Volatile Characterization of Lychee Plant Tissues (Litchi chinensis) and the Effect of Key Compounds on the Behavior of the Lychee Erinose Mite (Aceria litchii)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and LEM Infestation
2.2. Chemical Standards
2.3. Headspace Volatile Collections
2.4. Gas Chromatography-Mass Spectrometry Analysis (GC-MS)
2.5. Dual-Choice Test between Field-Collected (Non-Infested) Lychee Tissues
2.6. Dual-Choice Test on Single Volatile Compounds
3. Results
3.1. Volatile Composition of Potted (Infested) Lychee Plants and Field-Collected (Non-Infested) Lychee Tissues
3.2. LEM Behavioral Responses to Field-Collected (Non-Infested) Lychee Tissues and Single Volatile Compounds
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Howe, G.A.; Jander, G. Plant Immunity to Insect Herbivores. Annu. Rev. Plant Biol. 2008, 59, 41–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudareva, N.; Negre, F.; Nagegowda, D.A.; Orlova, I. Plant Volatiles: Recent Advances and Future Perspectives. Crit. Rev. Plant Sci. 2006, 25, 417–440. [Google Scholar] [CrossRef]
- Boncan, D.A.T.; Tsang, S.S.; Li, C.; Lee, I.H.; Lam, H.-M.; Chan, T.-F.; Hui, J.H. Terpenes and Terpenoids in Plants: Interactions with Environment and Insects. Int. J. Mol. Sci. 2020, 21, 7382. [Google Scholar] [CrossRef] [PubMed]
- Dicke, M.; Baldwin, I.T. The evolutionary context for herbivore-induced plant volatiles: Beyond the ‘cry for help’. Trends Plant Sci. 2010, 15, 167–175. [Google Scholar] [CrossRef]
- Dicke, M.; Loon, J.J.A. Multitrophic Effects of Herbivore-induced Plant Volatiles in an Evolutionary Context. Entomol. Exp. Appl. 2000, 97, 237–249. [Google Scholar] [CrossRef] [Green Version]
- Janssen, A.; Sabelis, M.W.; Bruin, J. Evolution of herbivore-induced plant volatiles. Oikos 2002, 97, 134–138. [Google Scholar] [CrossRef]
- Schuman, M.C.; Barthel, K.; Baldwin, I.T. Herbivory-induced volatiles function as defenses increasing fitness of the native plant Nicotiana attenuata in nature. Elife 2012, 1, e00007. [Google Scholar] [CrossRef]
- Dicke, M.; Van Beek, T.A.; Posthumus, M.A.; Ben Dom, N.; Van Bokhoven, H.; De Groot, A. Isolation and identification of volatile kairomone that affects acarine predatorprey interactions Involvement of host plant in its production. J. Chem. Ecol. 1990, 16, 381–396. [Google Scholar] [CrossRef]
- Takabayashi, J.; Dicke, M.; Posthumus, M.A. Variation in composition of predator-attracting allelochemicals emitted by herbivore-infested plants: Relative influence of plant and herbivore. Chemoecology 1991, 2, bf01240659. [Google Scholar] [CrossRef]
- Takabayashi, J.; Dicke, M.; Posthumus, M.A. Volatile herbivore-induced terpenoids in plant-mite interactions: Variation caused by biotic and abiotic factors. J. Chem. Ecol. 1994, 20, 1329–1354. [Google Scholar] [CrossRef]
- Van Den Boom, C.E.M.; Van Beek, T.A.; Posthumus, M.A.; De Groot, A.; Dicke, M. Qualitative and Quantitative Variation Among Volatile Profiles Induced by Tetranychus urticae Feeding on Plants from Various Families. J. Chem. Ecol. 2004, 30, 69–89. [Google Scholar] [CrossRef]
- van den Boom, C.E.M.; van Beek, T.A.; Dicke, M. Attraction of Phytoseiulus persimilis (Acari: Phytoseiidae) towards volatiles from various Tetranychus urticae-infested plant species. Bull. Èntomol. Res. 2002, 92, 539–546. [Google Scholar] [CrossRef] [Green Version]
- Bernasconi, M.L.; Turlings, T.C.J.; Ambrosetti, L.; Bassetti, P.; Dorn, S. Herbivore-induced emissions of maize volatiles repel the corn leaf aphid, Rhopalosiphum maidis. Èntomol. Exp. Appl. 1998, 87, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Farmer, E.E. Surface-to-air signals. Nature 2001, 411, 854–856. [Google Scholar] [CrossRef]
- Frost, C.J.; Appel, H.M.; Carlson, J.E.; De Moraes, C.M.; Mescher, M.C.; Schultz, J.C. Within-plant signalling via volatiles overcomes vascular constraints on systemic signalling and primes responses against herbivores. Ecol. Lett. 2007, 10, 490–498. [Google Scholar] [CrossRef]
- Heil, M.; Karban, R. Explaining evolution of plant communication by airborne signals. Trends Ecol. Evol. 2010, 25, 137–144. [Google Scholar] [CrossRef]
- Bruin, J.; Dicke, M.; Sabelis, M.W. Plants are better protected against spider-mites after exposure to volatiles from infested conspecifics. Experientia 1992, 48, 525–529. [Google Scholar] [CrossRef]
- Dicke, M.; Bruin, J. Chemical information transfer between plants: Back to the Future. Biochem. Syst. Ecol. 2001, 29, 981–994. [Google Scholar] [CrossRef]
- Baldwin, I.T.; Halitschke, R.; Paschold, A.; von Dahl, C.C.; Preston, C.A. Volatile Signaling in Plant-Plant Interactions: “Talking Trees” in the Genomics Era. Science 2006, 311, 812–815. [Google Scholar] [CrossRef] [Green Version]
