Methods for Radiolabeling Nanoparticles (Part 3): Therapeutic Use
Abstract
:1. Introduction
2. Radiolabeling of NPs with Auger’s Electron-Emitting Isotopes
2.1. Radiolabeling with Copper-64
2.1.1. Direct Radiolabeling
2.1.2. Indirect Radiolabeling
2.1.3. Discussion
3. Radiolabeling of NPs with Alpha-Emitting Isotopes
3.1. Radiolabeling with Astatine-211
3.1.1. Direct Radiolabeling
3.1.2. Discussion
3.2. Radiolabeling with Actinium-225
3.2.1. Direct Radiolabeling
3.2.2. Indirect Radiolabeling
3.2.3. Radiolabeling by Encapsulation
3.2.4. Discussion
3.3. Radiolabeling with Radium-223
3.3.1. Direct Radiolabeling
3.3.2. Discussion
4. Radiolabeling of NPs with Beta-Emitting Isotopes
4.1. Radiolabeling with Gold-198
4.1.1. Direct Radiolabeling
4.1.2. Discussion
4.2. Radiolabeling with Holmium-166
4.2.1. Direct Radiolabeling
4.2.2. Discussion
4.3. Radiolabeling with Yttrium-90
4.3.1. Direct Radiolabeling
4.3.2. Indirect Radiolabeling
4.3.3. Discussion
4.4. Radiolabeling with Lutetium-177
4.4.1. Direct Radiolabeling
4.4.2. Indirect Radiolabeling
4.4.3. Radiolabeling by Encapsulation
4.4.4. Discussion
4.5. Radiolabeling with Iodine-131
4.5.1. Direct Radiolabeling
4.5.2. Indirect Radiolabeling
4.5.3. Radiolabeling by Encapsulation
4.5.4. Discussion
5. General Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goel, M.; Mackeyev, Y.; Krishnan, S. Radiolabeled nanomaterial for cancer diagnostics and therapeutics: Principles and concepts. Cancer Nanotechnol. 2023, 1, 15. [Google Scholar]
- Dai, W.; Zhang, J.; Wang, Y.; Jiao, C.; Song, Z.; Ma, Y.; Ding, Y.; Zhang, Z.; He, X. Radiolabeling of Nanomaterials: Advantages and Challenges. Front. Toxicol. 2021, 3, 753316. [Google Scholar] [CrossRef]
- Varani, M.; Bentivoglio, V.; Lauri, C.; Ranieri, D.; Signore, A. Methods for Radiolabelling Nanoparticles: SPECT Use (Part 1). Biomolecules 2022, 12, 1522. [Google Scholar] [CrossRef] [PubMed]
- Bentivoglio, V.; Varani, M.; Lauri, C.; Ranieri, D.; Signore, A. Methods for Radiolabelling Nanoparticles: PET Use (Part 2). Biomolecules 2022, 12, 1517. [Google Scholar] [CrossRef] [PubMed]
- Ku, A.; Facca, V.J.; Cai, Z.; Reilly, R.M. Auger electrons for cancer therapy—A review. EJNMMI Radiopharm. Chem. 2019, 4, 27. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Zhao, J.; Tian, M.; Song, S.; Zhang, R.; Gupta, S.; Tan, D.; Shen, H.; Ferrari, M.; Li, C. Radio-photothermal therapy mediated by a single compartment nanoplatform depletes tumor-initiating cells and reduces lung metastasis in the orthotopic 4T1 breast tumor model. Nanoscale 2015, 7, 9438–9447. [Google Scholar] [CrossRef] [Green Version]
- Gaikwad, G.; Rohra, N.; Kumar, C.; Jadhav, S.; Sarma, H.D.; Borade, L.; Chakraborty, S.; Bhagwat, S.; Dandekar, P.; Jain, R.; et al. A facile strategy for synthesis of a broad palette of intrinsically radiolabeled chitosan nanoparticles for potential use in cancer theranostics. J. Drug Deliv. Sci. Technol. 2021, 63, 1773–2247. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, Q.; Cheng, Y.; Xiang, L.; Shen, G.; Wu, X.; Cai, H.; Li, D.; Zhu, H.; Zhang, R.; et al. 64Cu-labeled melanin nanoparticles for PET/CT and radionuclide therapy of tumor. Nanomedicine 2020, 29, 102248. [Google Scholar] [CrossRef]
- Gholami, Y.H.; Josephson, L.; Akam, E.A.; Caravan, P.; Wilks, M.Q.; Pan, X.Z.; Maschmeyer, R.; El Kolnick, A.; Fakhri, G.; Normandin, M.D.; et al. A Chelate-Free Nano-Platform for Incorporation of Diagnostic and Therapeutic Isotopes. Int. J. Nanomed. 2020, 15, 31–47. [Google Scholar] [CrossRef] [Green Version]
- Silva, W.M.; Ribeiro, H.; Taha-Tijerina, J.J. Potential Production of Theranostic Boron Nitride Nanotubes (64Cu-BNNTs) Radiolabeled by Neutron Capture. Nanomaterial 2021, 11, 2907. [Google Scholar] [CrossRef]
- Xie, Y.; Riedinger, A.; Prato, M.; Casu, A.; Genovese, A.; Guardia, P.; Sottini, S.; Sangregorio, C.; Miszta, K.; Ghosh, S.; et al. Copper sulfide nanocrystals with tunable composition by reduction of covellite nanocrystals with Cu+ ions. J. Am. Chem. Soc. 2013, 135, 17630–17637. [Google Scholar] [CrossRef] [PubMed]
- Riedinger, A.; Avellini, T.; Curcio, A.; Asti, M.; Xie, Y.; Tu, R.; Marras, S.; Lorenzoni, A.; Rubagotti, S.; Iori, M.; et al. Post-Synthesis Incorporation of ⁶⁴Cu in CuS Nanocrystals to Radiolabel Photothermal Probes: A Feasible Approach for Clinics. J. Am. Chem. Soc. 2015, 137, 15145–15151. [Google Scholar] [CrossRef] [Green Version]
- Reissig, F.; Zarschler, K.; Hübner, R.; Pietzsch, H.J.; Kopka, K.; Mamat, C. Sub-10 nm Radiolabeled Barium Sulfate Nanoparticles as Carriers for Theranostic Applications and Targeted Alpha Therapy. ChemistryOpen 2020, 9, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Cipreste, M.F.; de Rezende, M.R.; Hneda, M.L.; Peres, A.M.; Cotta, A.A.C.; de Carvalho Teixeira, V.; de Almeida Macedo, W.A.; Barros de Sousa, E.M. Functionalized-radiolabeled hydroxyapatite/tenorite nanoparticles as theranostic agents for osteosarcoma. Ceram. Int. 2018, 44, 17800–17811. [Google Scholar] [CrossRef]
- Rossin, R.; Pan, D.; Qi, K.; Turner, J.L.; Sun, X.; Wooley, K.L.; Welch, M.J. 64Cu-labeled folate-conjugated shell cross-linked nanoparticles for tumor imaging and radiotherapy: Synthesis, radiolabeling, and biologic evaluation. J. Nucl. Med. 2005, 46, 1210–1218. [Google Scholar] [PubMed]
- Capriotti, G.; Piccardo, A.; Giovannelli, E.; Signore, A. Targeting copper in cancer imaging and therapy: A new theragnostic agent. J. Clin. Med. 2022, 12, 223. [Google Scholar] [CrossRef]
- Poty, S.; Francesconi, L.C.; McDevitt, M.R.; Morris, M.J.; Lewis, J.S. α-Emitters for Radiotherapy: From Basic Radiochemistry to Clinical Studies-Part 1. J. Nucl. Med. 2018, 59, 878–884. [Google Scholar] [CrossRef] [Green Version]
- Hamoudeh, M.; Kamleh, M.A.; Diab, R.; Fessi, H. Radionuclide delivery systems for nuclear imaging and radiotherapy of cancer. Adv. Drug Deliv. Rev. 2008, 60, 1329–1346. [Google Scholar] [CrossRef]
- Dziawer, L.; Koźmiński, P.; Męczyńska-Wielgosz, S.; Pruszyński, M.; Łyczko, M.; Wąs, B.; Celichowski, G.; Grobelny, J.; Jastrzębski, J.; Bilewicz, A. Gold nanoparticle bioconjugates labelled with 211At for targeted alpha therapy. RSC Adv. 2017, 7, 41024–41032. [Google Scholar] [CrossRef] [Green Version]
- Dziawer, Ł.; Majkowska-Pilip, A.; Gaweł, D.; Godlewska, M.; Pruszyński, M.; Jastrzębski, J.; Wąs, B.; Bilewicz, A. Trastuzumab-Modified Gold Nanoparticles Labeled with 211At as a Prospective Tool for Local Treatment of HER2-Positive Breast Cancer. Nanomaterial 2019, 9, 632. [Google Scholar] [CrossRef] [Green Version]
- Kato, H.; Huang, X.; Kadonaga, Y.; Katayama, D.; Ooe, K.; Shimoyama, A.; Kabayama, K.; Toyoshima, A.; Shinohara, A.; Hatazawa, J.; et al. Intratumoral administration of astatine-211-labeled gold nanoparticle for alpha therapy. J. Nanobiotechnol. 2021, 19, 223. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhou, Z.; Feng, Y.; Zhao, X.G.; Vaidyanathan, G.; Zalutsky, M.R.; Vo-Dinh, T. Gold Nanostars: A novel platform for developing 211At-labeled agents for targeted alpha-particle therapy. Int. J. Nanomed. 2021, 16, 7297–7305. [Google Scholar] [CrossRef] [PubMed]
