Enhancing Osteoblastic Cell Cultures with Gelatin Methacryloyl, Bovine Lactoferrin, and Bioactive Mesoporous Glass Scaffolds Loaded with Distinct Parsley Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Parsley Leaf (PL) and Embryogenic Culture (EC) Material
2.2. Parsley Leaf and Embryogenic Cell Culture Extractions
2.3. HPLC Extract Analysis
2.4. Synthesis and Characterization of Bioactive Mesoporous Glasses (MBGs)
2.5. Synthesis and Degree of Substitution Analysis of Methacrylated Gelatin (GelMa)
2.6. In Vitro Cytocompatibility Assays of Apigenin, Kaempferol, Extracts, and bLF in Pre-Osteoblastic MC3T3-E1 Cells
2.7. Loading and Release of Extracts in Photopolymerized GelMa/MBGs Discs
2.7.1. Loading of Apigenin, Kaempferol, and Extracts in MBGs and Processing into GelMa/MBGs Discs
2.7.2. High-Performance Liquid Chromatography (HPLC) Analysis of Apigenin, Kaempferol, and Extract Release
2.8. In Vitro Assays with Preosteoblastic MC3T3-E1 Cells Using Three-Dimensional GelMa/MBGs Scaffolds Loaded with Extracts and bLF
2.8.1. The 3D Printing Process for Meso-Macroporous GelMa/MBGs Scaffolds
2.8.2. Characterization of Meso-Macroporous 3D GelMa/MBGs Scaffolds
2.8.3. In Vitro Proliferation Assay and Cytocompatibility Assay of Meso-Macroporous 3D GelMa/MBGs Scaffolds Loaded with bLF and Extracts
2.8.4. Morphological Studies via Confocal Laser Scanning Microscopy
2.8.5. Real Time PCR Assay
2.8.6. Biomineralization Assay (Alizarin Red Staining)
2.9. Statistical Analysis
3. Results
3.1. Microstructural Characterization of Bioactive Mesoporous Glasses (MBGs)
3.2. Degree of Substitution Analysis of GelMa
3.3. Cytocompatibility Assays of Apigenin, Kaempferol, Extracts, and bLF in Pre-Osteoblastic MC3T3-E1 Cells
3.4. Loading and Release of Extracts in Photopolymerized GelMa/MBGs Discs
3.5. Cytocompatibility Assays of Meso-Macroporous GelMa/MBGs Scaffolds Loaded with Extracts and bLF
3.5.1. Characterization of Meso-Macroporous 3D GelMa/MBGs Scaffolds
3.5.2. Cytocompatibility and Morphological Assays of Meso-Macroporous 3D GelMa/MBGs Scaffolds Loaded with bLF and Extracts
3.5.3. Lactate Dehydrogenase (LDH) Assay
3.6. Real Time PCR
3.7. Biomineralization Assay (Alizarin Red Staining)
4. Discussion
4.1. Microstructural Characterization of Bioactive Mesoporous Glasses (MBGs)
4.2. Degree of the Substitution Analysis of GelMa
4.3. Cytocompatibility Assays of Apigenin, Kaempferol, Extracts and bLF in Pre-Osteoblastic MC3T3-E1 Cells
4.4. Loading and Release of Extracts in Photopolymerized GelMa/MBGs Discs
4.5. Cytocompatibility Assays of Meso-Macroporous GelMa/MBGs Scaffolds Loaded with Extracts and bLF
4.5.1. Characterization of Meso-Macroporous 3D GelMa/MBGs Scaffolds
4.5.2. Cytocompatibility and Morphological Assays of Meso-Macroporous 3D GelMa/MBGs Scaffolds Loaded with bLF and Extracts