- Kessler, A.; Baldwin, I.T. Plant Responses to Insect Herbivory: The Emerging Molecular Analysis. Annu. Rev. Plant Biol. 2002, 53, 299–328. [Google Scholar] [CrossRef]
- Heil, M.; Silva Bueno, J.C. Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc. Natl. Acad. Sci. USA 2007, 104, 5467–5472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farmer, E.E.; Ryan, C.A. Interplant communication: Airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. USA 1990, 87, 7713–7716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beale, M.H.; Birkett, M.A.; Bruce, T.J.A.; Chamberlain, K.; Field, L.M.; Huttly, A.K.; Martin, J.L.; Parker, R.; Phillips, A.L.; Pickett, J.A.; et al. Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior. Proc. Natl. Acad. Sci. USA 2006, 103, 10509–10513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kos, M.; Houshyani, B.; Overeem, A.-J.; Bouwmeester, H.J.; Weldegergis, B.T.; van Loon, J.J.; Dicke, M.; Vet, L.E. Genetic engineering of plant volatile terpenoids: Effects on a herbivore, a predator and a parasitoid. Pest Manag. Sci. 2012, 69, 302–311. [Google Scholar] [CrossRef]
- Dudareva, N.; Pichersky, E. Metabolic engineering of plant volatiles. Curr. Opin. Biotechnol. 2008, 19, 181–189. [Google Scholar] [CrossRef]
- Degenhardt, J.; Gershenzon, J.; Baldwin, I.T.; Kessler, A. Attracting friends to feast on foes: Engineering terpene emission to make crop plants more attractive to herbivore enemies. Curr. Opin. Biotechnol. 2003, 14, 169–176. [Google Scholar] [CrossRef]
- Bruce, T.J.; Aradottir, G.I.; Smart, L.E.; Martin, J.L.; Caulfield, J.C.; Doherty, A.; Sparks, C.A.; Woodcock, C.M.; Birkett, M.A.; Napier, J.A.; et al. The first crop plant genetically engineered to release an insect pheromone for defence. Sci. Rep. 2015, 5, 11183. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.-H.; Schlyter, F. Olfactory recognition and behavioural avoidance of angiosperm nonhost volatiles by conifer-inhabiting bark beetles. Agric. For. Èntomol. 2004, 6, 1–20. [Google Scholar] [CrossRef]
- Menzel, C. The Lychee Crop in Asia and the Pacific; RAP Publication; Food and Agriculture Organization of the United Nations Regional Office for Asia and the Pacific: Bangkok, Thailand, 2002; Volume 16. [Google Scholar]
- Carrillo, D.; Cruz, L.F.; Revynthi, A.M.; Duncan, R.E.; Bauchan, G.R.; Ochoa, R.; Kendra, P.E.; Bolton, S.J. Detection of the Lychee Erinose Mite, Aceria litchii (Keifer) (Acari: Eriophyidae) in Florida, USA: A Comparison with Other Alien Populations. Insects 2020, 11, 235. [Google Scholar] [CrossRef] [Green Version]
- Oldfield, G.N. 1.4.3 diversity and host plant specificity. In World Crop Pests; Lindquist, E.E., Sabelis, M.W., Bruin, J., Eds.; Elsevier: Amsterdam, The Netherlands, 1996; Volume 6, pp. 199–216. ISBN 1572-4379. [Google Scholar]
- Nishida, T.; Holdaway, F.G. The Erinose Mite of Lychee. In Hawaii Agriculture Experiment Station; Circular No. 48; University of Hawai: Honolulu, HI, USA, 1955. [Google Scholar]
- Menzel, C.M.; Waite, G.K. Litchi and Longan: Botany, Production and Uses; CABI Publishing: Oxfordshire, UK, 2005; ISBN 0-85199-696-5. [Google Scholar]
- Castro, B.M.d.C.e.; Plata-Rueda, A.; Silva, W.M.; de Menezes, C.W.G.; Wilcken, C.F.; Zanuncio, J.C. Manejo Del Ácaro Aceria litchii (Acari: Eriophyidae) En Litchi Chinensis. Rev. Colomb. De Entomol. 2018, 44, 2–7. [Google Scholar] [CrossRef]
- Waite, G.K.; Hwang, J.S. 11 Pests of Litchi and Longan. In Tropical Fruit Pests and Pollinators: Biology, Economic Importance, Natural Enemies, and Control; CABI Publishing: Oxfordshire, UK, 2002; Volume 331. [Google Scholar]
- Navia, D.; Júnior, A.M.; Gondim, M.G.C., Jr.; de Mendonza, R.S.; da Silva Pereira, P.R.V. Recent mite invasions in South America. In Potential Invasive Pests Agric Crop, 1st ed.; Peña, J.E., Ed.; CABI Publishing: Oxfordshire, UK, 2013; pp. 251–287. [Google Scholar]
- Prasad, V.G.; Singh, R.K. Prevalence and Control of Litchi Mite, Aceria litchii Kiefer in Bihar. Indian J. Entomol. 1981, 43, 67–75. [Google Scholar]
- Azevedo, L.H.; Moraes, G.J.; Yamamoto, P.T.; Zanardi, O.Z. Development of a Methodology and Evaluation of Pesticides Against Aceria litchii and Its Predator Phytoseius intermedius (Acari: Eriophyidae, Phytoseiidae). J. Econ. Èntomol. 2013, 106, 2183–2189. [Google Scholar] [CrossRef]
- Revynthi, A.M.; Cruz, L.F.; Canon, M.A.; Crane, J.H.; Kendra, P.E.; Mannion, C.; Carrillo, D. Evaluation of Abamectin as a Potential Chemical Control for the Lychee Erinose Mite (Acari: Eriophyidae), a New Invasive Pest in Florida. Fla. Èntomol. 2022, 105, 1–5. [Google Scholar] [CrossRef]
