What Factors Revitalize the Street Vitality of Old Cities? A Case Study in Nanjing, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.2.1. Real-Time User Datasets (RTUDs)
2.2.2. Travel Cost Data
2.2.3. Road Network Data
2.2.4. Point of Interest (POI) Data
2.2.5. Street View Image (SVI) Data
2.2.6. Social Media Commentary Data
2.3. Methods
2.3.1. SVI Segmentation
2.3.2. Variable Calculations
- (1)
- Street Vitality Measurements
- (2)
- Determination of Factors Influencing Street Vitality
2.3.3. Spatial Autocorrelation Analysis
2.3.4. Global and Local Regression Models
3. Results
3.1. Distribution Characteristics of Street Vitality
3.1.1. Pattern of Vitality Distributions
3.1.2. Spatial Autocorrelation Analysis of Street Vitality
3.2. Global Regression Analysis
3.3. Local Regression Analysis
4. Discussion
4.1. Spatial and Temporal Distributions of Street Vitality
4.2. Factors Influencing Street Vitality
4.3. Strategies for Enhancing Street Vitality
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lynch, K.A. The Image of the City; MIT Press: Cambridge, MA, USA, 1971. [Google Scholar]
- Jacobs, J. The Death and Life of Great American Cities; Vintage Book Company: New York, NY, USA, 1961. [Google Scholar]
- Montgomery, J. Making a City: Urbanity, Vitality and Urban Design. J. Urban Des. 1998, 3, 93–116. [Google Scholar] [CrossRef]
- Lopes, M.N.; Camanho, A.S. Public Green Space Use and Consequences on Urban Vitality: An Assessment of European Cities. Soc. Indic. Res. 2013, 113, 751–767. [Google Scholar] [CrossRef]
- Gehl, J. Life between Buildings; Danish Architectural Press: Copenhagen, Denmark, 1971. [Google Scholar]
- Li, K.; Lin, Y. Exploring the Correlation between Streetscape and Economic Vitality Using Machine Learning: A Case Study in the Old Urban District of Xuzhou, China. ISPRS Int. J. Geo-Inf. 2023, 12, 267. [Google Scholar] [CrossRef]
- Chen, Z.; Dong, B.; Pei, Q.; Zhang, Z. The Impacts of Urban Vitality and Urban Density on Innovation: Evidence from China’s Greater Bay Area. Habitat Int. 2022, 119, 102490. [Google Scholar] [CrossRef]
- Mouratidis, K.; Poortinga, W. Built Environment, Urban Vitality and Social Cohesion: Do Vibrant Neighborhoods Foster Strong Communities? Landsc. Urban Plan. 2020, 204, 103951. [Google Scholar] [CrossRef]
- Cobbinah, P.B.; Erdiaw-Kwasie, M.O.; Amoateng, P. Rethinking Sustainable Development within the Framework of Poverty and Urbanisation in Developing Countries. Environ. Dev. 2015, 13, 18–32. [Google Scholar] [CrossRef]
- Long, Y.; Wu, K. Shrinking Cities in a Rapidly Urbanizing China. Environ. Plan. Econ. Space 2016, 48, 220–222. [Google Scholar] [CrossRef]
- Xia, C.; Yeh, A.G.-O.; Zhang, A. Analyzing Spatial Relationships between Urban Land Use Intensity and Urban Vitality at Street Block Level: A Case Study of Five Chinese Megacities. Landsc. Urban Plan. 2020, 193, 103669. [Google Scholar] [CrossRef]
- Gao, Y.; Cheng, J.; Meng, H.; Liu, Y. Measuring Spatio-Temporal Autocorrelation in Time Series Data of Collective Human Mobility. Geo-Spat. Inf. Sci. 2019, 22, 166–173. [Google Scholar] [CrossRef]
- Li, Y.; Yabuki, N.; Fukuda, T. Exploring the Association between Street Built Environment and Street Vitality Using Deep Learning Methods. Sustain. Cities Soc. 2022, 79, 103656. [Google Scholar] [CrossRef]
- Zhang, A.; Li, W.; Wu, J.; Lin, J.; Chu, J.; Xia, C. How Can the Urban Landscape Affect Urban Vitality at the Street Block Level? A Case Study of 15 Metropolises in China. Environ. Plan. B Urban Anal. City Sci. 2021, 48, 1245–1262. [Google Scholar] [CrossRef]
- Rastegar, N.; Ahmadi, M.; Malek, M. Factors affecting the vitality of streets in Downtown Johor Bahru City. Indian J. Sci. Res. 2014, 7, 361–374. [Google Scholar]
