Hydrogels with Ultrasound-Treated Hyaluronic Acid Regulate CD44-Mediated Angiogenic Potential of Human Vascular Endothelial Cells In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cell Culture
2.3. HA-Ph Degradation
2.4. Molecular Weight Measurement
2.5. Rheological Measurement
2.6. Hydrogel Preparation and Gelation Time
2.7. Mechanical Property Measurement
2.8. Diphenol Formation
2.9. Impact of Sonicated HA-Ph Solutions on Cellular Dynamics
2.9.1. Cell Migration
2.9.2. Cell Proliferation
2.10. Cell Adhesion and Morphology on Hydrogel
2.11. Network Formation
2.12. Flow Cytometry
2.13. Real-Time Quantitative Polymerase Chain Reaction (PCR) Analysis for PI3K and Hypoxia-Inducible Factor (HIF)-1 Expression
2.14. Statistical Analysis
3. Results and Discussion
3.1. Viscoelastic Properties, Molecular Weight, and Hydrogel Characterization
3.2. Influence of Sonicated HA-Ph Solutions on Cell Migration and Proliferation
3.3. Cell Adhesion and Morphology on Hydrogels
3.4. CD44-Mediated HUEhT-1 Cell Network Formation
3.5. HA-Ph Molecular Weight Modulates the Expression of CD44 Receptors
3.6. Effect of HA-Ph-CD44 Interaction on PI3K and HIF-1 Gene Expression
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, G.; Savani, R.C.; Fehrenbach, M.; Lyons, C.; Zhang, L.; Coukos, G.; DeLisser, H.M. Involvement of Endothelial CD44 during in Vivo Angiogenesis. Am. J. Pathol. 2006, 169, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Slevin, M.; Kumar, S.; Gaffney, J. Angiogenic Oligosaccharides of Hyaluronan Induce Multiple Signaling Pathways Affecting Vascular Endothelial Cell Mitogenic and Wound Healing Responses. J. Biol. Chem. 2002, 277, 41046–41059. [Google Scholar] [CrossRef] [PubMed]
- Oksala, O.; Salo, T.; Tammi, R.; Hakkinen, L.; Jalkanen, M.; Inki, P.; Larjava, H. Expression of Proteoglycans and Hyaluronan during Wound Healing. J. Histochem. Cytochem. 1995, 43, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Savani, R.C.; Cao, G.; Pooler, P.M.; Zaman, A.; Zhou, Z.; DeLisser, H.M. Differential Involvement of the Hyaluronan (HA) Receptors CD44 and Receptor for HA-Mediated Motility in Endothelial Cell Function and Angiogenesis. J. Biol. Chem. 2001, 276, 36770–36778. [Google Scholar] [CrossRef] [PubMed]
- Murphy, J.F.; Lennon, F.; Steele, C.; Kelleher, D.; Fitzgerald, D.; Long, A. Engagement of CD44 Modulates Cyclooxygenase Induction, VEGF Generation, and Proliferation in Human Vascular Endothelial Cells. FASEB J. 2005, 19, 446–448. [Google Scholar] [CrossRef] [PubMed]
- Tavianatou, A.G.; Caon, I.; Franchi, M.; Piperigkou, Z.; Galesso, D.; Karamanos, N.K. Hyaluronan: Molecular Size-Dependent Signaling and Biological Functions in Inflammation and Cancer. FEBS J. 2019, 286, 2883–2908. [Google Scholar] [CrossRef] [PubMed]
- Misra, S.; Hascall, V.C.; Markwald, R.R.; Ghatak, S. Interactions between Hyaluronan and Its Receptors (CD44, RHAMM) Regulate the Activities of Inflammation and Cancer. Front. Immunol. 2015, 6, 201. [Google Scholar] [CrossRef] [PubMed]
- Harada, H.; Takahashi, M. CD44-Dependent Intracellular and Extracellular Catabolism of Hyaluronic Acid by Hyaluronidase-1 and -2. J. Biol. Chem. 2007, 282, 5597–5607. [Google Scholar] [CrossRef]
- Tonini, T.; Rossi, F.; Claudio, P.P. Molecular Basis of Angiogenesis and Cancer. Oncogene 2003 2003, 22, 6549–6556. [Google Scholar] [CrossRef] [PubMed]
- Arnold, F.; West, D.C. Angiogenesis in Wound Healing. Pharmacol. Ther. 1991, 52, 407–422. [Google Scholar] [CrossRef] [PubMed]