- Waite, G.; Gerson, U. The predator guild associated withAceria litchii (Acari: Eriophyidae) in Australia and China. Biocontrol 1994, 39, 275–280. [Google Scholar] [CrossRef]
- Ferreira Picoli, P.R.; Vieira, M.R.; da Silva, E.A.; de Oliveira da Mota, M.S. Predator Mites Associated with the Litchi Erinose Mite. Pesqui. Agropecu. Bras. 2010, 45, 1246–1252. [Google Scholar] [CrossRef] [Green Version]
- Azevedo, L.H.; Castilho, R.d.C.; de Moraes, G.J. Suitability of the Litchi Erineum Mite, Aceria litchii (Keifer), as Prey for the Mite Phytoseius intermedius Evans & MacFarlane (Acari: Eriophyidae, Phytoseiidae). Syst. Appl. Acarol. 2016, 21, 270–278. [Google Scholar]
- Ferraz, C.; Ataide, L.; Gondim, M.; Pallini, A. Arthropods associated with the lychee erinose mite, Aceria litchii (Acari: Eriophyidae) on lychee trees in Minas Gerais, Brazil. Exp. Appl. Acarol. 2022, 88, 289–300. [Google Scholar] [CrossRef]
- Wu, Y.; Pan, Q.; Qu, W.; Duan, C. Comparison of Volatile Profiles of Nine Litchi (Litchi chinensis Sonn.) Cultivars from Southern China. J. Agric. Food Chem. 2009, 57, 9676–9681. [Google Scholar] [CrossRef]
- Feng, S.; Huang, M.; Crane, J.; Wang, Y. Characterization of key aroma-active compounds in lychee (Litchi chinensis Sonn.). J. Food Drug Anal. 2018, 26, 497–503. [Google Scholar] [CrossRef] [Green Version]
- Ong, P.K.C.; Acree, T.E. Gas Chromatography/Olfactory Analysis of Lychee (Litchi chinesis Sonn.). J. Agric. Food Chem. 1998, 46, 2282–2286. [Google Scholar] [CrossRef]
- Mahattanatawee, K.; Perez-Cacho, P.R.; Davenport, T.; Rouseff, R. Comparison of Three Lychee Cultivar Odor Profiles Using Gas Chromatography−Olfactometry and Gas Chromatography−Sulfur Detection. J. Agric. Food Chem. 2007, 55, 1939–1944. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, D.; Gao, J.; Peng, Z. Volatile Components of Litchi chinensis Sonn. Leaf Oil Extracts Obtained by Simultaneous Distillation Extraction. J. Essent. Oil Bear. Plants 2013, 16, 161–165. [Google Scholar] [CrossRef]
- Chen, D.; Liu, S.-Q. Chemical and volatile composition of lychee wines fermented with four commercial Saccharomyces cerevisiae yeast strains. Int. J. Food Sci. Technol. 2013, 49, 521–530. [Google Scholar] [CrossRef]
- Tang, Z.-S.; Zeng, X.-A.; Brennan, M.A.; Han, Z.; Niu, D.; Huo, Y. Characterization of aroma profile and characteristic aromas during lychee wine fermentation. J. Food Process. Preserv. 2019, 43, e14003. [Google Scholar] [CrossRef]
- Ong, P.K.C.; Acree, T.E. Similarities in the Aroma Chemistry of Gewürztraminer Variety Wines and Lychee (Litchi chinesis Sonn.) Fruit. J. Agric. Food Chem. 1999, 47, 665–670. [Google Scholar] [CrossRef]
- Chyau, C.-C.; Ko, P.-T.; Chang, C.-H.; Mau, J.-L. Free and glycosidically bound aroma compounds in lychee (Litchi chinensis Sonn.). Food Chem. 2003, 80, 387–392. [Google Scholar] [CrossRef]
- Sivakumar, D.; Naudé, Y.; Rohwer, E.; Korsten, L. Volatile compounds, quality attributes, mineral composition and pericarp structure of South African litchi export cultivars Mauritius and McLean’s Red. J. Sci. Food Agric. 2008, 88, 1074–1081. [Google Scholar] [CrossRef]
- Gunpal, D.; Patni, V. Comparative Analysis of Volatile Compounds in Normal Leaves and Mite Induced Leaf Galls of Litchi chinensis Sonn. Int. J. Bot. Stud. 2021, 6, 631–636. [Google Scholar]
- Stewart-Jones, A.; Poppy, G.M. Comparison of Glass Vessels and Plastic Bags for Enclosing Living Plant Parts for Headspace Analysis. J. Chem. Ecol. 2006, 32, 845–864. [Google Scholar] [CrossRef]
- Wiley Science Solution. NIST 2020 Mass Spectral Library; Solutions, Scientific Instrument Services Inc.: Ringoes, NJ, USA, 2020. [Google Scholar]
- MassFinder; MassFinder Software 2004; Dr. Hochmuth Scientific Consulting: Hamburg, Germany. Available online: https://www.massfinder.org/ (accessed on 1 February 2022).
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Steam, IL, USA, 2007; ISBN 978-1-932633-21-4. [Google Scholar]
- FFNSC3 Flavors and Fragrances of Natural and Synthetic Compounds. In Mass Spectral Database; Scientific Instrument Services Inc.: Hoboken, NJ, USA, 2015.
- Kendra, P.E.; Tabanca, N.; Cruz, L.F.; Menocal, O.; Schnell, E.Q.; Carrillo, D. Volatile Emissions and Relative Attraction of the Fungal Symbionts of Tea Shot Hole Borer (Coleoptera: Curculionidae). Biomolecules 2022, 12, 97. [Google Scholar] [CrossRef]
- van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas—Liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention Indices for Frequently Reported Compounds of Plant Essential Oils. J. Phys. Chem. Ref. Data 2011, 40, 43101. [Google Scholar] [CrossRef] [Green Version]