- Kucka, J.; Hrubý, M.; Konák, C.; Kozempel, J.; Lebeda, O. Astatination of nanoparticles containing silver as possible carriers of 211At. Appl. Radiat. Isot. 2006, 64, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Cędrowska, E.; Pruszyński, M.; Gawęda, W.; Żuk, M.; Krysiński, P.; Bruchertseifer, F.; Morgenstern, A.; Karageorgou, M.A.; Bouziotis, P.; Bilewicz, A. Trastuzumab Conjugated Superparamagnetic Iron Oxide Nanoparticles Labeled with 225Ac as a Perspective Tool for Combined α-Radioimmunotherapy and Magnetic Hyperthermia of HER2-Positive Breast Cancer. Molecules 2020, 25, 1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sofou, S.; Thomas, J.L.; Lin, H.Y.; McDevitt, M.R.; Scheinberg, D.A.; Sgouros, G. Engineered liposomes for potential alphMatsa-particle therapy of metastatic cancer. J. Nucl. Med. 2004, 45, 253–260. [Google Scholar] [PubMed]
- McLaughlin, M.F.; Woodward, J.; Boll, R.A.; Wall, J.S.; Rondinone, A.J.; Kennel, S.J.; Mirzadeh, S.; Robertson, J.D. Gold-coated lanthanide phosphate nanoparticles for targeted alpha generator radiotherapy. PLoS ONE 2013, 8, e54531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodward, J.; Kennel, S.J.; Stuckey, A.; Osborne, D.; Wall, J.; Rondinone, A.J.; Standaert, R.F.; Mirzadeh, S. LaPO4 nanoparticles doped with actinium-225 that partially sequester daughter radionuclides. Bioconjug. Chem. 2011, 22, 766–776. [Google Scholar] [CrossRef]
- Salvanou, E.A.; Stellas, D.; Tsoukalas, C.; Mavroidi, B.; Paravatou-Petsotas, M.; Kalogeropoulos, N.; Xanthopoulos, S.; Denat, F.; Laurent, G.; Bazzi, R.; et al. A Proof-of-concept study on the therapeutic potential of Au nanoparticles radiolabeled with the Alpha-Emitter Actinium-225. Pharmaceutics 2020, 12, 188. [Google Scholar] [CrossRef] [Green Version]
- Ruggiero, A.; Villa, C.H.; Holland, J.P.; Sprinkle, S.R.; May, C.; Lewis, J.S.; Scheinberg, D.A.; McDevitt, M.R. Imaging and treating tumor vasculature with targeted radiolabeled carbon nanotubes. Int. J. Nanomed. 2010, 5, 783–802. [Google Scholar]
- Mulvey, J.J.; Villa, C.H.; McDevitt, M.R.; Escorcia, F.E.; Casey, E.; Scheinberg, D.A. Self-assembly of carbon nanotubes and antibodies on tumours for targeted amplified delivery. Nat. Nanotechnol. 2013, 8, 763–771. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Jiménez, T.; Ferro-Flores, G.; Morales-Ávila, E.; Isaac-Olivé, K.; Ocampo-García, B.; Aranda-Lara, L.; Santos-Cuevas, C.; Luna-Gutiérrez, M.; De Nard, L.; Rosato, A.; et al. 225Ac-rHDL Nanoparticles: A Potential Agent for Targeted Alpha-Particle Therapy of Tumors Overexpressing SR-BI Proteins. Molecules 2022, 7, 2156. [Google Scholar] [CrossRef]
- Toro-González, M.; Dame, A.N.; Mirzadeh, S.; Rojas, J.V. Encapsulation and retention of 225Ac, 223Ra, 227Th, and decay daughters in zircon-type gadolinium vanadate nanoparticles. Radiochim. Acta 2020, 12, 967–977. [Google Scholar] [CrossRef]
- Henriksen, G.; Schoultz, B.W.; Michaelsen, T.E.; Bruland, Ø.S.; Larsen, R.H. Sterically stabilized liposomes as a carrier for alpha-emitting radium and actinium radionuclides. Nucl Med Biol 2004, 31, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Piotrowska, A.; Leszczuk, E.; Bruchertseifer, F.; Morgenstern, A.; Bilewicz, A. Functionalized NaA nanozeolites labeled with 224, 225Ra for targeted alpha therapy. J. Nanopart. Res. 2013, 15, 2082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souza, B.N.R.F.; Ribeiro, E.R.F.R.; da Silva de Barros, A.O.; Pijeira, M.S.O.; Kenup-Hernandes, H.O.; Ricci-Junior, E.; Diniz Filho, J.F.S.; Dos Santos, C.C.; Alencar, L.M.R.; Attia, M.F.; et al. Nanomicelles of radium dichloride [223Ra]RaCl2 co-loaded with radioactive gold [198Au]Au nanoparticles for targeted alpha-Beta radionuclide therapy of osteosarcoma. Polymer 2022, 14, 14054. [Google Scholar] [CrossRef] [PubMed]
- Gholami, Y.H.; Maschmeyer, R.; Kuncic, Z. Radio-enhancement effects by radiolabeled nanoparticles. Sci. Rep. 2019, 9, 14346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gawęda, W.; Pruszyński, M.; Cędrowska, E.; Rodak, M.; Majkowska-Pilip, A.; Gaweł, D.; Bruchertseifer, F.; Morgenstern, A.; Bilewicz, A. Trastuzumab modified barium ferrite magnetic nanoparticles labeled with radium-223: A new potential radiobioconjugate for alpha radioimmunotherapy. Nanomaterial 2020, 10, 2067. [Google Scholar] [CrossRef]
- Suchánková, P.; Kukleva, E.; Nykl, E.; Nykl, P.; Sakmár, M.; Vlk, M.; Kozempel, J. Hydroxyapatite and titanium dioxide nanoparticles: Radiolabelling and in vitro stability of prospective theranostic nanocarriers for 223Ra and 99mTc. Nanomaterial 2020, 10, 1632. [Google Scholar] [CrossRef]
- Pijeira, M.S.O.; de Menezes, A.S.; Fechine, P.B.A.; Shah, S.Q.; Ilem-Ozdemir, D.; López, E.O.; Maricato, J.T.; Rosa, D.S.; Ricci-Junior, E.; Junior, S.A.; et al. Folic acid-functionalized graphene quantum dots: Synthesis, characterization, radiolabeling with radium-223 and antiviral effect against Zika virus infection. Eur. J. Pharm. Biopharm. 2022, 180, 91–100. [Google Scholar] [CrossRef]
- Mokhodoeva, O.; Vlk, M.; Málková, E.; Kukleva, E.; Mičolová, P.; Štamberg, K.; Šlouf, M.; Dzhenloda, R.; Kozempel, J. Study of 223 Ra uptake mechanism by Fe 3 O 4 nanoparticles: Towards new prospective theranostic SPIONs. J. Nanopart. Res. 2016, 18, 301. [Google Scholar] [CrossRef]
- Tafreshi, N.K.; Pandya, D.N.; Tichacek, C.J.; Budzevich, M.M.; Wang, Z.; Reff, J.N.; Engelman, R.W.; Boulware, D.C.; Chiappori, A.A.; Strosberg, J.R.; et al. Preclinical evaluation of [225Ac] Ac-DOTA-TATE for treatment of lung neuroendocrine neoplasms. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 3408–3421. [Google Scholar] [CrossRef] [PubMed]
- Morgenstern, A.; Apostolidis, C.; Kratochwil, C.; Sathekge, M.; Krolicki, L.; Bruchertseifer, F. An overview of targeted alpha therapy with 225-actinium and 213-bismuth. Curr. Radiopharm. 2018, 11, 200–208. [Google Scholar] [CrossRef]
- Sciuto, R.; Rea, S.; Ungania, S.; Testa, A.; Dini, V.; Tabocchini, M.A.; Patrono, C.; Soriani, A.; Palma, V.; Marconi, R.; et al. The role of dosimetry and biological effects in metastatic castration–resistant prostate cancer (mCRPC) patients treated with 223Ra: First in human study. J. Exp. Clin. Cancer Res. 2021, 40, 281. [Google Scholar] [CrossRef]
- Brito, A.E.; Etchebehere, E. Radium-223 as an approved modality for treatment of bone metastases. Semin. Nucl. Med. 2020, 2, 177–192. [Google Scholar] [CrossRef]
- Kozempel, J.; Sakmár, M.; Janská, T.; Vlk, M. Study of 211Bi and 211Pb Recoils Release from 223Ra Labelled TiO2 Nanoparticles. Materials 2022, 16, 343. [Google Scholar] [CrossRef]
- Pellico, J.; Gawne, P.J.; de Rosales, R.T.M. Radiolabelling of nanomaterials for medical imaging and therapy. Chem. Soc. Rev. 2021, 50, 3355–3423. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.; Zhang, Y.; Sun, J.; Cai, W. Molecular imaging and therapy of cancer with radiolabeled nanoparticles. Nano Today 2009, 4, 399–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.K.; Minc, L.D.; Nigavekar, S.S.; Kariapper, M.S.; Nair, B.M.; Schipper, M.; Cook, A.C.; Lesniak, W.G.; Balogh, L.P. Fabrication of {198Au0} radioactive composite nanodevices and their use for nanobrachytherapy. Nanomedicine 2008, 4, 57–69. [Google Scholar] [CrossRef] [Green Version]
