.; Fan, G.; Seryshev, A.B.; Agosto, M.A.; Baker, M.L.; Serysheva, I.I. Cryo-EM Structure of Type 1 IP3R Channel in a Lipid Bilayer. Commun. Biol. 2021, 4, 625. [Google Scholar] [CrossRef]
- Fan, G.; Baker, M.R.; Wang, Z.; Seryshev, A.B.; Ludtke, S.J.; Baker, M.L.; Serysheva, I.I. Cryo-EM Reveals Ligand Induced Allostery Underlying InsP3R Channel Gating. Cell Res. 2018, 28, 1158–1170. [Google Scholar] [CrossRef] [Green Version]
- Pintilie, G.; Zhang, K.; Su, Z.; Li, S.; Schmid, M.F.; Chiu, W. Measurement of Atom Resolvability in CryoEM Maps with Q-Scores. Nat. Methods 2020, 17, 328–334. [Google Scholar] [CrossRef]
- Zhang, Y.; Skolnick, J. Scoring Function for Automated Assessment of Protein Structure Template Quality. Proteins 2004, 57, 702–710. [Google Scholar] [CrossRef] [PubMed]
- Bartesaghi, A.; Aguerrebere, C.; Falconieri, V.; Banerjee, S.; Earl, L.A.; Zhu, X.; Grigorieff, N.; Milne, J.L.S.; Sapiro, G.; Wu, X.; et al. Atomic Resolution Cryo-EM Structure of β-Galactosidase. Structure 2018, 26, 848–856.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kern, D.M.; Sorum, B.; Mali, S.S.; Hoel, C.M.; Sridharan, S.; Remis, J.P.; Toso, D.B.; Kotecha, A.; Bautista, D.M.; Brohawn, S.G. Cryo-EM Structure of the SARS-CoV-2 3a Ion Channel in Lipid Nanodiscs. bioRxiv 2021. [Google Scholar] [CrossRef]
- Yin, W.; Mao, C.; Luan, X.; Shen, D.-D.; Shen, Q.; Su, H.; Wang, X.; Zhou, F.; Zhao, W.; Gao, M.; et al. Structural Basis for Inhibition of the RNA-Dependent RNA Polymerase from SARS-CoV-2 by Remdesivir. Science 2020, 368, 1499–1504. [Google Scholar] [CrossRef] [PubMed]
- Rotkiewicz, P.; Skolnick, J. Fast Procedure for Reconstruction of Full-Atom Protein Models from Reduced Representations. J. Comput. Chem. 2008, 29, 1460–1465. [Google Scholar] [CrossRef] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Perron, L.; Furnon, V. OR-Tools 7.2. Available online: https://developers.google.com/optimization (accessed on 1 January 2022).