4.5.3. Lactate Dehydrogenase (LDH) Assay
4.6. Real Time PCR
4.7. Biomineralization Assay (Alizarin Red Staining)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Máiquez Gosálvez, M. Evaluación Histológica de la Osteogénesis Inducida por Flavonoides en Comparación con otro Estimulador óseo en Alveolos Post Extracción: Estudio Experimental en Perros American Fox Hound. Ph.D. Thesis, Universidad de Murcia, Murcia, Spain, 2015. [Google Scholar]
- Vallet-Regi, M.; Salinas, A.J. Mesoporous Bioactive Glasses for Regenerative Medicine. Mater. Today Bio 2021, 11, 100121. [Google Scholar] [CrossRef]
- Kim, M.; Yeo, M.; Kim, M.; Kim, G. Biomimetic Cellulose/Calcium-Deficient-Hydroxyapatite Composite Scaffolds Fabricated Using an Electric Field for Bone Tissue Engineering. RSC Adv. 2018, 8, 20637–20647. [Google Scholar] [CrossRef] [PubMed]
- Lalzawmliana, V.; Anand, A.; Roy, M.; Kundu, B.; Nandi, S.K. Mesoporous Bioactive Glasses for Bone Healing and Biomolecules Delivery. Mater. Sci. Eng. C 2020, 106, 110180. [Google Scholar] [CrossRef] [PubMed]
- Sierra García, G.D. Incorporación de Extracto de Aloe Vera en Nanopartículas para Estimulación de Osteoblastos. Ph.D. Thesis, Universidad Autónoma de Nuevo León, Monterrey, Mexico, 2018. [Google Scholar]
- Kong, C.H.; Steffi, C.; Shi, Z.; Wang, W. Development of Mesoporous Bioactive Glass Nanoparticles and Its Use in Bone Tissue Engineering. J. Biomed. Mater. Res. 2018, 106, 2878–2887. [Google Scholar] [CrossRef] [PubMed]
- Heras, C.; Jiménez-Holguín, J.; Doadrio, A.L.; Vallet-Regí, M.; Sánchez-Salcedo, S.; Salinas, A.J. Multifunctional Antibiotic- and Zinc-Containing Mesoporous Bioactive Glass Scaffolds to Fight Bone Infection. Acta Biomater. 2020, 114, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Holguín, J.; López-Hidalgo, A.; Sánchez-Salcedo, S.; Peña, J.; Vallet-Regí, M.; Salinas, A.J. Strontium-Modified Scaffolds Based on Mesoporous Bioactive Glasses/Polyvinyl Alcohol Composites for Bone Regeneration. Materials 2020, 13, 5526. [Google Scholar] [CrossRef] [PubMed]
- Salinas, A.J.; Shruti, S.; Malavasi, G.; Menabue, L.; Vallet-Regí, M. Substitutions of Cerium, Gallium and Zinc in Ordered Mesoporous Bioactive Glasses. Acta Biomater. 2011, 7, 3452–3458. [Google Scholar] [CrossRef]
- Baino, F. Copper-Doped Ordered Mesoporous Bioactive Glass: A Promising Multifunctional Platform for Bone Tissue Engineering. Bioengineering 2020, 7, 45. [Google Scholar] [CrossRef]
- Ravanbakhsh, M.; Labbaf, S.; Karimzadeh, F.; Pinna, A.; Houreh, A.B.; Nasr-Esfahani, M.H. Mesoporous Bioactive Glasses for the Combined Application of Osteosarcoma Treatment and Bone Regeneration. Mater. Sci. Eng. C 2019, 104, 109994. [Google Scholar] [CrossRef]