- Acree, T.; Arn, H. Flavornet and Human Odor Space. Available online: http://www.flavornet.org/ (accessed on 1 November 2022).
- The Pherobase Database. Available online: http://www.pherobase.com/database/kovats/kovatsdetailsulcatone.php (accessed on 1 November 2022).
- Sarmento, R.A.; Lemos, F.; Bleeker, P.M.; Schuurink, R.C.; Pallini, A.; Oliveira, M.G.A.; Lima, E.R.; Kant, M.; Sabelis, M.W.; Janssen, A. A herbivore that manipulates plant defence. Ecol. Lett. 2011, 14, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Arlian, L.G.; Vyszenski-Moher, D.L. Response of Sarcoptes scabiei var. canis (Acari: Sarcoptidae) to Lipids of Mammalian Skin. J. Med. Èntomol. 1995, 32, 34–41. [Google Scholar] [CrossRef]
- Pallini, A.; Janssen, A.; Sabelis, M.W. Odour-mediated responses of phytophagous mites to conspecific and heterospecific competitors. Oecologia 1997, 110, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 48. [Google Scholar] [CrossRef]
- Crawley, M.J. The R Book; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 0-470-97392-7. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Popitanu, C.; Lupitu, A.; Copolovici, L.; Bungău, S.; Niinemets, Ü.; Copolovici, D.M. Induced Volatile Emissions, Photosynthetic Characteristics, and Pigment Content in Juglans regia Leaves Infected with the Erineum-Forming Mite Aceria erinea. Forests 2021, 12, 920. [Google Scholar] [CrossRef]
- Cascone, P.; Iodice, L.; Maffei, M.E.; Bossi, S.; Arimura, G.-I.; Guerrieri, E. Tobacco overexpressing β-ocimene induces direct and indirect responses against aphids in receiver tomato plants. J. Plant Physiol. 2015, 173, 28–32. [Google Scholar] [CrossRef]
- Tak, J.-H.; Isman, M.B. Acaricidal and repellent activity of plant essential oil-derived terpenes and the effect of binary mixtures against Tetranychus urticae Koch (Acari: Tetranychidae). Ind. Crops Prod. 2017, 108, 786–792. [Google Scholar] [CrossRef]
- Mumm, R.; Posthumus, M.A.; Dicke, M. Significance of terpenoids in induced indirect plant defence against herbivorous arthropods. Plant Cell Environ. 2008, 31, 575–585. [Google Scholar] [CrossRef]
- Jaenson, T.G.T.; Pålsson, K.; Borg-Karlson, A.-K. Evaluation of Extracts and Oils of Mosquito (Diptera: Culicidae) Repellent Plants from Sweden and Guinea-Bissau. J. Med. Èntomol. 2006, 43, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-C.; Lee, E.-H.; Lee, H.-S.; Lee, D.-K.; Ahn, Y.-J. Repellency of aromatic medicinal plant extracts and a steam distillate to Aedes aegypti. J. Am. Mosq. Control Assoc. 2004, 20, 146–149. [Google Scholar] [PubMed]
- Tunón, H.; Thorsell, W.; Mikiver, A.; Malander, I. Arthropod repellency, especially tick (Ixodes ricinus), exerted by extract from Artemisia abrotanum and essential oil from flowers of Dianthus caryophyllum. Fitoterapia 2006, 77, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Gillij, Y.G.; Gleiser, R.M.; Zygadlo, J.A. Mosquito repellent activity of essential oils of aromatic plants growing in Argentina. Bioresour. Technol. 2008, 99, 2507–2515. [Google Scholar] [CrossRef]
- Alquézar, B.; Volpe, H.X.L.; Magnani, R.F.; de Miranda, M.P.; Santos, M.A.; Wulff, N.A.; Bento, J.M.S.; Parra, J.R.P.; Bouwmeester, H.; Peña, L. β-caryophyllene emitted from a transgenic Arabidopsis or chemical dispenser repels Diaphorina citri, vector of Candidatus Liberibacters. Sci. Rep. 2017, 7, 5639. [Google Scholar] [CrossRef] [Green Version]
- Dickens, J.C. Predator-prey interactions: Olfactory adaptations of generalist and specialist predators. Agric. For. Èntomol. 1999, 1, 47–54. [Google Scholar] [CrossRef]
- Yi, H.-S.; Heil, M.; Adame-Álvarez, R.M.; Ballhorn, D.J.; Ryu, C.-M. Airborne Induction and Priming of Plant Defenses against a Bacterial Pathogen. Plant Physiol. 2009, 151, 2152–2161. [Google Scholar] [CrossRef] [Green Version]
- Gosset, V.; Harmel, N.; Gobel, C.; Francis, F.; Haubruge, E.; Wathelet, J.-P.; Du Jardin, P.; Feussner, I.; Fauconnier, M.-L. Attacks by a piercing-sucking insect (Myzus persicae Sultzer) or a chewing insect (Leptinotarsa decemlineata Say) on potato plants (Solanum tuberosum L.) induce differential changes in volatile compound release and oxylipin synthesis. J. Exp. Bot. 2009, 60, 1231–1240. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Li, G.; Miao, C.; Zhao, M.; Wang, B.; Guo, X. Nonanal modulates oviposition preference in female Helicoverpa assulta (Lepidoptera: Noctuidae) via the activation of peripheral neurons. Pest Manag. Sci. 2020, 76, 3159–3167. [Google Scholar] [CrossRef]