- Katz, P.; Scully, V.J.; Bressi, T.W. The New Urbanism: Toward an Architecture of Community; McGraw-Hill: New York, NY, USA, 1994. [Google Scholar]
- Calthorpe, P. The Next American Metropolis; Princeton Architectural Press: New York, NY, USA, 1993. [Google Scholar]
- Jiang, Y.; Wang, Y.; Xie, J.; Liu, Y.; Zhao, J. Return to Human-oriented Streets: The New Trend of Street Design Manual Development in the World Cities and Implications for Chinese cities. Urban Plan. Int. 2012, 27, 65–72. [Google Scholar]
- Zou, B. The Transformation from Greenfield-Based Planning to Redevelopment Planning: Theoretical Analysis and Practical Strategies. Urban Plan. Forum 2015, 5, 12–19. [Google Scholar] [CrossRef]
- He, Z. Rethinking Multidimensional Urban Road Classification System: Under the Background of Road Revival and Traffic Mode Transformation in Chinese cities. City Plan. Rev. 2018, 42, 118–127. [Google Scholar]
- Li, X.; Qian, Y.; Zeng, J.; Wei, X.; Guang, X. The Influence of Strip-City Street Network Structure on Spatial Vitality: Case Studies in Lanzhou, China. Land 2021, 10, 1107. [Google Scholar] [CrossRef]
- Gehl, J.; Kaefer, L.J.; Reigstad, S. Close Encounters with Buildings. Urban Des. Int. 2006, 11, 29–47. [Google Scholar] [CrossRef]
- Sung, H.; Lee, S. Residential Built Environment and Walking Activity: Empirical Evidence of Jane Jacobs’ Urban Vitality. Transp. Res. Part Transp. Environ. 2015, 41, 318–329. [Google Scholar] [CrossRef]
- Jalaladdini, S.; Oktay, D. Urban Public Spaces and Vitality: A Socio-Spatial Analysis in the Streets of Cypriot Towns. Procedia—Soc. Behav. Sci. 2012, 35, 664–674. [Google Scholar] [CrossRef]
- Zarin, S.Z.; Niroomand, M.; Heidari, A.A. Physical and Social Aspects of Vitality Case Study: Traditional Street and Modern Street in Tehran. Procedia—Soc. Behav. Sci. 2015, 170, 659–668. [Google Scholar] [CrossRef]
- Li, L.; Du, Q.; Ren, F.; Huang, L.; Voda, M.; Ning, P. Geolocated Social Media Data for Measuring Park Visitation in Shenzhen, China. Urban For. Urban Green. 2023, 88, 128069. [Google Scholar] [CrossRef]
- Gao, F.; Deng, X.; Liao, S.; Liu, Y.; Li, H.; Li, G.; Chen, W. Portraying Business District Vibrancy with Mobile Phone Data and Optimal Parameters-based Geographical Detector Model. Sustain. Cities Soc. 2023, 96, 104635. [Google Scholar] [CrossRef]
- Shen, Y.; Karimi, K. Urban Function Connectivity: Characterisation of Functional Urban Streets with Social Media Check-in Data. Cities 2016, 55, 9–21. [Google Scholar] [CrossRef]
- Xin, G.; Hongfei, C.; Xiping, Y. An Evaluation of Street Dynamic Vitality and Its Influential Factors Based on Multi-Source Big Data. ISPRS Int. J. Geo-Inf. 2021, 10, 143. [Google Scholar] [CrossRef]
- Sun, G.; Zacharias, J.; Ma, B.; Oreskovic, N.M. How Do Metro Stations Integrate with Walking Environments? Results from Walking Access within Three Types of Built Environment in Beijing. Cities 2016, 56, 91–98. [Google Scholar] [CrossRef]
- Wu, W.; Niu, X.; Li, M. Influence of Built Environment on Street Vitality: A Case Study of West Nanjing Road in Shanghai Based on Mobile Location Data. Sustainability 2021, 13, 1840. [Google Scholar] [CrossRef]
- Wang, T.-K.; Gu, X.; Li, K.; Chen, J.-H. Competitive Location Selection of a Commercial Center Based on the Vitality of Commercial Districts and Residential Emotion. J. Urban Plan. Dev. 2021, 147, 04021001. [Google Scholar] [CrossRef]
- Lunecke, M.G.H.; Mora, R. The Layered City: Pedestrian Networks in Downtown Santiago and Their Impact on Urban Vitality. J. Urban Des. 2018, 23, 336–353. [Google Scholar] [CrossRef]