- Xiao, J.; Wan, Y.; Yang, Z.; Huang, Y.; Zhu, Y.; Yao, F.; Luo, H. Simvastatin-Loaded Nanotubular Mesoporous Bioactive Glass Scaffolds for Bone Tissue Engineering. Microporous Mesoporous Mater. 2019, 288, 109570. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, Y.; Feng, P.; Yang, W.; Shuai, C. Drug Loading/Release and Bioactivity Research of a Mesoporous Bioactive Glass/Polymer Scaffold. Ceram. Int. 2019, 45, 18003–18013. [Google Scholar] [CrossRef]
- Zhu, H.; Zheng, K.; Boccaccini, A.R. Multi-Functional Silica-Based Mesoporous Materials for Simultaneous Delivery of Biologically Active Ions and Therapeutic Biomolecules. Acta Biomater. 2021, 129, 1–17. [Google Scholar] [CrossRef]
- Galarraga-Vinueza, M.E.; Mesquita-Guimarães, J.; Magini, R.S.; Souza, J.C.M.; Fredel, M.C.; Boccaccini, A.R. Mesoporous Bioactive Glass Embedding Propolis and Cranberry Antibiofilm Compounds. J. Biomed. Mater. Res. 2018, 106, 1614–1625. [Google Scholar] [CrossRef]
- Arias-Rodríguez, L.I.; Rodríguez-Mendiola, M.A.; Arias-Castro, C.; Gutiérrez Miceli, F.A.; Reséndez Pérez, D.; Luján Hidalgo, M.C.; Villalobos Maldonado, J.J.; Mancilla Margalli, N.A. Comparison of Apigenin, Quercetin and Kaempferol Accumulation and Total Flavonoid Content in Leaves, Embryogenic Cultures and Cell Suspension Cultures of Parsley (Petroselinum crispum). Phyton 2023, 92, 2807–2823. [Google Scholar] [CrossRef]
- Schuhladen, K.; Roether, J.A.; Boccaccini, A.R. Bioactive Glasses Meet Phytotherapeutics: The Potential of Natural Herbal Medicines to Extend the Functionality of Bioactive Glasses. Biomaterials 2019, 217, 119288. [Google Scholar] [CrossRef]
- Ilyas, K.; Boccaccini, A.R. Enhancing the Biological Performance of Bioactive Glasses by Combination with Phytotherapeutic Compounds. In Bioactive Glasses and Glass-Ceramics; Baino, F., Kargozar, S., Eds.; Wiley: Hoboken, NJ, USA, 2022; pp. 263–292. ISBN 978-1-119-72451-3. [Google Scholar]
- Swamy, M.K. Plant-Derived Bioactives Production, Properties and Therapeutic Applications, 1st ed.; Springer: Singapore, 2020; ISBN 9789811517617. [Google Scholar]
- Saquib, M.; Hussain, M.K.; Negi, D.S.; Khan, M.F. Bioflavonoids as Promising Antiosteoporotic Agents. In Plant-Derived Bioactives; Swamy, M.K., Ed.; Springer: Singapore, 2020; pp. 509–528. ISBN 9789811523601. [Google Scholar]
- Farzaei, M.H.; Abbasabadi, Z.; Ardekani, M.R.S.; Rahimi, R.; Farzaei, F. Parsley: A Review of Ethnopharmacology, Phytochemistry and Biological Activities. J. Tradit. Chin. Med. 2013, 33, 815–826. [Google Scholar] [CrossRef]
- Mara de Menezes, N.; Rykiel Iglesias Cavalcanti, L.; Falcão dos Santos, K.; Soares Coutinho Duarte, P.; Kachlicki, P.; Ożarowski, M.; Jorge Riger, C.; Siqueira de Almeida Chaves, D. Chemical Characterization and Antioxidant Activity In Vitro of Parsley (Petroselinum crispum) Aqueous Extract. Food Funct. 2020, 11, 5346–5356. [Google Scholar] [CrossRef] [PubMed]