- Seybold, S.J.; Bentz, B.J.; Fettig, C.J.; Lundquist, J.E.; Progar, R.A.; Gillette, N.E. Management of Western North American Bark Beetles with Semiochemicals. Annu. Rev. Èntomol. 2018, 63, 407–432. [Google Scholar] [CrossRef]
- Ogah, E.O.; Smart, L.E.; Woodcock, C.M.; Caulfield, J.C.; Birkett, M.A.; Pickett, J.A.; Nwilene, F.E.; Bruce, T.J. Electrophysiological and behavioral responses of female African rice gall midge, Orseolia oryzivora Harris and Gagné, to host plant volatiles. J. Chem. Ecol. 2017, 43, 13–16. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.; Sihag, R. Efficacy of Some Chemicals as Repellents against Two Honeybee Species, Apis mellifera L. and Apis florea F. in Semi-Field Trials. J. Apic. Sci. 2009, 53, 53–66. [Google Scholar]
- Nieuwenhuizen, N.J.; Wang, M.Y.; Matich, A.J.; Green, S.A.; Chen, X.; Yauk, Y.-K.; Beuning, L.L.; Nagegowda, D.A.; Dudareva, N.; Atkinson, R.G. Two terpene synthases are responsible for the major sesquiterpenes emitted from the flowers of kiwifruit (Actinidia deliciosa). J. Exp. Bot. 2009, 60, 3203–3219. [Google Scholar] [CrossRef] [Green Version]
- Visser, J.H.; Avé, D.A. General green leaf volatiles in the olfactory orientation of the colorado beetle, Leptinotarsa decemlineata. Èntomol. Exp. Appl. 1978, 24, 738–749. [Google Scholar] [CrossRef]
- Bruce, T.J.; Wadhams, L.J.; Woodcock, C.M. Insect host location: A volatile situation. Trends Plant Sci. 2005, 10, 269–274. [Google Scholar] [CrossRef]
- Fraser, A.M.; Mechaber, W.L.; Hildebrand, J.G. Electroantennographic and behavioral responses of the sphinx moth Manduca sexta to host plant headspace volatiles. J. Chem. Ecol. 2003, 29, 1813–1833. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, H.; Li, W.; Xie, J.; Wang, Y.; Liu, L.; Shi, S. Phenological growth stages of lychee (Litchi chinensis Sonn.) using the extended BBCH-scale. Sci. Hortic. 2013, 161, 273–277. [Google Scholar] [CrossRef]
- Doughty, K.J.; Kiddle, G.A.; Pye, B.J.; Wallsgrove, R.M.; Pickett, J.A. Selective induction of glucosinolates in oilseed rape leaves by methyl jasmonate. Phytochemistry 1995, 38, 347–350. [Google Scholar] [CrossRef]
- Thaler, J.S.; Stout, M.J.; Karban, R.; Duffey, S.S. Exogenous jasmonates simulate insect wounding in tomato plants (Lycopersicon esculentum) in the laboratory and field. J. Chem. Ecol. 1996, 22, 1767–1781. [Google Scholar] [CrossRef]
- Ataide, L.M.; Pappas, M.L.; Schimmel, B.C.; Lopez-Orenes, A.; Alba, J.M.; Duarte, M.V.; Pallini, A.; Schuurink, R.C.; Kant, M.R. Induced plant-defenses suppress herbivore reproduction but also constrain predation of their offspring. Plant Sci. 2016, 252, 300–310. [Google Scholar] [CrossRef] [Green Version]
- Landolt, P.J.; Tumlinson, J.H.; Alborn, D.H. Attraction of Colorado Potato Beetle (Coleoptera: Chrysomelidae) to Damaged and Chemically Induced Potato Plants. Environ. Èntomol. 1999, 28, 973–978. [Google Scholar] [CrossRef]
- Shelton, A.; Badenes-Perez, F. Concepts and applications of trap cropping in pest management. Annu. Rev. Èntomol. 2006, 51, 285–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carr, A.L.; Roe, M. Acarine attractants: Chemoreception, bioassay, chemistry and control. Pestic. Biochem. Physiol. 2016, 131, 60–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
# | * RRIexp | ** RRIlit | Compounds | (Mean ± SE), n = 9 | (Mean ± SE), n = 3 | *** IM | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A1 | A2 | A3 | A4 | A5 | B1 | B2 | B3 | B4 | |||||
1 | 856 | 859 | (Z)-3-hexen-1-ol | - | - | - | - | - | 0.16 ± 0.06 | - | - | 0.25 ± 0.25 | MS, RI, Std |
2 | 927 | 930 | α-thujene | 0.27 ± 0.16 | 0.71 ± 0.69 | - | - | - | 1.71 ± 1.05 | 1.32 ± 1.22 | - | - | MS, RI |
3 | 933 | 939 | α-pinene | 0.70 ± 0.50 | 1.96 ± 1.84 | 0.30 ± 0.30 | 3.73 ± 2.40 | 0.09 ± 0.05 | 1.99 ± 1.17 | 1.45 ± 1.35 | - | 0.02 ± 0.02 | MS, RI, Std |
4 | 972 | 975 | sabinene | 5.29 ± 3.25 | 5.56 ± 4.54 | 1.92 ± 1.92 | 11.67 ± 4.94 | 4.50 ± 2.25 | 6.49 ± 2.97 | 4.23 ± 0.69 | 0.18 ± 0.10 | 0.20 ± 0.11 | MS, RI, Std |
5 | 980 | 979 | β-pinene | - | - | - | - | - | - | 0.43 ± 0.33 | - | - | MS, RI, Std |
6 | 983 | 985 | 6-methyl-5-hepten-2-one | - | - | - | - | - | 0.07 ± 0.06 | - | 0.01 ± 0.01 | 0.12 ± 0.12 | MS, RI, Std |
7 | 1005 | 1002 | (E)-3-hexenyl acetate | - | - | - | - | - | 0.54 ± 0.27 | - | - | 0.03 ± 0.03 | MS, RI |
8 | 1016 | 1013 | (E)-2-hexenyl acetate | - | - | - | - | - | 0.05 ± 0.04 | - | - | 0.02 ± 0.02 | MS, RI |
9 | 1027 | 1029 | limonene | 7.11 ± 2.88 | 3.81 ± 1.24 | 7.94 ± 4.77 | 4.00 ± 1.28 | 4.56 ± 1.72 | 0.02 ± 0.01 | 0.11 ± 0.10 | - | 0.02 ± 0.02 | MS, RI, Std |
10 | 1046 | 1050 | (E)-β-ocimene | 0.68 ± 0.48 | 2.00 ± 1.65 | 0.78 ± 0.32 | 0.04 ± 0.04 | 1.54 ± 1.08 | 0.59 ± 0.30 | 5.74 ± 1.14 | 0.03 ± 0.02 | 0.40 ± 0.20 | MS, RI, Std |