Inputs | Required? | Default Value | Description |
---|---|---|---|
map_file | required | na | Density map of interest in CCP4 or MRC format. |
Threshold = <float> | required | na | Threshold value at which resolution appropriate features can be seen. |
nres = <int> | required | na | Number of pseudoatoms to generate in the density map—usually corresponds to the number of expected amino acids. |
seq_file = <file> | optional | na | Text file containing the 1-letter amino acid sequence of the protein. |
pa_file = <file> | optional | na | Loads previously generated pseudoatoms in PDB format. |
verbose = <bool> | optional | False | Verbose output. |
tsp = <> | optional | ortools | Select TSP solver: ortools or LKH. |
pa_type = <> | optional | kmeans | Select pseudoatom generation method: kmeans, sc, ac, ms, gmm. |
noise = <float> | optional | 0 | Adds stochastic noise to pseudoatom positions. |
map_weight = <bool> | optional | False | Weight pseudoatom distances based on density map values. |
filt = <bool> | optional | False | Apply a 4.5 Å low pass filter to the input map. |
or_time = <int> | optional | 30 | Maximum time (seconds) for TSP solution calculation in OR tools. |
prob_model = <bool> | optional | False | Calculates a probabilistic model when more than 1 path is computed. |
all_atom = <bool> | optional | False | Converts the final model into an all-atom model; requires seq_file. |
reverse = <bool> | optional | False | Threads the sequence file both forwards and backward on the path; requires seq_file. |
refine_resolution = <float> | optional | 0 | Resolution used for real-space refinement. |
bracket = [float,float,float] | optional | na | The minimum, maximum, and interval for specifying multiple thresholds. |
tsp_runs = [float] | optional | 0 | A list of noise levels to apply to pseudoatom positions. A unique path is calculated for each TSP run. Can be combined with brack. |
Inputs | Required? | Default Value | Description |
---|---|---|---|
map_file | required | na | Density map of interest in CCP4 or MRC format. |
model_file | required | na | Model corresponding to density map of interest. |
threshold = <float> | required | na | Threshold value at which resolution appropriate features can be seen. |
half1 = <map_file> | optional | na | Density half-map 1 in CCP4 or MRC format. |
half2 = <map_file> | optional | na | Density half-map 2 in CCP4 or MRC format. |
bandwidth_weight | optional | 10 | Bandwidth estimator for mean shift clustering. Values above 30 are required for higher resolution density maps. |
model_dist | optional | 5 | Maximum distance (Å) from any atom in model; points beyond this are excluded. |
half_thresh | optional | 0.5 | Threshold difference (in map sigma) at which voxels are filtered out. |
Score | Beta-Galactosidase (Emd-7770) | RNA Polymerase (Emd-30210) | ORF3a Ion Channel (Emd-22898) |
---|---|---|---|
Map Resolution (Å) | 1.9 | 2.5 | 2.1 |
Molprobity score | 1.72 | 1.69 | 1.37 |
Clash score | 5.78 | 2.97 | 5.75 |
HOH clash | 2.49 | 1.88 | 0.0 |
Ramachandran Outliers | 0.10 | 0.0 | 0.0 |
Rotamer outliers | 1.35 | 3.14 | 1.18 |
FSC (0.5) | 2.10 | 2.67 | 2.19 |
CC Mask | 0.91 | 0.72 | 0.84 |
All atom inclusion | 0.91 | 0.81 | 0.79 |
EMRinger score | 6.43 | 3.39 | 4.47 |
Qscore | |||
Protein | 0.81 | 0.72 | 0.79 |
Ligand | 0.85 | 0.79 | 0.71 |
Water | 0.85 | 0.84 | 0.86 |
LDDT | 0.97 | 0.96 | 0.99 |
GDT_TS | 99.90 | 99.61 | 100.00 |
TM-score | 0.8898 | 0.9950 | 0.9980 |
C-alpha RMSD (Å), reference model PDB_ID | 0.20, 6CVM | 0.37, 7BV2 | 0.95, 7KJR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hryc, C.F.; Baker, M.L. Beyond the Backbone: The Next Generation of Pathwalking Utilities for Model Building in CryoEM Density Maps. Biomolecules 2022, 12, 773. https://doi.org/10.3390/biom12060773
Hryc CF, Baker ML. Beyond the Backbone: The Next Generation of Pathwalking Utilities for Model Building in CryoEM Density Maps. Biomolecules. 2022; 12(6):773. https://doi.org/10.3390/biom12060773
Chicago/Turabian StyleHryc, Corey F., and Matthew L. Baker. 2022. "Beyond the Backbone: The Next Generation of Pathwalking Utilities for Model Building in CryoEM Density Maps" Biomolecules 12, no. 6: 773. https://doi.org/10.3390/biom12060773
APA StyleHryc, C. F., & Baker, M. L. (2022). Beyond the Backbone: The Next Generation of Pathwalking Utilities for Model Building in CryoEM Density Maps. Biomolecules, 12(6), 773. https://doi.org/10.3390/biom12060773