- Trybek, G.; Misiakiewicz-Has, K.; Preuss, O.; Szumilas, K.; Szumilas, P.; Aniko-Włodarczyk, M.; Grocholewicz, K. Osteogenic Activity of Lactoferrin and Its Application in Contemporary Dentistry. Pomeranian J. Life Sci. 2020, 66, 22–28. [Google Scholar] [CrossRef]
- Huang, J.; Liu, Z.; Ma, Q.; He, Z.; Niu, Z.; Zhang, M.; Pan, L.; Qu, X.; Yu, J.; Niu, B. Studies on the Interaction between Three Small Flavonoid Molecules and Bovine Lactoferrin. BioMed Res. Int. 2018, 2018, 7523165. [Google Scholar] [CrossRef] [PubMed]
- Fang, B.; Zhang, M.; Tian, M.; Jiang, L.; Guo, H.Y.; Ren, F.Z. Bovine Lactoferrin Binds Oleic Acid to Form an Anti-Tumor Complex Similar to HAMLET. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2014, 1841, 535–543. [Google Scholar] [CrossRef]
- Mohan, K.; Gunasekaran, P.; Varalakshmi, E.; Hara, Y.; Nagini, S. In Vitro Evaluation of the Anticancer Effect of Lactoferrin and Tea Polyphenol Combination on Oral Carcinoma Cells. Cell Biol. Int. 2007, 31, 599–608. [Google Scholar] [CrossRef]
- Pablos, J.L.; Jiménez-Holguín, J.; Salcedo, S.S.; Salinas, A.J.; Corrales, T.; Vallet-Regí, M. New Photocrosslinked 3D Foamed Scaffolds Based on GelMA Copolymers: Potential Application in Bone Tissue Engineering. Gels 2023, 9, 403. [Google Scholar] [CrossRef]
- Goto, T.; Hagiwara, K.; Shirai, N.; Yoshida, K.; Hagiwara, H. Apigenin Inhibits Osteoblastogenesis and Osteoclastogenesis and Prevents Bone Loss in Ovariectomized Mice. Cytotechnology 2015, 67, 357–365. [Google Scholar] [CrossRef]
- Choi, E.-M. Apigenin Increases Oseoblastic Differentiation and Inhibits Tumor Necrosis Factor-Alpha-Induced Production of Interleukin-6 and Nitric Oxide in Osteoblastic MC3T3-E1 Cells. Pharmazie 2007, 62, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.R.; Nam, J.-S. Kaempferol Stimulates WNT/β-Catenin Signaling Pathway to Induce Differentiation of Osteoblasts. J. Nutr. Biochem. 2019, 74, 108228. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.K.; Chin, K.-Y.; Ima-Nirwana, S. The Osteoprotective Effects of Kaempferol: The Evidence from In Vitro And In Vitro Studies. Drug Des. Dev. Ther. 2019, 13, 3497–3514. [Google Scholar] [CrossRef]
- Antoshin, A.A.; Shpichka, A.I.; Huang, G.; Chen, K.; Lu, P.; Svistunov, A.A.; Lychagin, A.V.; Lipina, M.M.; Sinelnikov, M.Y.; Reshetov, I.V.; et al. Lactoferrin as a Regenerative Agent: The Old-New Panacea? Pharmacol. Res. 2021, 167, 105564. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Fan, F.; Shi, P.; Tu, M.; Yu, C.; Yu, C.; Du, M. Lactoferrin Promotes MC3T3-E1 Osteoblast Cells Proliferation via MAPK Signaling Pathways. Int. J. Biol. Macromol. 2018, 107, 137–143. [Google Scholar] [CrossRef]
- Pérez, R.; Sanchez-Salcedo, S.; Lozano, D.; Heras, C.; Esbrit, P.; Vallet-Regí, M.; Salinas, A. Osteogenic Effect of ZnO-Mesoporous Glasses Loaded with Osteostatin. Nanomaterials 2018, 8, 592. [Google Scholar] [CrossRef]