11 | 1057 | 1059 | γ-terpinene | 0.85 ± 0.44 | 0.83 ± 0.83 | 0.48 ± 0.48 | 1.46 ± 1.46 | 0.27 ± 0.21 | 0.98 ± 0.54 | 0.50± 0.25 | - | - | MS, RI, Std |
12 | 1071 | 1072 | cis-linalool oxide (cis-furanoid) | - | - | - | - | - | - | 0.74 ± 0.38 | - | - | MS, RI, Std |
13 | 1086 | 1086 | trans-linalool oxide (trans-furanoid) | - | - | - | - | - | - | 3.74 ± 1.90 | - | - | MS, RI, Std |
14 | 1088 | 1088 | terpinolene | - | 0.10 ± 0.10 | - | 0.24 ± 0.24 | - | - | - | - | - | MS, RI, Std |
15 | 1100 | 1096 | linalool | - | - | - | - | - | - | 1.72 ± 0.31 | - | - | MS, RI, Std |
16 | 1101 | 1100 | nonanal | 43.52 ± 8.13 | 24.06 ± 8.19 | 29.31 ± 8.17 | 18.65 ± 6.60 | 51.52 ± 8.97 | - | - | - | - | MS, RI, Std |
17 | 1165 | 1174 | cis-linalool oxide (cis-pyranoid) | - | - | - | - | - | 0.01 ± 0.00 | 0.11 ± 0.10 | - | - | MS, RI |
18 | 1170 | 1176 | trans-linalool oxide (trans-pyranoid) | - | - | - | - | - | 0.01 ± 0.00 | 1.15 ± 0.58 | - | - | MS, RI |
19 | 1194 | 1196 | estragole | 0.10 ± 0.10 | - | - | - | - | - | - | - | - | MS, RI, Std |
20 | 1202 | 1201 | decanal | 6.74 ± 2.27 | 2.83 ± 1.40 | 6.11 ± 2.03 | 2.28 ± 1.00 | 7.76 ± 2.66 | - | - | - | - | MS, RI, Std |
21 | 1255 | 1263 | (E)-2-decanal | 1.58 ± 0.83 | 0.45 ± 0.30 | 0.27 ± 0.20 | 0.48 ± 0.25 | - | - | - | - | - | MS, RI |
22 | 1300 | 1306 | undecanal | 0.30 ± 0.18 | 0.12 ± 0.08 | 0.18 ± 0.10 | 0.12 ± 0.07 | 0.28 ± 0.12 | - | - | - | - | MS, RI |
23 | 1330 | 1338 | δ-elemene | - | - | - | - | - | 0.01 ± 0.00 | - | - | 0.03 ± 0.03 | MS, RI |
24 | 1342 | 1348 | α-cubebene | - | - | - | - | - | 0.16 ± 0.12 | 0.22 ± 0.21 | 0.42 ± 0.02 | 0.08 ± 0.08 | MS, RI |
25 | 1353 | 1360 | (E)-2-undecanal | 0.12 ± 0.09 | 0.09 ± 0.09 | - | 0.06 ± 0.04 | - | - | - | - | - | MS, RI |
26 | 1359 | 1371 | cyclosativene | - | - | - | - | - | 1.15 ± 0.28 | 0.63 ± 0.33 | 1.47 ± 0.09 | 1.00 ± 0.02 | MS, RI, Std |
27 | 1369 | 1375 | α-ylangene | - | - | - | - | - | 0.11 ± 0.07 | 0.18 ± 0.17 | 0.18 ± 0.09 | 0.10 ± 0.03 | MS, RI |
28 | 1367 | 1376 | α-copaene | 1.08 ± 1.05 | 1.73 ± 0.51 | 2.82 ± 0.85 | 1.08 ± 0.26 | 2.23 ± 1.50 | 2.39 ± 0.36 | 2.04 ± 0.26 | 2.86 ± 0.16 | 2.44 ± 0.28 | MS, RI, Std |
29 | 1382 | 1391 | 7-epi-sesquithujene | 0.94 ± 0.62 | 3.69 ± 0.79 | 1.44 ± 0.59 | 2.82 ± 0.52 | 1.90 ± 0.38 | 6.30 ± 0.91 | 6.02 ± 1.06 | 6.45 ± 0.07 | 7.32 ± 1.54 | MS, RI |
30 | 1389 | 1400 | sibirene | - | - | - | - | - | 0.07 ± 0.03 | 0.30 ± 0.29 | - | 0.02 ± 0.02 | MS, RI |
31 | 1390 | 1400 | tetradecane | 3.30 ± 1.35 | 2.16 ± 0.68 | 1.04 ± 0.38 | 1.37 ± 0.67 | 1.85 ± 1.08 | - | - | - | - | MS, RI, Std |
32 | 1392 | 1403 | methyl eugenol | 1.41 ± 1.16 | - | - | - | - | - | - | - | - | MS, RI, Std |
33 | 1394 | 1405 | sesquithujene | - | - | - | - | - | 0.03 ± 0.02 | 0.20 ± 0.10 | 0.05 ± 0.05 | 0.03 ± 0.03 | MS, RI |
34 | 1396 | 1408 | dodecanal | 0.20 ± 0.11 | 0.10 ± 0.05 | 0.16 ± 0.09 | 0.04 ± 0.04 | 0.02 ± 0.02 | - | - | - | - | MS, RI |
35 | 1410 | 1419 | β-caryophyllene | 5.69 ± 3.08 | 8.10 ± 1.83 | 10.34 ± 2.89 | 6.23 ± 1.72 | 5.21 ± 2.12 | 12.60 ± 3.69 | 10.57 ± 0.81 | 13.98 ± 0.61 | 13.32 ± 1.53 | MS, RI, Std |
36 | 1411 | 1420 | β-cedrene | - | - | - | - | - | 1.04 ± 0.29 | 0.52 ± 0.42 | 1.25 ± 0.06 | 0.55 ± 0.32 | MS, RI |
37 | 1423 | 1432 | trans-α-bergamotene | 0.60 ± 0.26 | 1.45 ± 0.39 | 1.13 ± 0.58 | 1.16 ± 0.28 | 0.56 ± 0.25 | 1.75 ± 0.15 | 1.15 ± 0.19 | 2.15 ± 0.06 | 1.58 ± 0.16 | MS, RI |
38 | 1428 | 1441 | aromadendrene | - | - | - | - | - | 0.13 ± 0.12 | 0.09 ± 0.08 | 0.32 ± 0.11 | 0.27 ± 0.14 | MS, RI, Std |
39 | 1431 | 1444 | 6,9-guaiadiene | 0.02 ± 0.02 | 0.04 ± 0.04 | 0.02 ± 0.02 | 0.01 ± 0.01 | - | - | - | - | - | MS, RI |
40 | 1435 | 1450 | cis-muurola 3,5-diene | - | - | - | - | - | 0.11 ± 0.10 | 0.30 ± 0.29 | 0.21 ± 0.06 | 0.20 ± 0.11 | MS, RI |
41 | 1439 | 1454 | α-humulene | - | - | - | - | - | 1.66 ± 0.82 | 0.64 ± 0.54 | 2.19 ± 0.19 | 1.45 ± 0.24 | MS, RI, Std |
42 | 1442 | 1456 | (E)-β-farnesene | - | - | - | - | - | 0.50 ± 0.23 | 0.71 ± 0.33 | 1.43 ± 0.08 | 0.54 ± 0.27 | MS, RI |
43 | 1448 | 1463 | cis-cadina-1(6),4-diene | - | - | - | - | - | 0.07 ± 0.06 | 0 | 0.05 ± 0.04 | 0.07 ± 0.04 | MS, RI |
44 | 1453 | 1466 | α-acoradiene | - | - | - | - | - | 0.05 ± 0.02 | 0.35 ± 0.34 | 0.03 ± 0.02 | 0.06 ± 0.06 | MS, RI |
45 | 1462 | 1476 | trans-cadina-1(6),4-diene | - | - | - | - | - | 0.64 ± 0.29 | 0.56 ± 0.35 | 1.15 ± 0.06 | 0.55 ± 0.28 | MS, RI |
46 | 1466 | 1479 | γ-muurolene | - | - | - | - | - | 7.36 ± 4.41 | 4.85 ± 1.73 | 4.26 ± 0.68 | 7.70 ± 4.98 | MS, RI |
47 | 1468 | 1480 | ar-curcumene | 10.25 ± 3.18 | 32.51 ± 6.4 | 30.33 ± 6.38 | 38.54 ± 5.22 | 13.27 ± 3.97 | 16.78 ± 8.30 | 26.50 ± 4.07 | 11.64 ± 3.39 | 21.64 ± 5.33 | MS, RI, Std |