- Fang, C.; He, S.; Wang, L. Spatial Characterization of Urban Vitality and the Association With Various Street Network Metrics From the Multi-Scalar Perspective. Front. Public Health 2021, 9, 677910. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Jia, T.; Zhou, L.; Hijazi, I.H. The Six Dimensions of Built Environment on Urban Vitality: Fusion Evidence from Multi-Source Data. Cities 2022, 121, 103482. [Google Scholar] [CrossRef]
- Li, Q.; Cui, C.; Liu, F.; Wu, Q.; Run, Y.; Han, Z. Multidimensional Urban Vitality on Streets: Spatial Patterns and Influence Factor Identification Using Multisource Urban Data. ISPRS Int. J. Geo-Inf. 2021, 11, 2. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, W.; Jiang, Q.; Li, W.; Ji, T.; Dong, L. Drivers or Pedestrians, Whose Dynamic Perceptions Are More Effective to Explain Street Vitality? A Case Study in Guangzhou. Remote Sens. 2023, 15, 568. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, J.; Liu, R.; Li, Y. Exploring the Impact of Built Environment Attributes on Social Followings Using Social Media Data and Deep Learning. ISPRS Int. J. Geo-Inf. 2022, 11, 325. [Google Scholar] [CrossRef]
- Chen, M.; Cai, Y.; Guo, S.; Sun, R.; Song, Y.; Shen, X. Evaluating Implied Urban Nature Vitality in San Francisco: An Interdisciplinary Approach Combining Census Data, Street View Images, and Social Media Analysis. Urban For. Urban Green. 2024, 95, 128289. [Google Scholar] [CrossRef]
- Park, S.-H.; Kim, J.-H.; Choi, Y.-M.; Seo, H.-L. Design Elements to Improve Pleasantness, Vitality, Safety, and Complexity of the Pedestrian Environment: Evidence from a Korean Neighbourhood Walkability Case Study. Int. J. Urban Sci. 2013, 17, 142–160. [Google Scholar] [CrossRef]
- Kawshalya, L.W.G.; Weerasinghe, U.G.D.; Chandrasekara, D.P. The Impact of Visual Complexity on Perceived Safety and Comfort of the Users: A Study on Urban Streetscape of Sri Lanka. PLoS ONE 2022, 17, e0272074. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Luo, L.; Shen, X.; Xu, Y. Influence of Built Environment and User Experience on the Waterfront Vitality of Historical Urban Areas: A Case Study of the Qinhuai River in Nanjing, China. Front. Archit. Res. 2023, 12, 820–836. [Google Scholar] [CrossRef]
- Huajian, H. Influence of Street Traffic Accessibility on Street Vitality: A Case Study of Some Life Service Streets in Nanchang City. J. Landsc. Res. 2020, 12, 114–116. [Google Scholar]
- Wu, C.; Ye, Y.; Gao, F.; Ye, X. Using Street View Images to Examine the Association between Human Perceptions of Locale and Urban Vitality in Shenzhen, China. Sustain. Cities Soc. 2023, 88, 104291. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, Y.; Hong, M.Y.; Xia, J.N. Influence of the built environment on outdoor space fitness vitality and its heterogeneity: A case study of the Wuhan urban area. Prog. Geogr. 2024, 43, 93–109. [Google Scholar] [CrossRef]
- Niu, N.; Li, L.; Li, X.; He, J. The Structural Dimensions and Community Vibrancy: An Exploratory Analysis in Guangzhou, China. Cities 2022, 127, 103771. [Google Scholar] [CrossRef]
- Yang, L.; Liang, Y.; He, B.; Lu, Y.; Gou, Z. COVID-19 Effects on Property Markets: The Pandemic Decreases the Implicit Price of Metro Accessibility. Tunn. Undergr. Space Technol. 2022, 125, 104528. [Google Scholar] [CrossRef]
- Xu, J.; Xiong, Q.; Jing, Y.; Xing, L.; An, R.; Tong, Z.; Liu, Y.; Liu, Y. Understanding the Nonlinear Effects of the Street Canyon Characteristics on Human Perceptions with Street View Images. Ecol. Indic. 2023, 154, 110756. [Google Scholar] [CrossRef]
- Wang, X.; Huang, D.; Liu, Y.; Yao, Y.; Xiang, L. Impact of Human-scale Street Space Quality on Walking to School by School-age Children: A Case Study of Beijing. City Plan. Rev. 2023, 1–12. Available online: https://link.cnki.net/urlid/11.2378.tu.20230823.1451.004 (accessed on 10 August 2024).