- Alothman, Z. A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials 2012, 5, 2874–2902. [Google Scholar] [CrossRef]
- Rizwan, M.; Chan, S.W.; Comeau, P.A.; Willett, T.L.; Yim, E.K.F. Effect of Sterilization Treatment on Mechanical Properties, Biodegradation, Bioactivity and Printability of GelMA Hydrogels. Biomed. Mater. 2020, 15, 065017. [Google Scholar] [CrossRef] [PubMed]
- Cuzco Vargas, S.D. Síntesis y Caracterización de Gelatina Metacriloila (GelMA) Variando Parámetros Físicoquímicos para Aplicaciones en Regeneración de Tejidos. Bachelor’s Thesis, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador, 2022. [Google Scholar]
- Zeimaran, E.; Pourshahrestani, S.; Fathi, A.; bin Abd Razak, N.A.; Kadri, N.A.; Sheikhi, A.; Baino, F. Advances in Bioactive Glass-Containing Injectable Hydrogel Biomaterials for Tissue Regeneration. Acta Biomater. 2021, 136, 1–36. [Google Scholar] [CrossRef] [PubMed]
- Miranda, L.L.; Guimarães-Lopes, V.D.P.; Altoé, L.S.; Sarandy, M.M.; Melo, F.C.S.A.; Novaes, R.D.; Gonçalves, R.V. Plant Extracts in the Bone Repair Process: A Systematic Review. Mediat. Inflamm. 2019, 2019, 1296153. [Google Scholar] [CrossRef] [PubMed]
- Na, X.; Zhang, L.; Ren, C.; Xu, X.; Du, M.; Zhou, J.; Zhu, B.; Wu, C. Lactoferrin Network with MC3T3-E1 Cell Proliferation, Auxiliary Mineralization, Antibacterial Functions: A Multifunctional Coating for Biofunctionalization of Implant Surfaces. Colloids Surf. B Biointerfaces 2022, 216, 112598. [Google Scholar] [CrossRef] [PubMed]
- Caesar, L.K.; Cech, N.B. Synergy and Antagonism in Natural Product Extracts: When 1 + 1 Does Not Equal 2. Nat. Prod. Rep. 2019, 36, 869–888. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.-E.; Yang, J.-M.; Cho, J.-H. Benincasa Hispida Extract Promotes Proliferation, Differentiation, and Mineralization of MC3T3-E1 Preosteoblasts and Inhibits the Differentiation of RAW 246.7 Osteoclast Precursors. Appl. Sci. 2022, 12, 8849. [Google Scholar] [CrossRef]
- Shruti, S.; Salinas, A.J.; Ferrari, E.; Malavasi, G.; Lusvardi, G.; Doadrio, A.L.; Menabue, L.; Vallet-Regi, M. Curcumin Release from Cerium, Gallium and Zinc Containing Mesoporous Bioactive Glasses. Microporous Mesoporous Mater. 2013, 180, 92–101. [Google Scholar] [CrossRef]
- Hirano, R.; Sasamoto, W.; Matsumoto, A.; Itakura, H.; Igarashi, O.; Kondo, K. Antioxidant Ability of Various Flavonoids against DPPH Radicals and LDL Oxidation. J. Nutr. Sci. Vitaminol. 2001, 47, 357–362. [Google Scholar] [CrossRef]
- Li, M.; Liu, Y.; Li, M.; Shang, Z.; Liu, M.; Han, D. Measurement and Correlation of the Solubility of Kaempferol Monohydrate in Pure and Binary Solvents. Fluid Phase Equilibria 2021, 539, 113027. [Google Scholar] [CrossRef]