48 | 1476 | 1485 | germacrene D | - | - | - | - | - | 0.05 ± 0.04 | - | - | - | MS, RI |
49 | 1483 | 1493 | α-zingiberene | 0.24 ± 0.12 | 2.03 ± 0.77 | 1.50 ± 0.79 | 1.72 ± 0.49 | 1.34 ± 0.40 | 27.65 ± 4.89 | 16.50 ± 0.74 | 39.62 ± 1.43 | 33.73 ± 7.23 | MS, RI |
50 | 1486 | 1500 | pentadecane | 0.82 ± 0.45 | 1.03 ± 0.48 | 0.21 ± 0.12 | 0.37 ± 0.19 | 0.48 ± 0.32 | - | - | - | - | MS, RI, Std |
51 | 1489 | 1500 | α-muurolene | - | - | - | - | - | 0.86 ± 0.27 | 0.66 ± 0.36 | 1.01 ± 0.14 | 1.24 ± 0.06 | MS, RI |
52 | 1493 | 1505 | (E,E)-α-farnesene | - | - | - | - | - | 0.56 ± 0.10 | 0.99 ± 0.43 | 0.84 ± 0.02 | 0.60 ± 0.09 | MS, RI, Std |
53 | 1500 | 1515 | β-curcumene | - | - | - | - | - | 0.78 ± 0.31 | 0.37 ± 0.27 | 0.92 ± 0.10 | 0.21 ± 0.03 | MS, RI |
54 | 1507 | 1522 | β-sesquiphellandrene | - | - | - | - | - | 3.46 ± 0.97 | 2.02 ± 0.15 | 5.94 ± 0.04 | 3.13 ± 0.56 | MS, RI |
55 | 1509 | 1523 | δ-cadinene | 0.11 ± 0.07 | 1.12 ± 0.39 | 0.63 ± 0.35 | 2.03 ± 0.45 | 0.17 ± 0.10 | 0.10 ± 0.00 | 0.10 ± 0.00 | 0.71 ± 0.05 | 0.03 ± 0.01 | MS, RI |
56 | 1547 | 1561 | germacrene B | - | - | - | - | - | 0.07 ± 0.06 | 0.34 ± 0.24 | 0.12 ± 0.07 | 0.13 ± 0.07 | MS, RI |
57 | 1586 | 1600 | hexadecane | 2.21 ± 1.06 | 1.48 ± 0.71 | 0.88 ± 0.36 | 0.99 ± 0.52 | 1.29 ± 0.86 | - | - | - | - | MS, RI, Std |
58 | 1699 | 1700 | heptadecane | 5.38 ± 4.08 | 1.22 ± 0.81 | 0.85 ± 0.55 | 0.64 ± 0.37 | 0.89 ± 0.58 | - | - | - | - | MS, RI, Std |
Total % | 99.51 ± 0.18 | 99.18± 0.32 | 98.64 ± 0.64 | 99.73 ± 0.11 | 99.73 ± 0.14 | 99.06 ± 0.91 | 98.05 ± 0.52 | 99.47 ± 0.23 | 99.08 ± 0.43 |
Principal Components | Eigenvalue | Proportion of Total Variance (%) | Cumulative Proportion of Total Variance (%) |
---|---|---|---|
F1 | 9.575 | 45.597 | 45.597 |
F2 | 5.852 | 27.868 | 73.465 |
F3 | 3.424 | 16.307 | 89.772 |
F4 | 2.148 | 10.228 | 100.00 |
Variables | Contribution of the Variables (%) | Squared Cosines of the Variables * | ||||||
---|---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F1 | F2 | F3 | F4 | |
α-thujene | 0.059 | 3.461 | 20.992 | 3.395 | 0.006 | 0.203 | 0.719 | 0.073 |
α-pinene | 5.847 | 6.635 | 1.363 | 0.241 | 0.560 | 0.388 | 0.047 | 0.005 |
sabinene | 2.758 | 7.930 | 3.957 | 6.345 | 0.264 | 0.464 | 0.136 | 0.136 |
limonene | 3.377 | 1.984 | 3.633 | 20.304 | 0.323 | 0.116 | 0.124 | 0.436 |
(E)-β-ocimene | 0.075 | 1.052 | 26.445 | 1.193 | 0.007 | 0.062 | 0.906 | 0.026 |
γ-terpinene | 2.717 | 10.184 | 3.936 | 0.424 | 0.260 | 0.596 | 0.135 | 0.009 |
nonanal | 7.633 | 1.236 | 0.217 | 8.815 | 0.731 | 0.072 | 0.007 | 0.189 |
decanal | 7.440 | 4.369 | 0.172 | 1.209 | 0.712 | 0.256 | 0.006 | 0.026 |
(E)-2-decanal | 3.320 | 8.718 | 0.547 | 7.133 | 0.318 | 0.510 | 0.019 | 0.153 |
α-copaene | 0.005 | 16.126 | 0.816 | 1.298 | 0.000 | 0.944 | 0.028 | 0.028 |
7-epi-sesquiterpene | 6.753 | 1.033 | 7.608 | 1.507 | 0.647 | 0.060 | 0.261 | 0.032 |
tetradecane | 5.307 | 6.955 | 2.478 | 0.000 | 0.508 | 0.407 | 0.085 | 0.000 |
methyl eugenol | 6.544 | 5.017 | 0.560 | 2.819 | 0.627 | 0.294 | 0.019 | 0.061 |
β-caryophyllene | 1.347 | 4.182 | 0.449 | 28.441 | 0.129 | 0.245 | 0.015 | 0.611 |
trans-aα-bergamotene | 7.245 | 0.099 | 2.819 | 9.497 | 0.694 | 0.006 | 0.097 | 0.204 |
ar-curcumene | 9.565 | 0.020 | 0.217 | 3.519 | 0.916 | 0.001 | 0.007 | 0.076 |
α-zingiberene | 8.588 | 1.147 | 2.987 | 0.385 | 0.822 | 0.067 | 0.102 | 0.008 |
pentadecane | 0.422 | 6.462 | 16.937 | 0.067 | 0.040 | 0.378 | 0.580 | 0.001 |
δ-cadinene | 8.596 | 2.092 | 1.590 | 0.002 | 0.823 | 0.122 | 0.054 | 0.000 |
hexadecane | 5.762 | 6.300 | 2.239 | 0.136 | 0.552 | 0.369 | 0.077 | 0.003 |
heptadecane | 6.640 | 5.000 | 0.040 | 3.269 | 0.636 | 0.293 | 0.001 | 0.070 |
Total | 100.000 | 100.000 | 100.000 | 100.000 | 9.575 | 5.852 | 3.424 | 2.148 |
Results by Cluster | Cluster 1 | Cluster 2 |
---|---|---|
Objects | A1, A3, A5 | A2, A4 |
Sum of weights | 3 | 2 |
Within-class variance | 270.81 | 59.25 |
Maximum distance to centroid | 17.97 | 5.44 |
Cluster centroids > 1.0 | sabinene (3.90), limonene (6.54), (E)-β-ocimene (1.00), α-copaene (2.04), nonanal (41.45), decanal (6.87), 7-epi-sesquithujene (1.43), tetradecane (2.06), β-caryophyllene (7.08), trans-α-bergamotene (0.76), ar-curcumene (17.95), α-zingiberene (1.03), hexadecane (1.46), heptadecane (2.37) | α-pinene (2.84), sabinene (8.62), limonene (3.91) (E)-β-ocimene (1.02), γ-terpinene (1.15), nonanal (21.36), decanal (2.56), α-copaene (1.41), 7-epi-sesquithujene (3.26), tetradecane (1.77), β-caryophyllene (7.12), trans-α-bergamotene (1.31), ar-curcumene (35.53), α-zingiberene (1.88), δ-cadinene (1.58), hexadecane (1.24) |