- Zhang, L.; Pei, T.; Chen, Y.; Song, C.; Liu, X. A Review of Urban Environmental Assessment based on Street View Images. J. Geo-Inf. Sci. 2019, 21, 46–58. [Google Scholar] [CrossRef]
- Chen, X.; Meng, Q.; Hu, D.; Zhang, L.; Yang, J. Evaluating Greenery around Streets Using Baidu Panoramic Street View Images and the Panoramic Green View Index. Forests 2019, 10, 1109. [Google Scholar] [CrossRef]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 6230–6239. [Google Scholar]
- Zhou, B.; Zhao, H.; Puig, X.; Fidler, S.; Barriuso, A.; Torralba, A. Scene Parsing through ADE20K Dataset. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 5122–5130. [Google Scholar]
- Zhu, J.; Gong, Y.; Liu, C.; Du, J.; Song, C.; Chen, J.; Pei, T. Assessing the Effects of Subjective and Objective Measures on Housing Prices with Street View Imagery: A Case Study of Suzhou. Land 2023, 12, 2095. [Google Scholar] [CrossRef]
- Mehta, V. The Street: A Quintessential Social Public Space; Routledge: London, UK, 2014. [Google Scholar]
- Yan, Z.; Ma, L.; He, W.; Zhou, L.; Lu, H.; Liu, G.; Huang, G. Comparing Object-Based and Pixel-Based Methods for Local Climate Zones Mapping with Multi-Source Data. Remote Sens. 2022, 14, 3744. [Google Scholar] [CrossRef]
- Jiang, Y.; Han, Y.; Liu, M.; Ye, Y. Street Vitality and Built Environment Features: A Data-Informed Approach from Fourteen Chinese Cities. Sustain. Cities Soc. 2022, 79, 103724. [Google Scholar] [CrossRef]
- Xiao, X.; Wei, Y.; Li, M. The Method of Measurement and Applications of Visible Green Index in Japan. Urban Plan. Int. 2018, 33, 98–103. [Google Scholar]
- Moran, P.A.P. Notes on Continuous Stochastic Phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef]
- Long, Y.; Huang, C.C. Does Block Size Matter? The Impact of Urban Design on Economic Vitality for Chinese Cities. Environ. Plan. B Urban Anal. City Sci. 2017, 46, 2399808317715640. [Google Scholar] [CrossRef]
- Anselin, L. Spatial Econometrics: Methods and Models; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Chen, Y.; Yu, B.; Shu, B.; Yang, L.; Wang, R. Exploring the Spatiotemporal Patterns and Correlates of Urban Vitality: Temporal and Spatial Heterogeneity. Sustain. Cities Soc. 2023, 91, 104440. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Yu, D.; Qi, J.; Li, S. Investigating the Spatiotemporal Pattern of Urban Vibrancy and Its Determinants: Spatial Big Data Analyses in Beijing, China. Land Use Policy 2022, 119, 106162. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Yang, W.; Kang, W. Multiscale Geographically Weighted Regression (MGWR). Ann. Am. Assoc. Geogr. 2017, 107, 1247–1265. [Google Scholar] [CrossRef]
- O’brien, R.M. A Caution Regarding Rules of Thumb for Variance Inflation Factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Sasidhar, K.; Vineeth, Y.; Vineethreddy; Subbarao, S.S.V. Trip Attraction Rates of Commercial Land Use: A Case Study. Indian J. Sci. Technol. 2016, 9, 1–5. [Google Scholar] [CrossRef]
- Liu, L.; Dong, Y.; Lang, W.; Yang, H.; Wang, B. The Impact of Commercial-Industry Development of Urban Vitality: A Study on the Central Urban Area of Guangzhou Using Multisource Data. Land 2024, 13, 250. [Google Scholar] [CrossRef]