- Rahimi Mamaghani, K.; Morteza Naghib, S.; Zahedi, A.; Mozafari, M. Synthesis and Microstructural Characterization of GelMa/PEGDA Hybrid Hydrogel Containing Graphene Oxide for Biomedical Purposes. Mater. Today Proc. 2018, 5, 15635–15644. [Google Scholar] [CrossRef]
- Han, W.T.; Jang, T.; Chen, S.; Chong, L.S.H.; Jung, H.-D.; Song, J. Improved Cell Viability for Large-Scale Biofabrication with Photo-Crosslinkable Hydrogel Systems through a Dual-Photoinitiator Approach. Biomater. Sci. 2020, 8, 450–461. [Google Scholar] [CrossRef]
- Huang, R.; Wu, W.; Shen, S.; Fan, J.; Chang, Y.; Chen, S.; Ye, X. Evaluation of Colorimetric Methods for Quantification of Citrus Flavonoids to Avoid Misuse. Anal. Methods 2018, 10, 2575–2587. [Google Scholar] [CrossRef]
- Meseguer-Olmo, L.; Muñoz-Ruiz, J.; Bernabeu-Esclapez, A.; Clavel-Sainz Nolla, M.; Arcos-Pérez, D.; Vallet-Regí, M.; López-Prats, F.; Lax-Pérez, A.; Meseguer-Ortiz de Villajos, C. Cinética de crecimiento in vitro de osteoblastos humanos sobre cerámica porosa de hidroxiapatita. Rev. Española Cirugía Ortopédica Traumatol. 2006, 50, 224–232. [Google Scholar] [CrossRef]
- Kumar, P.; Nagarajan, A.; Uchil, P.D. Analysis of Cell Viability by the Lactate Dehydrogenase Assay. Cold Spring Harb. Protoc. 2018, 2018, 465–468. [Google Scholar] [CrossRef]
- Amini, A.A.; Nair, L.S. Recombinant Human Lactoferrin as a Biomaterial for Bone Tissue Engineering: Mechanism of Antiapoptotic and Osteogenic Activity. Adv. Healthc. Mater. 2014, 3, 897–905. [Google Scholar] [CrossRef]
- Shukla, S.; Gupta, S. Apigenin: A Promising Molecule for Cancer Prevention. Pharm. Res. 2010, 27, 962–978. [Google Scholar] [CrossRef]
- Vimalraj, S.; Arumugam, B.; Miranda, P.J.; Selvamurugan, N. Runx2: Structure, Function, and Phosphorylation in Osteoblast Differentiation. Int. J. Biol. Macromol. 2015, 78, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Lim, E.-K.; Keem, J.O.; Yun, H.; Jung, J.; Chung, B.H. Smart Nanoprobes for the Detection of Alkaline Phosphatase Activity during Osteoblast Differentiation. Chem. Commun. 2015, 51, 3270–3272. [Google Scholar] [CrossRef]
- Bellavia, D.; Dimarco, E.; Costa, V.; Carina, V.; De Luca, A.; Raimondi, L.; Fini, M.; Gentile, C.; Caradonna, F.; Giavaresi, G. Flavonoids in Bone Erosive Diseases: Perspectives in Osteoporosis Treatment. Trends Endocrinol. Metab. 2021, 32, 76–94. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Miron, R.; Sculean, A.; Kaskel, S.; Doert, T.; Schulze, R.; Zhang, Y. Proliferation, Differentiation and Gene Expression of Osteoblasts in Boron-Containing Associated with Dexamethasone Deliver from Mesoporous Bioactive Glass Scaffolds. Biomaterials 2011, 32, 7068–7078. [Google Scholar] [CrossRef]
- Kim, H.-S.; Zheng, M.; Kim, D.-K.; Lee, W.-P.; Yu, S.-J.; Kim, B.-O. Effects of 1,25-Dihydroxyvitamin D3 on the Differentiation of MC3T3-E1 Osteoblast-like Cells. J. Periodontal Implant Sci. 2018, 48, 34. [Google Scholar] [CrossRef] [PubMed]