- Karam, J.; Singer, B.J.; Miwa, H.; Chen, L.H.; Maran, K.; Hasani, M.; Garza, S.; Onyekwere, B.; Yeh, H.C.; Li, S.; et al. Molecular Weight of Hyaluronic Acid Crosslinked into Biomaterial Scaffolds Affects Angiogenic Potential. Acta Biomater. 2023, 169, 228–242. [Google Scholar] [CrossRef] [PubMed]
- Singleton, P.A. Hyaluronan Regulation of Endothelial Barrier Function in Cancer. Adv. Cancer Res. 2014, 123, 191–209. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, C.; Oprea, B.; Ciobanu, G.; Georgescu, M.; Bică, R.; Mateescu, G.O.; Huseynova, F.; Barragan-Montero, V. The Angiogenic Balance and Its Implications in Cancer and Cardiovascular Diseases: An Overview. Medicina 2022, 58, 903. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Yang, B.; Xu, S.; Gao, Y.; Huang, Y.; Wang, Z. Diabetic Retinopathy and Cardiovascular Disease: A Literature Review. Diabetes, Metab. Syndr. Obes. 2023, 16, 4247–4261. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Fu, C.; Zhang, Q.; He, C.; Zhang, F.; Wei, Q. The Role of CD44 in Pathological Angiogenesis. FASEB J. 2020, 34, 13125–13139. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Htay, A.; Dos Santos, W.; Gillies, G.T.; Fillmore, H.L.; Sholley, M.M.; Broaddus, W.C. In Vitro Angiogenesis by Human Umbilical Vein Endothelial Cells (HUVEC) Induced by Three-Dimensional Co-Culture with Glioblastoma Cells. J. Neurooncol. 2009, 92, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Dřímalová, E.; Velebný, V.; Sasinková, V.; Hromádková, Z.; Ebringerová, A. Degradation of Hyaluronan by Ultrasonication in Comparison to Microwave and Conventional Heating. Carbohydr. Polym. 2005, 61, 420–426. [Google Scholar] [CrossRef]
- Chen, H.; Qin, J.; Hu, Y. Efficient Degradation of High-Molecular-Weight Hyaluronic Acid by a Combination of Ultrasound, Hydrogen Peroxide, and Copper Ion. Molecules 2019, 24, 617. [Google Scholar] [CrossRef] [PubMed]
- Sakai, S.; Yamamoto, S.; Hirami, R.; Hidaka, M.; Chamara Manoj Lakmal Elvitigala, K. Enzymatically Gellable Chitosan Inks with Enhanced Printability by Chitosan Nanofibers for 3D Printing of Wound Dressings. Eur. Polym. J. 2024, 210, 112960. [Google Scholar] [CrossRef]
- Mubarok, W.; Elvitigala, K.C.M.L.; Sakai, S. Tuning Myogenesis by Controlling Gelatin Hydrogel Properties through Hydrogen Peroxide-Mediated Cross-Linking and Degradation. Gels 2022, 8, 387. [Google Scholar] [CrossRef]
- Sakai, S.; Yamaguchi, S.; Takei, T.; Kawakami, K. Oxidized Alginate-Cross-Linked Alginate/Gelatin Hydrogel Fibers for Fabricating Tubular Constructs with Layered Smooth Muscle Cells and Endothelial Cells in Collagen Gels. Biomacromolecules 2008, 9, 2036–2041. [Google Scholar] [CrossRef] [PubMed]
- Elvitigala, K.C.M.L.; Mubarok, W.; Sakai, S. Tuning the Crosslinking and Degradation of Hyaluronic Acid/Gelatin Hydrogels Using Hydrogen Peroxide for Muscle Cell Sheet Fabrication. Soft Matter 2023, 19, 5880–5887. [Google Scholar] [CrossRef] [PubMed]
- Shu, X.Z.; Liu, Y.; Palumbo, F.; Prestwich, G.D. Disulfide-Crosslinked Hyaluronan-Gelatin Hydrogel Films: A Covalent Mimic of the Extracellular Matrix for in Vitro Cell Growth. Biomaterials 2003, 24, 3825–3834. [Google Scholar] [CrossRef] [PubMed]
- Hachet, E.; Van Den Berghe, H.; Bayma, E.; Block, M.R.; Auzély-Velty, R. Design of Biomimetic Cell-Interactive Substrates Using Hyaluronic Acid Hydrogels with Tunable Mechanical Properties. Biomacromolecules 2012, 13, 1818–1827. [Google Scholar] [CrossRef] [PubMed]