- Xu, L.; Meng, R.; Chen, Z. Fascinating Streets: The Impact of Building Facades and Green View. Landsc. Archit. 2017, 24, 27–33. [Google Scholar] [CrossRef]
- Jiang, B.; Chang, C.-Y.; Sullivan, W.C. A Dose of Nature: Tree Cover, Stress Reduction, and Gender Differences. Landsc. Urban Plan. 2014, 132, 26–36. [Google Scholar] [CrossRef]
- Chiu, C. From Self-Management towards Private Management: Changing Approaches to Decentralized Management of Street Business in Taipei. J. Urban Manag. 2013, 2, 71–93. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, J.; Wang, Z. Stall Economy and Good Governance: Implication of Management Strategy in Asia-Pacific Region. Urban Plan. Int. 2022, 37, 74–81. [Google Scholar] [CrossRef]
- Ye, Y.; Huang, C.C.; Li, X.T.; Chen, X.Y. Mapping the Differences Between Human-Scaled Visible Street Greenery vs. Green Coverage from Bird’s-Eye View and a Further Exploration of the Effecting Issues. Landsc. Archit. 2023, 30, 20–28. [Google Scholar] [CrossRef]
Category | Variables (Abbrev.) | Formula | Description |
---|---|---|---|
Locational Conditions | Traffic location (TL) [29] | are the distances from the -th grid center to the nearest two different metro stations, respectively. | |
Commercial location (CL) [32] | are the distances from the -th grid center to the nearest two different business districts (including the first-level business district Xinjikou, the third-level business districts Hunan Road and Fuzimiao, and the fourth-level business districts Ruijin Road and Zhongyangmen, a total of five places), respectively. | ||
Built Environment | Road density (RD) [33] | is the total length of roads in the -th grid, and is the area of the -th grid. | |
Functional density (FD) [23] | is the number of POIs in the -th grid. | ||
Functional mixture (FM) [36] | is the proportion of the -th POI in the -th grid. | ||
Road area ratio (RAR) [22] | is the number of SVIs in the -th grid, is the total pixels in the -th image, and are the numbers of pixels occupied by the car lane and sidewalk in the -th image, respectively. | ||
Permeability ratio (PR) [34] | are the numbers of pixels occupied by windows, doors, and buildings in the -th image, respectively. | ||
Residents’ Perceptions | Enclosure index (EI) [13] | is the number of pixels occupied by sky in the -th image. | |
Green view index (GVI) [41] | is the number of pixels occupied by greenery in the -th image. | ||
Visual complexity index (VCI) [56] | represent the number of objects and the proportion of the -th object in the -th image, respectively. | ||
Service satisfaction index (SSI) [42] | is the number of consumption places in the -th grid, and is the number of favorite comments that the -th place has from the social media commentary data in the -th grid. |
Moran’s I | z-Score | p-Value | |
---|---|---|---|
Working Days | 0.496 | 36.308 | 0.001 |
Weekends | 0.449 | 34.209 | 0.001 |
Category | Variable | VIF | Working Days | Weekends | ||
---|---|---|---|---|---|---|
Coef. (B) | Std. | Coef. (B) | Std. | |||
Intercept | -- | 0.001 | 0.018 | 0.001 | 0.018 | |
Locational Conditions | TL | 1.198 | −0.097 *** | 0.019 | −0.002 | 0.019 |
CL | 1.241 | 0.130 *** | 0.020 | −0.084 *** | 0.020 | |
Built Environment | RD | 1.098 | 0.048 * | 0.019 | 0.039 * | 0.018 |