- Chanda, N.; Kan, P.; Watkinson, L.D.; Shukla, R.; Zambre, A.; Carmack, T.L.; Engelbrecht, H.; Lever, J.R.; Katti, K.; Fent, G.M.; et al. Radioactive gold nanoparticles in cancer therapy: Therapeutic efficacy studies of GA-198AuNP nanoconstruct in prostate tumor-bearing mice. Nanomedicine 2010, 6, 201–209. [Google Scholar] [CrossRef]
- Shukla, R.; Chanda, N.; Zambre, A.; Upendran, A.; Katti, K.; Kulkarni, R.R.; Nune, S.K.; Casteel, S.W.; Smith, C.J.; Vimal, J.; et al. Laminin receptor specific therapeutic gold nanoparticles (198AuNP-EGCg) show efficacy in treating prostate cancer. Proc. Natl. Acad. Sci. USA 2012, 109, 12426–12431. [Google Scholar] [CrossRef]
- Al-Yasiri, A.Y.; Khoobchandani, M.; Cutler, C.S.; Watkinson, L.; Carmack, T.; Smith, C.J.; Kuchuk, M.; Loyalka, S.K.; Lugão, A.B.; Katti, K.V. Mangiferin functionalized radioactive gold nanoparticles (MGF-198AuNPs) in prostate tumor therapy: Green nanotechnology for production, in vivo tumor retention and evaluation of therapeutic efficacy. Dalton. Trans. 2017, 46, 14561–14571. [Google Scholar] [CrossRef]
- Chakravarty, R.; Chakraborty, S.; Guleria, A.; Kumar, C.; Kunwar, A.; Nair, V.K.V.; Sarma, H.D.; Dash, A. Clinical scale synthesis of intrinsically radiolabeled and cyclic RGD peptide functionalized 198Au nanoparticles for targeted cancer therapy. Nucl. Med. Biol. 2019, 72–73, 1–10. [Google Scholar] [CrossRef]
- Schäffler, M.; Sousa, F.; Wenk, A.; Sitia, L.; Hirn, S.; Schleh, C.; Haberl, N.; Violatto, M.; Canovi, M.; Andreozzi, P.; et al. Blood protein coating of gold nanoparticles as potential tool for organ targeting. Biomaterials 2014, 35, 3455–3466. [Google Scholar] [CrossRef]
- Rambanapasi, C.; Barnard, N.; Grobler, A.; Buntting, H.; Sonopo, M.; Jansen, D.; Jordaan, A.; Steyn, H.; Zeevaart, J.R. Dual radiolabeling as a technique to track nanocarriers: The case of gold nanoparticles. Molecules 2015, 20, 12863–12879. [Google Scholar] [CrossRef] [Green Version]
- Radović, M.; Calatayud, M.P.; Goya, G.F.; Ibarra, M.R.; Antić, B.; Spasojević, V.; Nikolić, N.; Janković, D.; Mirković, M.; Vranješ-Đurić, S. Preparation and in vivo evaluation of multifunctional ⁹⁰Y-labeled magnetic nanoparticles designed for cancer therapy. J. Biomed. Mater. Res. A 2015, 103, 126–134. [Google Scholar] [CrossRef]
- Ognjanović, M.; Radović, M.; Mirković, M.; Prijović, Ž.; Puerto Morales, M.D.; Čeh, M.; Vranješ-Đurić, S.; Antić, B. 99mTc-, 90Y-, and 177Lu-Labeled Iron Oxide Nanoflowers Designed for Potential Use in Dual Magnetic Hyperthermia/Radionuclide Cancer Therapy and Diagnosis. ACS Appl. Mater. Interfaces 2019, 11, 41109–41117. [Google Scholar] [CrossRef] [PubMed]
- Radović, M.; Mirković, M.; Perić, M.; Janković, D.; Vukadinović, A.; Stanković, D.; Petrović, Đ.; Bošković, M.; Antić, B.; Marković, M.; et al. Design and preparation of 90Y-labeled imidodiphosphate- and inositol hexaphosphate-coated magnetic nanoparticles for possible medical applications. J. Mater. Chem. B 2017, 5, 8738–8747. [Google Scholar] [CrossRef] [PubMed]
- Soni, A.K.; Yadav, K.K.; Singh, B.P.; Joshi, R.; Chakraborty, S.; Chakravarty, R.; Nagaraja, N.K.; Singh, D.K.; Kain, V.; Dash, A.; et al. Smart YPO4:Er–Yb Nanophosphor for Optical Heating, Hyperthermia, Security Ink, Cancer Endoradiotherapy, and Uranyl Recovery. ACS Appl. Nano Mater. 2021, 4, 850–860. [Google Scholar] [CrossRef]
- Li, L.; Wartchow, C.A.; Danthi, S.N.; Shen, Z.; Dechene, N.; Pease, J.; Choi, H.S.; Doede, T.; Chu, P.; Ning, S.; et al. A novel antiangiogenesis therapy using an integrin antagonist or anti-Flk-1 antibody coated 90Y-labeled nanoparticles. Int. J. Radiat. Oncol. Biol. Phys 2004, 58, 1215–1227. [Google Scholar] [CrossRef]
- Buckway, B.; Frazier, N.; Gormley, A.J.; Ray, A.; Ghandehari, H. Gold nanorod-mediated hyperthermia enhances the efficacy of HPMA copolymer-90Y conjugates in treatment of prostate tumors. Nucl. Med. Biol. 2014, 41, 282–289. [Google Scholar] [CrossRef] [Green Version]
- Salvanou, E.A.; Kolokithas-Ntoukas, A.; Liolios, C.; Xanthopoulos, S.; Paravatou-Petsotas, M.; Tsoukalas, C.; Avgoustakis, K.; Bouziotis, P. Preliminary Evaluation of Iron Oxide Nanoparticles Radiolabeled with 68Ga and 177Lu as Potential Theranostic Agents. Nanomaterials 2022, 12, 2490. [Google Scholar] [CrossRef]
- Mirković, M.; Milanović, Z.; Perić, M.; Vranješ-Đurić, S.; Ognjanović, M.; Antić, B.; Kuraica, M.; Krstić, I.; Kubovcikova, M.; Antal, I.; et al. Design and preparation of proline, tryptophan, and poly-l-lysine functionalized magnetic nanoparticles and their radiolabeling with 131I and 177Lu for potential theranostic use. Int. J. Pharm. 2022, 628, 122288. [Google Scholar] [CrossRef] [PubMed]
- Radovic, M.; Mirković, M.; Nikolić, A.; Kuraica, M.; Iskrenović, P.; Milanović, Z.; Vranjes-Durić, S.; Perić, M. Transmittance Measurements in Non-alternating Magnetic Field as Reliable Method for Determining of Heating Properties of Phosphate and Phosphonate Coated Fe3O4 Magnetic Nanoparticles. J. Inorg Organomet. Polym. Mater. 2021, 31, 4426–4433. [Google Scholar] [CrossRef]
- Joshi, R.; Patra, S.; Srivastava, M.; Singh, B.P.; Chakraborty, A.; Shelar, S.B.; Chakravarty, R.; Chakraborty, S.; Ningthoujam, R.S. Mesoporous NaGdF4/Ho−Yb@m-SiO2 Upconversion Nanophosphors as a Potent Theranostic Probe. ACS Appl. Nano Mater. 2022, 5, 12962–12971. [Google Scholar] [CrossRef]
- Chakravarty, R.; Guleria, A.; Jadhav, S.; Kumar, C.; Debnath, A.K.; Sarma, H.D.; Chakraborty, S. Bioinspired Synthesis of Intrinsically 177-Lu Hybrid Nanoparticles for Potential Cancer Therapy. Ind. Eng. Chem. Res. 2020, 59, 22492–22500. [Google Scholar] [CrossRef]
- Chakraborty, S.; Das, T.; Sarma, H.D.; Venkatesh, M.; Banerjee, S. Preparation and preliminary studies on 177Lu-labeled hydroxyapatite particles for possible use in liver cancer therapy. Nucl. Med. Biol. 2008, 35, 589–597. [Google Scholar] [CrossRef]
- Ge, J.; Chen, L.; Huang, B.; Gao, Y.; Zhou, D.; Zhou, Y.; Chen, C.; Wen, L.; Li, Q.; Zeng, J.; et al. Anchoring Group-Mediated Radiolabeling of Inorganic Nanoparticles-A Universal Method for Constructing Nuclear Medicine Imaging Nanoprobes. ACS Appl. Mater. Interfaces 2022, 14, 8838–8846. [Google Scholar] [CrossRef]
- Gibbens-Bandala, B.; Morales-Avila, E.; Ferro-Flores, G.; Santos-Cuevas, C.; Luna-Gutiérrez, M.; Ramírez-Nava, G.; Ocampo-García, B. Synthesis and Evaluation of 177Lu-DOTA-DN(PTX)-BN for Selective and Concomitant Radio and Drug-Therapeutic Effect on Breast Cancer Cells. Polymer 2019, 11, 1572. [Google Scholar] [CrossRef] [Green Version]
- Mendoza-Nava, H.; Ferro-Flores, G.; de Maria Ramírez, F.; Ocampo-García, B.; Santos-Cuevas, C.; Aranda-Lara, L.; Azorín-Vega, E.; Morales-Avila, E.; Isaac-Olivé, K. 177Lu-Dendrimer Conjugated to Folate and Bombesin with Gold Nanoparticles in the Dendritic Cavity: A Potential Theranostic Radiopharmaceutical.J. Nanomater. 2016, 11, 1687–4110. [Google Scholar] [CrossRef] [Green Version]
- Trujillo-Nolasco, R.M.; Morales-Avila, E.; Ocampo-García, B.E.; Ferro-Flores, G.; Gibbens-Bandala, B.V.; Escudero-Castellanos, A.; Isaac-Olive, K. Preparation and in vitro evaluation of radiolabeled HA-PLGA nanoparticles as novel MTX delivery system for local treatment of rheumatoid arthritis. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 103, 109766. [Google Scholar] [CrossRef]