- Camci-Unal, G.; Cuttica, D.; Annabi, N.; Demarchi, D.; Khademhosseini, A. Synthesis and Characterization of Hybrid Hyaluronic Acid-Gelatin Hydrogels. Biomacromolecules 2013, 14, 1085–1092. [Google Scholar] [CrossRef] [PubMed]
- Sakai, S.; Hirose, K.; Taguchi, K.; Ogushi, Y.; Kawakami, K. An Injectable, in Situ Enzymatically Gellable, Gelatin Derivative for Drug Delivery and Tissue Engineering. Biomaterials 2009, 30, 3371–3377. [Google Scholar] [CrossRef] [PubMed]
- Sakai, S.; Ohi, H.; Taya, M. Gelatin/Hyaluronic Acid Content in Hydrogels Obtained through Blue Light-Induced Gelation Affects Hydrogel Properties and Adipose Stem Cell Behaviors. Biomolecules 2019, 9, 342. [Google Scholar] [CrossRef] [PubMed]
- Berlan, J.; Trabelsi, F.; Delmas, H.; Wilhelm, A.M.; Petrignani, J.F. Oxidative Degradation of Phenol in Aqueous Media Using Ultrasound. Ultrason. Sonochem. 1994, 1, S97–S102. [Google Scholar] [CrossRef]
- Mahamuni, N.N.; Pandit, A.B. Effect of Additives on Ultrasonic Degradation of Phenol. Ultrason. Sonochem. 2006, 13, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Tabatabai, A.P.; Partlow, B.P.; Raia, N.R.; Kaplan, D.L.; Blair, D.L. Silk Molecular Weight Influences the Kinetics of Enzymatically Cross-Linked Silk Hydrogel Formation. Langmuir 2018, 34, 15383–15387. [Google Scholar] [CrossRef] [PubMed]
- Sakai, S.; Yamada, Y.; Zenke, T.; Kawakami, K. Novel Chitosan Derivative Soluble at Neutral PH and In-Situ Gellable via Peroxidase-Catalyzed Enzymatic Reaction. J. Mater. Chem. 2008, 19, 230–235. [Google Scholar] [CrossRef]
- Sattar, A.; Rooney, P.; Kumar, S.; Pye, D.; West, D.; Ledger, P. Application of Angiogenic Oligosaccharides of Hyaluronan Increases Blood Vessel Numbers in Rat Skin. J. Investig. Dermatol. 1994, 103, 576–579. [Google Scholar] [CrossRef] [PubMed]
- Mo, W.; Yang, C.; Liu, Y.; He, Y.; Wang, Y.; Gao, F. The Influence of Hyaluronic Acid on Vascular Endothelial Cell Proliferation and the Relationship with Ezrin/Merlin Expression. Acta Biochim. Biophys. Sin. 2011, 43, 930–939. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.; Ramamurthi, A. Hyaluronic Acid Cues for Functional Endothelialization of Vascular Constructs. J. Tissue Eng. Regen. Med. 2008, 2, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Pink, A.; Školnaja, M.; Päll, T.; Valkna, A. CD44 Controls Endothelial Proliferation and Functions as Endogenous Inhibitor of Angiogenesis. bioRxiv 2016, 81, 049494. [Google Scholar] [CrossRef]
- Duan, B.; Hockaday, L.A.; Kapetanovic, E.; Kang, K.H.; Butcher, J.T. Stiffness and Adhesivity Control Aortic Valve Interstitial Cell Behavior within Hyaluronic Acid Based Hydrogels. Acta Biomater. 2013, 9, 7640–7650. [Google Scholar] [CrossRef]
- Mubarok, W.; Elvitigala, K.C.M.L.; Nakahata, M.; Kojima, M.; Sakai, S. Modulation of Cell-Cycle Progression by Hydrogen Peroxide-Mediated Cross-Linking and Degradation of Cell-Adhesive Hydrogels. Cells 2022, 11, 881. [Google Scholar] [CrossRef] [PubMed]
- Elvitigala, K.C.M.L.; Mubarok, W.; Sakai, S. Human Umbilical Vein Endothelial Cells Form a Network on a Hyaluronic Acid/Gelatin Composite Hydrogel Moderately Crosslinked and Degraded by Hydrogen Peroxide. Polymers 2022, 14, 5034. [Google Scholar] [CrossRef]