FD | 1.511 | 0.390 *** | 0.022 | 0.469 *** | 0.022 | |
FM | 1.475 | 0.095 *** | 0.022 | −0.018 | 0.021 | |
RAR | 1.294 | 0.151 *** | 0.020 | 0.065 ** | 0.020 | |
PR | 1.009 | −0.004 | 0.018 | 0.019 | 0.018 | |
Residents’ Perceptions | EI | 2.704 | 0.093 ** | 0.029 | −0.006 | 0.029 |
GVI | 2.922 | −0.129 *** | 0.030 | −0.030 | 0.030 | |
VCI | 1.290 | 0.067 *** | 0.020 | 0.056 ** | 0.020 | |
SSI | 1.118 | 0.019 | 0.019 | 0.075 *** | 0.019 | |
Overall Model-Fitting | AICc = 5673.76 | AICc = 5639.75 | ||||
Adjusted R2 = 0.288 | Adjusted R2 = 0.298 |
Working Days | Weekends | |||||
---|---|---|---|---|---|---|
MI/DF | Value | p | MI/DF | Value | p | |
Moran’s I (error) | 0.2979 | 35.2021 | 0.0001 | 0.2275 | 26.9326 | 0.0001 |
Lagrange Multiplier (LM) (lag) | 1 | 952.9891 | 0.0001 | 1 | 518.7896 | 0.0001 |
Robust LM (lag) | 1 | 14.1159 | 0.0002 | 1 | 0.7998 | 0.0371 |
LM (error) | 1 | 1195.9631 | 0.0001 | 1 | 697.3186 | 0.0001 |
Robust LM (error) | 1 | 257.0899 | 0.0001 | 1 | 179.3288 | 0.0001 |
LM (SARMA) | 2 | 1210.0790 | 0.0001 | 2 | 698.1184 | 0.0001 |
Category | Variable | Working Days | Weekends | |||
---|---|---|---|---|---|---|
Coef. (B) | Std. | Coef. (B) | Std. | |||
Intercept | 0.002 | 0.035 | 0.005 | 0.031 | ||
Locational Conditions | TL | −0.168 *** | 0.026 | −0.057 * | 0.025 | |
CL | 0.118 *** | 0.034 | −0.056 * | 0.031 | ||
Built Environment | RD | 0.056 ** | 0.017 | 0.043 * | 0.018 | |
FD | 0.369 *** | 0.022 | 0.461 *** | 0.023 | ||
FM | 0.068 ** | 0.021 | −0.012 | 0.021 | ||
RAR | 0.121 *** | 0.019 | 0.060 ** | 0.019 | ||
PR | −0.004 | 0.015 | 0.011 | 0.016 | ||
Residents’ Perceptions | EI | 0.063 * | 0.028 | 0.031 | 0.029 | |
GVI | −0.099 *** | 0.029 | −0.055 * | 0.030 | ||
VCI | 0.075 *** | 0.019 | 0.058 ** | 0.019 | ||
SSI | 0.037 * | 0.017 | 0.088 *** | 0.018 | ||
Overall Model-Fitting | AICc = 5334.76 | AICc = 5452.31 | ||||
Adjusted R2 = 0.415 | Adjusted R2 = 0.376 |
Working Days | Weekends | |||||
---|---|---|---|---|---|---|
OLS | GWR | MGWR | OLS | GWR | MGWR | |
AICc | 5673.76 | 5046.97 | 4872.96 | 5639.75 | 5155.83 | 4923.84 |
R2 | 0.291 | 0.580 | 0.616 | 0.302 | 0.577 | 0.596 |
Adjusted R2 | 0.288 | 0.526 | 0.560 | 0.298 | 0.514 | 0.552 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Ye, R.; Hong, X.; Tao, Y.; Li, Z. What Factors Revitalize the Street Vitality of Old Cities? A Case Study in Nanjing, China. ISPRS Int. J. Geo-Inf. 2024, 13, 282. https://doi.org/10.3390/ijgi13080282
Zheng Y, Ye R, Hong X, Tao Y, Li Z. What Factors Revitalize the Street Vitality of Old Cities? A Case Study in Nanjing, China. ISPRS International Journal of Geo-Information. 2024; 13(8):282. https://doi.org/10.3390/ijgi13080282
Chicago/Turabian StyleZheng, Yan, Ruhai Ye, Xiaojun Hong, Yiming Tao, and Zherui Li. 2024. "What Factors Revitalize the Street Vitality of Old Cities? A Case Study in Nanjing, China" ISPRS International Journal of Geo-Information 13, no. 8: 282. https://doi.org/10.3390/ijgi13080282
APA StyleZheng, Y., Ye, R., Hong, X., Tao, Y., & Li, Z. (2024). What Factors Revitalize the Street Vitality of Old Cities? A Case Study in Nanjing, China. ISPRS International Journal of Geo-Information, 13(8), 282. https://doi.org/10.3390/ijgi13080282