- Gibbens-Bandala, B.; Morales-Avila, E.; Ferro-Flores, G.; Santos-Cuevas, C.; Meléndez-Alafort, L.; Trujillo-Nolasco, M.; Ocampo-García, B. 177Lu-Bombesin-PLGA (paclitaxel): A targeted controlled-release nanomedicine for bimodal therapy of breast cancer. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 105, 110043. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, L.; Tassano, M.; Cabrera, M.; Zamboni, C.B.; Fernández, M.; Anjos, R.M.; Cabral, P. Development of (177)Lu-DOTA-Dendrimer and Determination of Its Effect on Metal and Ion Levels in Tumor Tissue. Cancer Biother. Radiopharm. 2015, 30, 405–409. [Google Scholar]
- Mendoza-Nava, H.; Ferro-Flores, G.; Ramírez, F.M.; Ocampo-García, B.; Santos-Cuevas, C.; Azorín-Vega, E.; Jiménez-Mancilla, N.; Luna-Gutiérrez, M.; Isaac-Olivé, K. Fluorescent, Plasmonic, and Radiotherapeutic Properties of the 177Lu-Dendrimer-AuNP-Folate-Bombesin Nanoprobe Located Inside Cancer Cells. Mol. Imaging 2017, 16, 1536012117704768. [Google Scholar] [CrossRef] [Green Version]
- Laznickova, A.; Biricova, V.; Laznicek, M.; Hermann, P. Mono(pyridine-N-oxide) DOTA analog and its G1/G4-PAMAM dendrimer conjugates labeled with 177Lu: Radiolabeling and biodistribution studies. Appl. Radiat. Isot. 2014, 84, 70–77. [Google Scholar] [CrossRef]
- Wang, W.; Fliedner, F.P.; Hansen, A.E.; Eliasen, R.; Melander, F.; Kjaer, A.; Andresen, T.L.; Jensen, A.I.; Henriksen, J.R. Preclinical evaluation of cationic DOTA-triarginine-lipid conjugates for theranostic liquid brachytherapy. Nanotheranostics 2020, 4, 142–155. [Google Scholar] [CrossRef]
- Goos, J.A.C.M.; Cho, A.; Carter, L.M.; Dilling, T.R.; Davydova, M.; Mandleywala, K.; Puttick, S.; Gupta, A.; Price, W.S.; Quinn, J.F.; et al. Delivery of polymeric nanostars for molecular imaging and endoradiotherapy through the enhanced permeability and retention (EPR) effect. Theranostics 2020, 10, 567–584. [Google Scholar] [CrossRef]
- Aranda-Lara, L.; Isaac-Olivé, K.; Ocampo-García, B.; Ferro-Flores, G.; González-Romero, C.; Mercado-López, A.; García-Marín, R.; Santos-Cuevas, C.; Estrada, J.A.; Morales-Avila, E. Engineered rHDL Nanoparticles as a Suitable Platform for Theranostic Applications. Molecules 2022, 27, 7046. [Google Scholar] [CrossRef] [PubMed]
- Vats, K.; Satpati, A.K.; Sharma, R.; Sarma, H.D.; Satpati, D.; Dash, A. 177Lu-labeled cyclic Asn-Gly-Arg peptide tagged carbon nanospheres as tumor targeting radio-nanoprobes. J. Pharm. Biomed. Anal. 2018, 152, 173–178. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, F.; Turker, M.Z.; Ma, K.; Zanzonico, P.; Gallazzi, F.; Shah, M.A.; Prater, A.R.; Wiesner, U.; Bradbury, M.S.; et al. Targeted melanoma radiotherapy using ultrasmall 177Lu-labeled α-melanocyte stimulating hormone-functionalized core-shell silica nanoparticles. Biomaterials 2020, 241, 119858. [Google Scholar] [CrossRef]
- Shultz, M.D.; Wilson, J.D.; Fuller, C.E.; Zhang, J.; Dorn, H.C.; Fatouros, P.P. Metallofullerene-based nanoplatform for brain tumor brachytherapy and longitudinal imaging in a murine orthotopic xenograft model. Radiology 2011, 261, 136–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Huyvetter, M.; Aerts, A.; Xavier, C.; Vaneycken, I.; Devoogdt, N.; Gijs, M.; Impens, N.; Baatout, S.; Ponsard, B.; Muyldermans, S.; et al. Development of 177Lu-nanobodies for radioimmunotherapy of HER2-positive breast cancer: Evaluation of different bifunctional chelators. Contrast Media Mol. Imaging 2012, 7, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Helbok, A.; Decristoforo, C.; Dobrozemsky, G.; Rangger, C.; Diederen, E.; Stark, B.; Prassl, R.; von Guggenberg, E. Radiolabeling of lipid-based nanoparticles for diagnostics and therapeutic applications: A comparison using different radiometals. J. Liposome Res. 2010, 20, 219–227. [Google Scholar] [CrossRef]
- Arora, G.; Shukla, J.; Ghosh, S.; Maulik, S.K.; Malhotra, A.; Bandopadhyaya, G. PLGA nanoparticles for peptide receptor radionuclide therapy of neuroendocrine tumors: A novel approach towards reduction of renal radiation dose. PLoS ONE 2012, 7, e34019. [Google Scholar] [CrossRef]
- Yook, S.; Cai, Z.; Lu, Y.; Winnik, M.A.; Pignol, J.P.; Reilly, R.M. Intratumorally Injected 177Lu-Labeled Gold Nanoparticles: Gold Nanoseed Brachytherapy with Application for Neoadjuvant Treatment of Locally Advanced Breast Cancer. J. Nucl. Med. 2016, 57, 936–942. [Google Scholar] [CrossRef] [Green Version]
- Vilchis-Juárez, A.; Ferro-Flores, G.; Santos-Cuevas, C.; Morales-Avila, E.; Ocampo-García, B.; Díaz-Nieto, L.; Luna-Gutiérrez, M.; Jiménez-Mancilla, N.; Pedraza-López, M.; Gómez-Oliván, L. Molecular targeting radiotherapy with cyclo-RGDFK(C) peptides conjugated to 177Lu-labeled gold nanoparticles in tumor-bearing mice. J. Biomed. Nanotechnol. 2014, 10, 393–404. [Google Scholar] [CrossRef]
- Cai, Z.; Yook, S.; Lu, Y.; Bergstrom, D.; Winnik, M.A.; Pignol, J.P.; Reilly, R.M. Local Radiation Treatment of HER2-Positive Breast Cancer Using Trastuzumab-Modified Gold Nanoparticles Labeled with 177Lu. Pharm. Res. 2017, 34, 579–590. [Google Scholar] [CrossRef]
- Silva, F.; D’Onofrio, A.; Mendes, C.; Pinto, C.; Marques, A.; Campello, M.P.C.; Oliveira, M.C.; Raposinho, P.; Belchior, A.; Di Maria, S.; et al. Radiolabeled Gold Nanoseeds Decorated with Substance P Peptides: Synthesis, Characterization and In Vitro Evaluation in Glioblastoma Cellular Models. Int. J. Mol. Sci. 2022, 23, 617. [Google Scholar] [CrossRef]
- Jiménez-Mancilla, N.; Ferro-Flores, G.; Santos-Cuevas, C.; Ocampo-García, B.; Luna-Gutiérrez, M.; Azorín-Vega, E.; Isaac-Olivé, K.; Camacho-López, M.; Torres-García, E. Multifunctional targeted therapy system based on (99m) Tc/(177) Lu-labeled gold nanoparticles-Tat(49-57)-Lys(3)-bombesin internalized in nuclei of prostate cancer cells. J. Label. Comp. Radiopharm. 2013, 56, 663–671. [Google Scholar] [CrossRef]
- Luna-Gutiérrez, M.; Ferro-Flores, G.; Ocampo-García, B.; Jiménez-Mancilla, N.; Morales-Avila, E.; De León-Rodríguez, L.; Isaac-Olivé, K. 177Lu-labeled monomeric, dimeric and multimeric RGD peptides for the therapy of tumors expressing α(ν)β(3) integrins. J. Label Compd. Radiopharm. 2012, 55, 140–148. [Google Scholar] [CrossRef]
- Azorín-Vega, E.P.; Zambrano-Ramírez, O.D.; Rojas-Calderón, E.L.; Ocampo-García, B.E.; Ferro-Flores, G. Tumoral fibrosis effect on the radiation absorbed dose of (177)Lu-Tyr(3)-octreotate and (177)Lu-Tyr(3)-octreotate conjugated to gold nanoparticles. Appl. Radiat. Isot. 2015, 100, 96–100. [Google Scholar] [CrossRef]
- Avcıbaşı, U.; Demiroğlu, H.; Ediz, M.; Akalın, H.A.; Özçalışkan, E.; Şenay, H.; Türkcan, C.; Özcan, Y.; Akgöl, S.; Avcıbaşı, N. Radiolabeling of new generation magnetic poly(HEMA-MAPA) nanoparticles with (131) I and preliminary investigation of its radiopharmaceutical potential using albino Wistar rats. J. Label. Comp. Radiopharm. 2013, 56, 708–716. [Google Scholar]
- İnce, İ.; Müftüler, Z.B.; Medine, E.İ.; Güldü, Ö.K.; Takan, G.; Ergönül, A.; Parlak, Y.; Yıldırım, Y.; Çakar, B.; Bilgin, E.S.; et al. Thymoquinone Glucuronide Conjugated Magnetic Nanoparticle for Bimodal Imaging and Treatment of Cancer as a Novel Theranostic Platform. Curr. Radiopharm. 2021, 14, 23–36. [Google Scholar] [CrossRef]