MBGs Powder | Atomic Composition wt.% (EDS) | |||||
---|---|---|---|---|---|---|
SBET (m2/g) | Vp (cm3/g) | Dp (nm) | ao | SiO2 (80) | P2O5 (5) | CaO (15) |
303 | 0.39 | 6.6 | 11.4 | 89.6 ± 2.8 | 2.8 ± 0.15 | 8.0 ± 1.5 |
MBGs | PL 50 µM | PL 100 µM | EC 50 µM | EC 100 µM | |
---|---|---|---|---|---|
SBET (m2g−1) | 254.7 | 244.3 | 230.9 | 240.3 | 235.2 |
Vp (cm3g−1) | 0.34 | 0.31 | 0.33 | 0.32 | 0.30 |
Dp (nm) | 6.6 | 6.7 | 6.8 | 6.5 | 6.2 |
Apigenin 50 µM | Apigenin 100 µM | Kaempferol 50 µM | PL 50 µM | PL 100 µM | EC 50 µM | EC 100 µM | |
---|---|---|---|---|---|---|---|
Loading capacity (%) TGA | 5.3 ± 0.8 | 6.6 ± 0.9 | 7.2 ± 1.0 | 4.6 ± 1.0 | 4.2 ± 1.0 | 5.8 ± 0.6 | 5.3 ± 1.0 |
Concentration in MBGs (µM) HPLC | 35.3 ± 0.2 | 57.1 ± 0.3 | 49 ± 0.8 | 22.6 ± 0.1 | 43.6 ± 0.3 | 26.3 ± 0.3 | 46.8 ± 0.4 |
Sample | C0 (µM) | (Ct/C0)max (%) | K1 (×103 h−1) (µM/mm2.s) | δ | R2 |
---|---|---|---|---|---|
Api 50 | 35.3 | 45.4 | 6.2 | 0.22 | 0.99 |
PL 50 | 22.6 | 59.9 | 1.2 | 0.15 | 0.97 |
EC 50 | 26.3 | 48.8 | 1.5 × 10−3 | 0.15 | 0.99 |
Api 100 | 57.1 | 27.9 | 4 | 0.13 | 0.99 |
PL 100 | 30.1 | 8 × 10–6 | 0.19 | 0.98 | |
EC 100 | 28.3 | 6 × 10–6 | 0.16 1.43 | 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arias-Rodríguez, L.I.; Pablos, J.L.; Vallet-Regí, M.; Rodríguez-Mendiola, M.A.; Arias-Castro, C.; Sánchez-Salcedo, S.; Salinas, A.J. Enhancing Osteoblastic Cell Cultures with Gelatin Methacryloyl, Bovine Lactoferrin, and Bioactive Mesoporous Glass Scaffolds Loaded with Distinct Parsley Extracts. Biomolecules 2023, 13, 1764. https://doi.org/10.3390/biom13121764
Arias-Rodríguez LI, Pablos JL, Vallet-Regí M, Rodríguez-Mendiola MA, Arias-Castro C, Sánchez-Salcedo S, Salinas AJ. Enhancing Osteoblastic Cell Cultures with Gelatin Methacryloyl, Bovine Lactoferrin, and Bioactive Mesoporous Glass Scaffolds Loaded with Distinct Parsley Extracts. Biomolecules. 2023; 13(12):1764. https://doi.org/10.3390/biom13121764
Chicago/Turabian StyleArias-Rodríguez, Laura Isabel, Jesús L. Pablos, María Vallet-Regí, Martha A. Rodríguez-Mendiola, Carlos Arias-Castro, Sandra Sánchez-Salcedo, and Antonio J. Salinas. 2023. "Enhancing Osteoblastic Cell Cultures with Gelatin Methacryloyl, Bovine Lactoferrin, and Bioactive Mesoporous Glass Scaffolds Loaded with Distinct Parsley Extracts" Biomolecules 13, no. 12: 1764. https://doi.org/10.3390/biom13121764
APA StyleArias-Rodríguez, L. I., Pablos, J. L., Vallet-Regí, M., Rodríguez-Mendiola, M. A., Arias-Castro, C., Sánchez-Salcedo, S., & Salinas, A. J. (2023). Enhancing Osteoblastic Cell Cultures with Gelatin Methacryloyl, Bovine Lactoferrin, and Bioactive Mesoporous Glass Scaffolds Loaded with Distinct Parsley Extracts. Biomolecules, 13(12), 1764. https://doi.org/10.3390/biom13121764