- Caon, I.; Bartolini, B.; Parnigoni, A.; Caravà, E.; Moretto, P.; Viola, M.; Karousou, E.; Vigetti, D.; Passi, A. Revisiting the Hallmarks of Cancer: The Role of Hyaluronan. Semin. Cancer Biol. 2020, 62, 9–19. [Google Scholar] [CrossRef]
- Pang, X.; Li, W.; Chang, L.; Gautrot, J.E.; Wang, W.; Azevedo, H.S. Hyaluronan (HA) Immobilized on Surfaces via Self-Assembled Monolayers of HA-Binding Peptide Modulates Endothelial Cell Spreading and Migration through Focal Adhesion. ACS Appl. Mater. Interfaces 2021, 13, 25792–25804. [Google Scholar] [CrossRef]
- Sabine, M.-N.; John, G.; Shant, K.; Msrk, S. Oligosaccharides of Hyaluronan Induce Angiogenesis through Distinct CD44 and RHAMM-Mediated Signalling Pathways Involving Cdc2 and Gamma-Adducin. Int. J. Oncol. 2009, 35, 761–773. [Google Scholar] [CrossRef] [PubMed]
- Chamara, K.; Lakmal Elvitigala, M.; Mohan, L.; Mubarok, W.; Sakai, S.; Elvitigala, K.C.M.L.; Mubarok, W.; Sakai, S.; Mohan, L. Phototuning of Hyaluronic-Acid-Based Hydrogel Properties to Control Network Formation in Human Vascular Endothelial Cells. Adv. Healthc. Mater. 2024, 2303787. [Google Scholar] [CrossRef] [PubMed]
- Khanmohammadi, M.; Sakai, S.; Taya, M. Impact of Immobilizing of Low Molecular Weight Hyaluronic Acid within Gelatin-Based Hydrogel through Enzymatic Reaction on Behavior of Enclosed Endothelial Cells. Int. J. Biol. Macromol. 2017, 97, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Graupera, M.; Potente, M. Regulation of Angiogenesis by PI3K Signaling Networks. Exp. Cell Res. 2013, 319, 1348–1355. [Google Scholar] [CrossRef] [PubMed]
- Puri, K.D.; Doggett, T.A.; Huang, C.Y.; Douangpanya, J.; Hayflick, J.S.; Turner, M.; Penninger, J.; Diacovo, T.G. The Role of Endothelial PI3Kγ Activity in Neutrophil Trafficking. Blood 2005, 106, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, K.; Yoshida, K.; Cui, H.; Wakayama, T.; Takuwa, N.; Okamoto, Y.; Du, W.; Qi, X.; Asanuma, K.; Sugihara, K.; et al. Endothelial PI3K-C2α, a Class II PI3K, Has an Essential Role in Angiogenesis and Vascular Barrier Function. Nat. Med. 2012, 18, 1560–1569. [Google Scholar] [CrossRef] [PubMed]
- Kroon, M.E.; Koolwijk, P.; Van Der Vecht, B.; Van Hinsbergh, V.W.M. Hypoxia in Combination with FGF-2 Induces Tube Formation by Human Microvascular Endothelial Cells in a Fibrin Matrix: Involvement of at Least Two Signal Transduction Pathways. J. Cell Sci. 2001, 114, 825–833. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elvitigala, K.C.M.L.; Mubarok, W.; Sakai, S. Hydrogels with Ultrasound-Treated Hyaluronic Acid Regulate CD44-Mediated Angiogenic Potential of Human Vascular Endothelial Cells In Vitro. Biomolecules 2024, 14, 604. https://doi.org/10.3390/biom14050604
Elvitigala KCML, Mubarok W, Sakai S. Hydrogels with Ultrasound-Treated Hyaluronic Acid Regulate CD44-Mediated Angiogenic Potential of Human Vascular Endothelial Cells In Vitro. Biomolecules. 2024; 14(5):604. https://doi.org/10.3390/biom14050604
Chicago/Turabian StyleElvitigala, Kelum Chamara Manoj Lakmal, Wildan Mubarok, and Shinji Sakai. 2024. "Hydrogels with Ultrasound-Treated Hyaluronic Acid Regulate CD44-Mediated Angiogenic Potential of Human Vascular Endothelial Cells In Vitro" Biomolecules 14, no. 5: 604. https://doi.org/10.3390/biom14050604
APA StyleElvitigala, K. C. M. L., Mubarok, W., & Sakai, S. (2024). Hydrogels with Ultrasound-Treated Hyaluronic Acid Regulate CD44-Mediated Angiogenic Potential of Human Vascular Endothelial Cells In Vitro. Biomolecules, 14(5), 604. https://doi.org/10.3390/biom14050604