- Er, O.; Tuncel, A.; Ocakoglu, K.; Ince, M.; Kolatan, E.H.; Yilmaz, O.; Aktaş, S.; Yurt, F. Radiolabeling, In Vitro Cell Uptake, and In Vivo Photodynamic Therapy Potential of Targeted Mesoporous Silica Nanoparticles Containing Zinc Phthalocyanine. Mol. Pharm. 2020, 17, 2648–2659. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Wang, H.; Su, Y.; Chen, C.; Xie, L.; Chen, L.; Yu, J.; Toledo, Y.; Abayaweera, G.S.; Zhu, G.; et al. Incorporating 131I into a PAMAM (G5.0) dendrimer-conjugate: Design of a theranostic nanosensor for medullary thyroid carcinoma. RSC Adv. 2017, 7, 16181–16188. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Zhao, L.; Cheng, Y.; Xiong, Z.; Tang, Y.; Shen, M.; Zhao, J.; Shi, X. Radionuclide (131)I-labeled multifunctional dendrimers for targeted SPECT imaging and radiotherapy of tumors. Nanoscale 2015, 7, 18169–18178. [Google Scholar] [CrossRef]
- Song, N.; Zhao, L.; Xu, X.; Zhu, M.; Liu, C.; Sun, N.; Yang, J.; Shi, X.; Zhao, J. LyP-1-Modified Multifunctional Dendrimers for Targeted Antitumor and Antimetastasis Therapy. ACS Appl. Mater. Interfaces 2020, 12, 12395–12406. [Google Scholar] [CrossRef]
- Zhao, L.; Li, Y.; Zhu, J.; Sun, N.; Song, N.; Xing, Y.; Huang, H.; Zhao, J. Chlorotoxin peptide-functionalized polyethylenimine-entrapped gold nanoparticles for glioma SPECT/CT imaging and radionuclide therapy. J. Nanobiotechnol. 2019, 17, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, N.; Zhao, L.; Zhu, J.; Li, Y.; Song, N.; Xing, Y.; Qiao, W.; Huang, H.; Zhao, J. 131I-labeled polyethylenimine-entrapped gold nanoparticles for targeted tumor SPECT/CT imaging and radionuclide therapy. Int. J. Nanomed. 2019, 14, 4367–4381. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Chao, Y.; Liu, J.; Huang, J.; Pan, J.; Guo, W.; Wu, J.; Sheng, M.; Yang, K.; Wang, J.; et al. Polydopamine Coated Single-Walled Carbon Nanotubes as a Versatile Platform with Radionuclide Labeling for Multimodal Tumor Imaging and Therapy. Theranostics 2016, 6, 1833–1843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, A.; Zhang, Y.; Lv, G.; Lin, J.; Qi, N.; Ji, F.; Du, M. 131 I radiolabeled immune albumin nanospheres loaded with doxorubicin for in vivo combinatorial therapy. J. Label. Comp. Radiopharm. 2018, 4, 362–369. [Google Scholar] [CrossRef]
- Tian, L.; Chen, Q.; Yi, X.; Wang, G.; Chen, J.; Ning, P.; Yang, K.; Liu, Z. Radionuclide I-131 Labeled Albumin-Paclitaxel Nanoparticles for Synergistic Combined Chemo-radioisotope Therapy of Cancer. Theranostics 2017, 3, 614–623. [Google Scholar] [CrossRef]
- Li, W.; Liu, Z.; Li, C.; Li, N.; Fang, L.; Chang, J.; Tan, J. Radionuclide therapy using ¹³¹I-labeled anti-epidermal growth factor receptor-targeted nanoparticles suppresses cancer cell growth caused by EGFR overexpression. J. Cancer Res. Clin. Oncol. 2016, 3, 619–632. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Chai, J.; Jia, Q.; Tan, J.; Meng, Z.; Li, N.; Yuan, M. Evaluating the therapeutic efficacy of radiolabeled BSA@CuS nanoparticle-induced radio-photothermal therapy against anaplastic thyroid cancer. IUBMB Life 2022, 74, 433–445. [Google Scholar] [CrossRef]
- Chen, L.; Zhong, X.; Yi, X.; Huang, M.; Ning, P.; Liu, T.; Ge, C.; Chai, Z.; Liu, Z.; Yang, K. Radionuclide (131)I labeled reduced graphene oxide for nuclear imaging guided combined radio- and photothermal therapy of cancer. Biomaterials 2015, 66, 21–28. [Google Scholar] [CrossRef]
- Song, X.; Liang, C.; Feng, L.; Yang, K.; Liu, Z. Iodine-131-labeled, transferrin-capped polypyrrole nanoparticles for tumor-targeted synergistic photothermal-radioisotope therapy. Biomater. Sci. 2017, 9, 1828–1835. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Chao, Y.; Yi, X.; Xu, J.; Feng, L.; Zhao, Q.; Yang, K.; Liu, Z. Nanoparticle-mediated internal radioisotope therapy to locally increase the tumor vasculature permeability for synergistically improved cancer therapies. Biomaterials 2019, 197, 368–379. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Yu, H.; Lu, W.; Shen, J.; Wang, Y.; Wang, Y. Bone-Seeking Albumin-Nanomedicine for In Vivo Imaging and Therapeutic Monitoring. ACS Biomater. Sci. Eng. 2020, 6, 647–653. [Google Scholar] [CrossRef] [PubMed]
- Sakr, T.M.; Khowessah, O.M.; Motaleb, M.A.; Abd El-Bary, A.; El-Kolaly, M.T.; Swidan, M.M. I-131 doping of silver nanoparticles platform for tumor theranosis guided drug delivery. Eur. J. Pharm. Sci. 2018, 122, 239–245. [Google Scholar] [CrossRef]
- Liu, Q.; Qian, Y.; Li, P.; Zhang, S.; Wang, Z.; Liu, J.; Sun, X.; Fulham, M.; Feng, D.; Chen, Z.; et al. The combined therapeutic effects of 131iodine-labeled multifunctional copper sulfide-loaded microspheres in treating breast cancer. Acta Pharm. Sin. B 2018, 8, 371–380. [Google Scholar] [CrossRef]
- Chen, M.; Guo, Z.; Chen, Q.; Wei, J.; Li, J.; Shi, C.; Xu, D.; Zhou, D.; Zhang, X.; Zheng, N. Pd nanosheets with their surface coordinated by radioactive iodide as a high-performance theranostic nanoagent for orthotopic hepatocellular carcinoma imaging and cancer therapy. Chem. Sci. 2018, 9, 4268–4274. [Google Scholar] [CrossRef] [Green Version]
- Bult, W.; de Leeuw, H.; Steinebach, O.M.; van der Bom, M.J.; Wolterbeek, H.T.; Heeren, R.M.; Bakker, C.J.; van Het Schip, A.D.; Hennink, W.E.; Nijsen, J.F. Radioactive holmium acetylacetonate microspheres for interstitial microbrachytherapy: An in vitro and in vivo stability study. Pharm. Res. 2012, 29, 827–836. [Google Scholar] [CrossRef] [Green Version]
- Munaweera, I.; Levesque-Bishop, D.; Shi, Y.; Di Pasqua, A.J.; Balkus, K.J., Jr. Radiotherapeutic bandage based on electrospun polyacrylonitrile containing holmium-166 iron garnet nanoparticles for the treatment of skin cancer. ACS Appl. Mater. Interfaces 2014, 6, 22250–22256. [Google Scholar] [CrossRef]
- Vimalnath, K.V.; Chakraborty, S.; Rajeswari, A.; Sharma, K.S.; Sarma, H.D.; Ningthoujam, R.S.; Vatsa, R.K.; Dash, A. Formulation, Characterization, and Bio-evaluation of Holmium-166 labeled Agglomerated Iron Oxide Nanoparticles for Treatment of Arthritis of Knee Joints. Mater. Today Proc. 2017, 4, 4329–4433. [Google Scholar] [CrossRef]
- Her, S.; Jaffray, D.A.; Allen, C. Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements. Adv. Drug Deliv. Rev. 2017, 109, 84–101. [Google Scholar] [CrossRef]
- Balogh, L.; Nigavekar, S.S.; Nair, B.M.; Lesniak, W.; Zhang, C.; Sung, L.Y.; Kariapper, M.S.T.; El-Jawahri, A.; Llanes, M.; Bolton, B.; et al. Significant effect of size on the in vivo biodistribution of gold composite nanodevices in mouse tumor models. Nanomed. Nanotechnol. Biol. Med. 2007, 3, 281–296. [Google Scholar] [CrossRef]
- Hirn, S.; Semmler-Behnke, M.; Schleh, C.; Wenk, A.; Lipka, J.; Schäffler, M.; Takenaka, S.; Möller, W.; Schmid, G.; Simon, U.; et al. Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur. J. Pharm. Biopharm. 2011, 77, 407–416. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.Y.; Chen, J.; Yang, J.; Wang, H.; Shen, X.; Sun, Y.M.; Guo, M.; Zhang, X.D. Effects of surface charges of gold nanoclusters on long-term in vivo biodistribution, toxicity, and cancer radiation therapy. Int. J. Nanomed. 2016, 27, 3475–3485. [Google Scholar]