Principal Components | Eigenvalue | Proportion of Total Variance (%) | Cumulative Proportion of Total Variance (%) |
---|---|---|---|
F1 | 15.743 | 56.227 | 56.227 |
F2 | 7.018 | 25.065 | 81.292 |
F3 | 5.238 | 18.708 | 100.000 |
Variables | Contribution of the Variables (%) | Squared Cosines of the Variables * | ||||
---|---|---|---|---|---|---|
F1 | F2 | F3 | F1 | F2 | F3 | |
α-thujene | 2.737 | 0.580 | 10.088 | 0.431 | 0.041 | 0.528 |
α-pinene | 2.540 | 0.766 | 10.428 | 0.400 | 0.054 | 0.546 |
sabinene | 2.087 | 1.079 | 11.372 | 0.329 | 0.076 | 0.596 |
(E)-3-hexenyl acetate | 0.000 | 5.361 | 11.907 | 0.000 | 0.376 | 0.624 |
(E)-β-ocimene | 5.340 | 2.221 | 0.066 | 0.841 | 0.156 | 0.003 |
γ-terpinene | 1.412 | 1.709 | 12.555 | 0.222 | 0.120 | 0.658 |
cis-linalool oxide | 4.916 | 3.121 | 0.136 | 0.774 | 0.219 | 0.007 |
trans-linalool oxide | 4.916 | 3.121 | 0.136 | 0.774 | 0.219 | 0.007 |
linalool | 4.916 | 3.121 | 0.136 | 0.774 | 0.219 | 0.007 |
trans-linalool oxide | 4.944 | 3.072 | 0.114 | 0.778 | 0.216 | 0.006 |
cyclosativene | 5.852 | 0.104 | 1.363 | 0.921 | 0.007 | 0.071 |
α-ylangene | 0.117 | 13.896 | 0.121 | 0.018 | 0.975 | 0.006 |
α-copaene | 6.123 | 0.499 | 0.019 | 0.964 | 0.035 | 0.001 |
7-epi-sesquithujene | 1.313 | 4.287 | 9.402 | 0.207 | 0.301 | 0.493 |
β-caryophyllene | 6.146 | 0.300 | 0.216 | 0.968 | 0.021 | 0.011 |
β-cedrene | 3.488 | 0.880 | 7.428 | 0.549 | 0.062 | 0.389 |
trans-α-bergamotene | 5.854 | 0.160 | 1.281 | 0.922 | 0.011 | 0.067 |
α-humulene | 6.027 | 0.000 | 0.976 | 0.949 | 0.000 | 0.051 |
(E)-β-farnesene | 2.140 | 9.446 | 0.005 | 0.337 | 0.663 | 0.000 |
trans-cadina-1(6),4-diene | 3.593 | 5.625 | 0.756 | 0.566 | 0.395 | 0.040 |
γ-muurolene | 0.000 | 14.161 | 0.118 | 0.000 | 0.994 | 0.006 |
ar-curcumene | 5.230 | 0.259 | 3.023 | 0.823 | 0.018 | 0.158 |
α-zingiberene | 6.186 | 0.013 | 0.482 | 0.974 | 0.001 | 0.025 |
α-muurolene | 3.120 | 2.628 | 6.191 | 0.491 | 0.184 | 0.324 |
(E,E)-α-farnesene | 1.071 | 11.638 | 0.281 | 0.169 | 0.817 | 0.015 |
β-curcumene | 2.018 | 1.685 | 10.766 | 0.318 | 0.118 | 0.564 |
β-sesquiphellandrene | 5.343 | 1.860 | 0.539 | 0.841 | 0.131 | 0.028 |
δ-cadinene | 2.571 | 8.410 | 0.096 | 0.405 | 0.590 | 0.005 |
Total | 100.000 | 100.000 | 100.000 | 15.743 | 7.018 | 5.238 |
Results by Cluster | Cluster 1 | Cluster 2 |
---|---|---|
Objects | B1, B3, B4 | B2 |
Sum of weights | 3 | 1 |
Within-class variance | 84.80 | 0.00 |
Maximum distance to centroid | 8.73 | 0.00 |
Cluster centroids > 1.0 | sabinene (2.29), cyclosativene (1.21), α-copaene (2.56), 7-epi-sesquithujene (6.69), β-caryophyllene (13.30), α-humulene (1.77), γ-muurolene (6.44), ar-curcumene (16.69), α-zingiberene (33.67), α-muurolene (1.04),β-sesquiphellandrene (4.18) | α-thujene (1.32), α-pinene (1.45), sabinene (4.23), (E)-β-ocimene (5.74), trans-linalool oxide (3.74), linalool (1.72), trans-linalool oxide (1.15), α-copaene (2.04), 7-epi-sesquithujene (6.02), β-caryophyllene (10.57), trans-α-bergamotene (1.15), γ-muurolene (4.85), ar-curcumene (26.50), α-zingiberene (16.50), β-sesquiphellandrene (2.02) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ataide, L.M.S.; Tabanca, N.; Canon, M.A.; Schnell, E.Q.; Narvaez, T.I.; Cloonan, K.R.; Kendra, P.E.; Carrillo, D.; Revynthi, A.M. Volatile Characterization of Lychee Plant Tissues (Litchi chinensis) and the Effect of Key Compounds on the Behavior of the Lychee Erinose Mite (Aceria litchii). Biomolecules 2023, 13, 933. https://doi.org/10.3390/biom13060933
Ataide LMS, Tabanca N, Canon MA, Schnell EQ, Narvaez TI, Cloonan KR, Kendra PE, Carrillo D, Revynthi AM. Volatile Characterization of Lychee Plant Tissues (Litchi chinensis) and the Effect of Key Compounds on the Behavior of the Lychee Erinose Mite (Aceria litchii). Biomolecules. 2023; 13(6):933. https://doi.org/10.3390/biom13060933
Chicago/Turabian StyleAtaide, Livia M. S., Nurhayat Tabanca, Maria A. Canon, Elena Q. Schnell, Teresa I. Narvaez, Kevin R. Cloonan, Paul E. Kendra, Daniel Carrillo, and Alexandra M. Revynthi. 2023. "Volatile Characterization of Lychee Plant Tissues (Litchi chinensis) and the Effect of Key Compounds on the Behavior of the Lychee Erinose Mite (Aceria litchii)" Biomolecules 13, no. 6: 933. https://doi.org/10.3390/biom13060933
APA StyleAtaide, L. M. S., Tabanca, N., Canon, M. A., Schnell, E. Q., Narvaez, T. I., Cloonan, K. R., Kendra, P. E., Carrillo, D., & Revynthi, A. M. (2023). Volatile Characterization of Lychee Plant Tissues (Litchi chinensis) and the Effect of Key Compounds on the Behavior of the Lychee Erinose Mite (Aceria litchii). Biomolecules, 13(6), 933. https://doi.org/10.3390/biom13060933