- Stella, M.; Braat, A.J.; van Rooij, R.; de Jong, H.W.; Lam, M.G. Holmium-166 radioembolization: Current status and future prospective. CardioVascular. Interv. Radiol. 2022, 45, 1634–1645. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, K.; Mondal, J.; An, J.M.; Park, J.; Lee, Y.K. Advances in Radionuclides and Radiolabelled Peptides for Cancer Therapeutics. Pharmaceutics 2023, 15, 971. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Deng, M.; Zhang, L.; Liu, Z.; Liu, Y.; Song, S.; Gong, T.; Yuan, Q. Facile Synthesis of Holmium-Based Nanoparticles as a CT and MRI Dual-Modal Imaging for Cancer Diagnosis. Front. Oncol. 2021, 11, 741383. [Google Scholar] [CrossRef] [PubMed]
- Seevinck, P.R.; Seppenwoolde, J.H.; de Wit, T.C.; Nijsen, J.F.; Beekman, F.J.; van Het Schip, A.D.; Bakker, C.J. Factors affecting the sensitivity and detection limits of MRI, CT, and SPECT for multimodal diagnostic and therapeutic agents. Anticancer Agents Med. Chem. 2007, 7, 17–34. [Google Scholar] [CrossRef]
- Häfeli, U.O.; Sweeney, S.M.; Beresford, B.A.; Humm, J.L.; Macklis, R.M. Effective targeting of magnetic radioactive 90Y-microspheres to tumor cells by an externally applied magnetic field. Preliminary in vitro and in vivo results. Nucl. Med. Biol. 1995, 22, 147–155. [Google Scholar] [CrossRef]
- Signore, A.; Prosperi, D.; Gentiloni, G.; Di Girolamo, M.; Lauri, C.; Filice, A.; Panzuto, F. Therapy of NET with radiolabelled SST analogs. Nucl. Med. Mol. Imaging 2022, 4, 135–144. [Google Scholar]
- Das, T.; Banerjee, S. Theranostic Applications of Lutetium-177 in Radionuclide Therapy. Curr. Radiopharm. 2016, 9, 94–101. [Google Scholar] [CrossRef] [PubMed]
- George, S.L.; Falzone, N.; Chittenden, S.; Kirk, S.J.; Lancaster, D.; Vaidya, S.J.; Mandeville, H.; Saran, F.; Pearson, A.D.; Du, Y.; et al. Individualized 131I-mIBG therapy in the management of refractory and relapsed neuroblastoma. Nucl. Med. Commun. 2016, 37, 466–472. [Google Scholar] [CrossRef] [Green Version]
- Jeon, J. Review of Therapeutic Applications of Radiolabeled Functional Nanomaterials. Int. J. Mol. Sci. 2019, 20, 2323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tashtoush, B.M.; Traboulsi, A.A.; Dittert, L.; Hussain, A.A. Chloramine-T in radiolabeling techniques. IV. Penta-O-acetyl-Nchloro-N-methylglucamine as an oxidizing agent in radiolabelling techniques. Anal. Biochem. 2001, 288, 16–21. [Google Scholar] [CrossRef]
- Varani, M.; Galli, F.; Bentivoglio, V.; Signore, A. Particles and nanoparticles in nuclear medicine: Basic principles and instrumentation. Nucl. Med. Mol. Imaging 2022, 1, 202–211. [Google Scholar]
Isotope | NP | Type of Radiolabeling | Functionalization | RCY | Applications | Stage of Research | Reference |
---|---|---|---|---|---|---|---|
64Cu | Copper sulfide NPs | Direct incubation | n.d.a. | >99% | Radiotherapy (RT) and photothermal therapy (PTT) of breast cancer | Tested on human breast cancer xenograft | [6] |
Chitosan NPs | Direct incubation with stirring | n.d.a. | n.d.a. | Cancer imaging and therapy | n.d.a. | [7] | |
Melanin NPs | Direct | Coated with PEG | 90% | Targeted radionuclide therapy | Tested on epidermoid carcinoma xenograft | [8] | |
Feraheme nanoparticle (FH-NPs) | Direct incubation | Coated with carboxymethyl-dextran (CMD) | >85% | Cancer therapy | n.d.a. | [9] | |
Boron-nitride nanotubes (BNNTs) | Direct (encapsulation) | n.d.a. | n.d.a. | Cancer diagnosis and therapy | n.d.a. | [10] | |
Covellite nanocrystals (CuS NCs) | Direct (encapsulation) | Coated with PEG | 49% | Photothermal probes in tumor-ablation treatments | n.d.a. | [11,12] | |
Barium-sulphate NPs | Direct incubation | n.d.a. | 69% | Targeted alpha therapy (TAT) | n.d.a. | [13] | |
Hydroxyapatite/ tenorite NPs | Direct (neutron irradiation) | Folic acid | n.d.a. | Treatment and diagnosis of osteosarcoma | n.d.a. | [14] | |
Shell cross-linked NPs (SCKs) | With TETA | Folate | 15–20% | Therapy for tumors overexpressing the folate receptor (FR) | Tested on keratin-forming tumor cell line HeLa | [15] |
Isotope | NP | Type of Radiolabeling | Functionalization | RCY | Applications | Stage of Research | Reference |
---|---|---|---|---|---|---|---|
211At | Gold NPs | Direct incubation | Substance P(5–11) | >99% | Radionuclide therapy | Tested on glioblastoma multiforme cells | [19] |
Trastuzumab | >99% | Nano-brachy-therapy for HER2-positive breast cancer | Tested on ovarian adenocarcinoma cells | [20] | |||
n.d.a. | n.d.a. | Local radiation therapy for cancer | Tested on rat glioma and epithelioid carcinoma of pancreatic duct xenografts | [21] | |||
Gold nanostars | Direct incubation | n.d.a. | >99% | Targeted alpha-particle therapy (TAT) | Tested on human glioma xenografts | [22] | |
Silver NPs | With chloramine-T method | Coated with PEO | >95% | Therapy of small tumors and metastases | n.d.a. | [23] | |
225Ac | Superpara-magnetic iron-oxide-based NPs (SPIONs) | Direct incubation | Trastuzumab | >98% | Radioimmunotherapy and magnetic hyperthermia | Study of the biodistribution profiles in SCID mice | [24] |
Liposomes | Direct (encapsulation) | n.d.a. | n.d.a. | Therapy of metastatic cancers | n.d.a. | [25] | |
Gold-coated lanthanide phosphate NPs | Direct incubation | Coated with gold | >99% | Targeted alpha therapy (TAT) | n.d.a. | [26] | |
LaPO4 (monazite) NPs | Direct incubation | Monoclonal antibody 201B | 66 ± 4% | Targeted radiotherapy | Study of the biodistribution profiles in healthy BALB/c mice | [27] | |
Gold NPs | With TADOTAGA | n.d.a. | 86.0 ± 1.8% | Targeted radionuclide therapy | Tested on human glioblastoma xenografts | [28] | |
Single-wall carbon nanotube (SWCNT) | With DOTA | Tumor neovascular-targeting antibody E4G10 | n.d.a. | Targeted radioimmunotherapy | Tested on murine xenograft model of human colon carcinoma | [29] | |
Morpholino oligonucleotide complementary to a modified antibody (cMORF) | n.d.a. | Cancer therapy | Tested on Burkitt’s lymphoma xenografts | [30] | |||
rHDL NPs | With DOTA | n.d.a. | n.d.a. | Therapy for tumors overexpressing SR-BI proteins | Stuy of the biodistribution profile in healthy mice | [31] | |
GdVO4 NPs | Direct (encapsulation) | n.d.a. | 67.9 ± 2.4% | Targeted alpha therapy (TAT) | Tested radiochemical yield in vitro | [32] | |
223Ra | Liposomes | Direct (encapsulation) | Folic acid (FA) F(ab’)2 | 95 ± 2% | Targeted radiotherapy of cancer | n.d.a. | [33] |
Nanozeolite bioconjugates | Direct incubation | Substance P (5–11) peptide fragment | n.d.a. | Therapeutic construct for targeting glioma cells | n.d.a. | [34] | |
Nanomicelles | Direct incubation | n.d.a. | n.d.a. | Targeted radionuclide therapy for bone tumors | Tested on osteosarcoma cell lines | [35] | |
Feraheme nanoparticle (FH-NPs) | Direct incubation | Coated with carboxymethyl-dextran (CMD) | n.d.a. | Therapy for cancers | n.d.a. | [36] | |
Barium ferrite (BaFe) NPs | Direct incubation | Trastuzumab | 61.3 ± 1.8% | Targeted α-therapy | Tested on ovarian adenocarcinoma spheroids | [37] | |
Hydroxyapatite and titanium dioxide NPs | Direct incubation | n.d.a. | ≥94% | Radionuclide therapy | n.d.a. | [38] | |
Folic-acid-functionalized graphene quantum dots (GQD-FA) | Direct incubation | Folic acid | n.d.a. | Antiviral effect against Zika-virus infection | Testing of in vitro antiviral effect against replication on ZIKV infection | [39] | |
SPION NPs | Direct incubation | n.d.a. | 99% | Targeted alpha therapy (TAT) | Testing of in vitro stability in PBS, bovine plasma and serum | [40] | |
GdVO4 NPs | Direct (encapsulation) | n.d.a. | 72.3 ± 3.0% | Targeted alpha therapy (TAT) | Testing radiochemical yield in vitro | [32] |
Isotope | NP | Type of Radiolabeling | Functionalization | RCY | Applications | Stage of Research | Reference |
---|---|---|---|---|---|---|---|
198Au | PAMAM dendrimers | Direct (neutron irradiations) | n.d.a. | n.d.a. | Tumor nano-brachytherapy | Tested on mouse-melanoma-tumor model | [48] |
Gold NPs | Coated with gum arabic glycoprotein (GA) | n.d.a. | Prostate cancer therapy | Tested on mice bearing human-prostate-tumor xenografts | [49] | ||
Coated with epigallocatechin-gallate (EGCg) | ≥99% | [50] | |||||
Coated with mangiferin-a glucose (MGF) | 97% | PC-3 prostate-tumor therapy | Tested on mice bearing human-prostate-tumor xenografts | [51] | |||
n.d.a. | n.d.a. | Bone cancer therapy | Testing of cytotoxicity effect on human osteosarcoma | [35] | |||
Cyclic arginine−glycine−aspartate peptide (RGD) | >99% | Tumor targeting | Tested on melanoma-tumor-bearing mice | [52] | |||
Human serum albumin (alb-AuNP) or apolipoprotein E (apoE-AuNP) | n.d.a. | Organ targeting | Study of biodistribution profiles in healthy mice | [53] | |||
n.d.a. | n.d.a. | n.d.a. | Study of biodistribution profiles in healthy Sprague Dawley rats | [54] | |||
90Y | Magnetic NPs (MNPs) | Direct incubation | Coated with polyethylene glycol 600 diacid (PEG600) |
97% for Fe3O4-naked and 99% for Fe3O4-PEG600 | Hyperthermia-based cancer treatments | Study of biodistribution profiled in healthy Wistar rats | [55] |
Iron-oxide NPs (IONPs) | Direct incubation | Coated with citric acid, poly(acrylic acid) (PAA) and poly(ethylene glycol) | >99% | Diagnosis and dual magnetic hyperthermia/radionuclide cancer therapy | Tested on murine colorectal carcinoma cells | [56] | |
Magnetic NPs (MNPs) | Direct incubation | Coated with imidodiphosphate (IDP) and inositol hexaphosphate (IHP) | >98% | Radionuclide therapy | Study of biodistribution profiles in healthy Wistar rats | [57] | |
Feraheme NPs (FH-NPs) | Direct incubation at 120–130 °C | Coated with cCarboxymethyl-dextran (CMD) | >85% | Therapy for cancers | n.d.a. | [9] | |
Chitosan NPs | Direct incubation with stirring | n.d.a. | n.d.a. | Cancer imaging and therapy | Study of biodistribution profile in healthy mice | [7] | |
YPO4:Er3+−Yb3+ NPs | Direct incubation | n.d.a. | >95% | Optical-based imaging and alternating current (AC) field-based hyperthermia | n.d.a. | [58] | |
Lipid NPs | With DTPA | Anti–Flk-1 MAb | >95% | Anti-angiogenesis therapy | Tested on melanoma- and colon-carcinoma-bearing mice | [59] | |
HPMA NPs | With DOTA | n.d.a. | n.d.a. | Plasmonic photothermal therapy (PPTT) for prostate tumors | Tested on prostate-tumor-bearing mice | [60] | |
177Lu | Iron-oxide NPs (IONPs) | Direct incubation | Coated with citric acid, poly(acrylic acid) (PAA) and poly(ethylene glycol) | >90% | Diagnosis and dual magnetic hyperthermia/radionuclide cancer therapy | Tested on colon carcinoma cell line | [56] |
Coated with alginic acid (MA) | 95.21 ± 1.28% for 177Lu-MA and 93.65 ± 1.03% for 177Lu-MA-PEG | Nano-brachytherapy | Tested on murine mammary carcinoma cell line | [61] | |||
Feraheme NPs (FH-NPs) | Direct incubation at 120–130 °C | Coated with carboxymethyldextran (CMD) | >85% | n.d.a. | n.d.a. | [9] | |
Magnetic NPs (MNPs) | Direct incubation at RT and 80 °C | Poly-L-lysine, proline, and tryptophan | 99% | Cancer diagnosis and radionuclide-hyperthermia therapy | n.d.a. | [62] | |
Direct incubation | Coated with IHP, IDP, hydroxyethylidene diphosphonic acid (HEDP), and methanediylbis(phosphonic acid) (MDP) | 95% | Hyperthermia cancer therapy | n.d.a. | [63] | ||
Chitosan NPs | Direct incubation with stirring | n.d.a. | n.d.a. | n.d.a. | Evaluated in epithelial lung cancer cells | [7] | |
YPO4:Er3+−Yb3+ NPs | Direct incubation | n.d.a. | >95% | Optical-based imaging and alternating current (AC) field-based hyperthermia | n.d.a. | [59] | |
Barium-sulfate NPs | Direct incubation | n.d.a. | 69% | Targeted alpha therapy of cancer | n.d.a. | [13] | |
NaGdF4/Ho−Yb NPs | Direct incubaion | Coated with mesoporous silica (m-SiO2) | 98.4 ± 0.4% | Radionuclide therapy | n.d.a. | [64] | |
Lu2O3 NPs | Direct (encapsulation) | n.d.a. | >85% | Cancer diagnostics and therapy | Tested on mice bearing melanoma tumors | [65] | |
Hydroxyapatite (HA) particles | Direct incubation | n.d.a. | 99.1 ± 0.2% | Intra-arterial liver cancer therapy | Study of biodistribution profiles in healthy Wistar rats | [66] | |
Fe3O4 NPs | With DP-PEG | Coated with diphosphonate-polyethylene glycol (DP-PEG) | 67.4% | SPECT and radiotherapy | Tested on murine breast cancer | [67] | |
PAMAM-dendrimer | With DOTA | Lys1Lys3 (DOTA)-bombesin (BN) peptide | 97.72 ± 0.26% | Peptide-receptor radionuclide therapy (PRRT) | Tested on infiltrating ductal carcinoma of breast-tumor-bearing mice | [68] | |
Lys1 Lys3 (DOTA)-bombesin and folic acid | 72% | Targeted radiotherapy | Evaluated in breast tumors over-expressing GRPR and FR cell line | [69] | |||
HA-PLGA NPs | With DOTA | Hyaluronic acid (HA) | n.d.a. | Radio-synovectomy | Tested on murine macrophage cell line | [70] | |
PLGA NPs | With DOTA | Lys1Lys3(DOTA)-bombesin | n.d.a. | GRPr-positive breast cancer therapy | Tested on breast-tumor-bearing mice | [71] | |
Dendrimers | With DOTA | n.d.a. | >98% | Cancer therapy | Tested on melanoma-bearing mice | [72] | |
Direct incubation | Folate-bombesin | n.d.a. | Plasmonic, photothermal therapy, and targeted radiotherapy of cancers | Tested on breast ductal carcinoma cells | [73] | ||
With DO3A-py(NO-C) | n.d.a. | n.d.a. | Basis for targeted therapy | Validation of labeling method and biodistribution in rats | [74] | ||
Micelles | With DOTA | n.d.a. | n.d.a. | Liquid brachytherapy | Tested on murine-colon-carcinoma-bearing mice | [75] | |
Nanostar | With DOTA | n.d.a. | >99% | Endo-radiotherapy | Tested on colon cancer isografts and pancreatic cancer xenografts | [76] | |
rHDL NPs | With DOTA | Cholesterol | >95% | Targeted radiotherapy | Tested on breast ductal carcinoma xenografts | [77] | |
Carbon nanospheres | With DOTA | G3-cNGR peptide | 80% | Targeted radio-nanomedicine | Tested on melanoma-bearing mice | [78] | |
Fluorescent core-shell silica NPs | With DOTA | n.d.a. | >95% | Targeted radionuclide therapy | Tested on melanoma-bearing mice | [79] | |
f-Gd₃N@CC₈₀ nanoplatform | With DOTA | n.d.a. | 80% | Brachytherapy | Tested on human glioblastoma xenografts | [80] | |
Nanobody | With DOTA | n.d.a. | 98% | Radioimmunotherapy for HER2-positive breast cancer | Tested on HER+ ovarian-adenocarcinoma- and melanoma-tumor-bearing mice | [81] | |
With DTPA | n.d.a. | 98% | Radioimmunotherapy for HER2-positive breast cancer | Tested on HER+ ovarian-adenocarcinoma- and melanoma-tumor-bearing mice | |||
Lipid-based NPs | With DTPA | Coated with PEG | >80% | Treatment in oncology | n.d.a. | [82] | |
PLGA NPs | With DOTA-TATE | Coated with PEG | 98% | Peptide-receptor-radionuclide therapy (PRRT) for NETs | Study of biodistribution profile in healthy Wistar albino rats | [83] | |
AuNPs | With DOTA | Panitumumab | n.d.a. | Brachytherapy treatment for locally advanced breast cancer | Tested on metastatic-breast-adenocarcinoma-bearing mice | [84] | |
Cyclic Arg-Gly-Asp (RGD) sequence | n.d.a. | Targeted radionuclide therapy for tumors expressing α(V)β(3) integrins. | Tested on human α(V)β(3)-positive glioblastoma xenografts | [85] | |||
Trastuzumab | n.d.a. | HER2-overexpressing breast cancer therapy | Tested on human breast cancer xenografts overexpressing HER2 | [86] | |||
Substance P (SP) peptides | >95% | Treatment of localized glioblastoma multiforme | Testing of radiobiological effects on human glioblastoma astrocytoma cells | [87] | |||
Lys3-bombesin | n.d.a. | Radiotherapy and thermal ablation | Tested on PC3-overexpressing cell lines | [88] | |||
Lys1Lys3-bombesin (BN) peptide | n.d.a. | Peptide-receptor-radionuclide therapy (PRRT) | Tested on breast-ductal-carcinoma-bearing mice | [73] | |||
Cyclo(Arg-Gly-Asp-Phe-Lys)Cy ((RGDfK)C) | 69% | Targeted radionuclide therapy for tumors expressing α(n)β(3) integrins | Tested on α(V)β(3) integrin-positive glioma tumors in mice | [89] | |||
Direct incubation at 90 °C | Tyr3-octreotate | >98% | Tumoral-fibrosis therapy | Tested on HeLa human cervical cancer cells | [90] | ||
131I | Mag-poly(HEMA–MAPA) NPs | With Iodogen | n.d.a. | 95–100% | Cancer therapy | Study of biodistribution profiles in healthy Wistar albino rats | [91] |
Magnetic NPs (Fe3O4) | With Iodogen | Thymoquinone glucuronide | 95% | Treatment and diagnosis of lung cancer | Tested on human lung cancer xenograft | [92] | |
Mesoporous silica NPs | With Iodogen | n.d.a. | 95.5 ± 1.2% | Photodynamic therapy (PDT) | Tested on pancreas adenocarcinoma cells | [93] | |
PAMAM dendrimer | With Iodogen | Vascular targeting peptide (VTP) | 77.6% | Theranostic nano-sensors for medullary thyroid carcinoma | Tested on medullary carcinoma cells | [94] | |
With chloramine-T method | 3-(4′-hydroxyphenyl)-propionic acid-OSu (HPAO) and folic acid (FA) | 97.7 ± 0.7% | Imaging and radiotherapy for tumors | Tested on rat glioma bearing mice | [95] | ||
With chloramine-T method | LyP-1 peptide | 61.95 ± 3.18% | SPECT imaging, radionuclide therapy, and metastasis therapy for cancer | Tested on stage IV human breast cancer xenograft | [96] | ||
Polyethylenimine-entrapped gold NPs (Au PENPs) | With HPAO moiety | Chlorotoxin | 60.4 ± 5.4% | Imaging and radionuclide therapy for glioma | Tested on rat-glioma-bearing mice | [97] | |
Buthus martensii Karsch chlorotoxin (BmK CT) | 77.0 ± 4.97% | Imaging and radionuclide therapy for glioma | Tested on rat-glioma-bearing mice | [98] | |||
Single-walled carbon nanotubes (SWNTs) | With chloramine-T method | Coated with polydopamine (PDA) | ~90% | Multimodal-imaging-guided combination therapy for cancer | Tested on stage IV human breast cancer xenografts | [99] | |
Albumin nanospheres | With SPDP | anti-AFPMcAb | 65% | Radio-chemotherapy of hepatoma | Tested on human hepatoma xenografts | [100] | |
Albumin-paclitaxel NPs | With chloramine-T method | Paclitaxel (PTX) | n.d.a. | Combined chemotherapy and radioisotope therapy (RIT) of cancer | Tested on stage IV human-breast-cancer xenografts | [101] | |
BSA–PCL NPs | With chloramine-T method | Anti-epidermal growth factor receptor (EGFR–BSA–PCL) | 50–85% | Radionuclide therapy in EGFR-overexpressing tumors | Tested on stage IV lung-adenocarcinoma xenografts | [102] | |
BSA@CuS NPs | With chloramine-T method | n.d.a. | 66–80% | Radiotherapy and photo-thermal-therapy of anaplastic thyroid carcinoma (ATC) | Tested on thyroid-gland-anaplastic-carcinoma xenografts | [103] | |
Reduced nano-graphene oxide (RGO) | With chloramine-T method | Polyethylene glycol (PEG) coated | 80% | Combined chemotherapy and radionuclide therapy (RIT) for cancer | Tested on stage IV human-breast-cancer xenografts | [104] | |
Transferrin-capped polypyrrole NPs | With chloramine-T method | Transferrin | 90% | Photothermal radiotherapy | Tested on glioblastoma xenograft | [105] | |
Albumin-encapsulated liposomes | With chloramine-T method (encapsulation) | n.d.a. | 90% | Internal radioisotope therapy (RIT) | Tested on stage IV human-breast-cancer xenografts | [106] | |
Albumin-based gadolinium oxide NPs (GdNPs) | With chloramine-T method | Bone-seeking alendronate | >95% | Therapeutic monitoring of primary bone tumors and metastases | Tested on rat model of focal malignant osteolysis | [107] | |
Polyethylene-glycol-capped silver NPs | Direct (encapsulation) | Coated with PEG | 98.0 ± 0.8% | Tumor theranostic probe | Tested on solid-tumor-sarcoma-bearing mice | [108] | |
Hollow copper-sulfide NPs and paclitaxel | Direct with NaClO4 | Paclitaxel | 95.8 ± 1.3%. | Theranostic agent for orthotopic breast cancer | Tested on orthotopic breast cancer xenografts | [109] | |
Magnetic NPs (MNPs) | Carbodiimide method with EDC | Poly-l-lysine, proline, and tryptophan | 99% | Cancer diagnosis and radionuclide-hyperthermia therapy | Study of biodistribution profiles in healthy Wistar rats | [71] | |
Ultrasmall Pd nanosheets | Direct incubation with stirring | Coated with PEG | >98% | Photoacoustic imaging and combined photothermal and radiotherapy | Tested on stage IV human breast cancer xenograft, on spontaneous mammary tumor in BALB/c mouse model, and on a Mst1/2 double-knockout hepatoma model | [110] | |
166Ho | Holmium acetylacetonate NPs | Direct (neutron irradiations) | n.d.a. | n.d.a. | Intra-tumoral radionuclide treatment for solid malignancies | Tested on rabbit anaplastic squamous cell carcinoma | [111] |
Holmium iron garnet NPs | Direct (neutron irradiations) | n.d.a. | n.d.a. | Treatment of skin cancer | n.d.a. | [112] | |
Iron-oxide NPs | Direct incubation with stirring | Vascular targeting peptide (VTP) | >95% | Treatment of knee arthritis | n.d.a. | [113] | |
Chitosan NPs | Direct incubation with stirring | n.d.a. | n.d.a. | Cancer imaging and therapy | n.d.a. | [7] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bentivoglio, V.; Nayak, P.; Varani, M.; Lauri, C.; Signore, A. Methods for Radiolabeling Nanoparticles (Part 3): Therapeutic Use. Biomolecules 2023, 13, 1241. https://doi.org/10.3390/biom13081241
Bentivoglio V, Nayak P, Varani M, Lauri C, Signore A. Methods for Radiolabeling Nanoparticles (Part 3): Therapeutic Use. Biomolecules. 2023; 13(8):1241. https://doi.org/10.3390/biom13081241
Chicago/Turabian StyleBentivoglio, Valeria, Pallavi Nayak, Michela Varani, Chiara Lauri, and Alberto Signore. 2023. "Methods for Radiolabeling Nanoparticles (Part 3): Therapeutic Use" Biomolecules 13, no. 8: 1241. https://doi.org/10.3390/biom13081241
APA StyleBentivoglio, V., Nayak, P., Varani, M., Lauri, C., & Signore, A. (2023). Methods for Radiolabeling Nanoparticles (Part 3): Therapeutic Use. Biomolecules, 13(8), 1241. https://doi.org/10.3390/biom13081241