Investigating the Utility Potential of Low-Cost Unmanned Aerial Vehicles in the Temporal Monitoring of a Landfill
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Methodology
- RMSE is the root mean square error,
- n is the number of GCPs used,
- Ximodel is the GCP coordinate of point i on the X-axis,
- Yimodel is the GCP coordinate of point i in on the Y-axis,
- Zimodel is the GCP coordinate of point i in on the Z-axis,
- RMSEXY is the horizontal accuracy,
- RMSEZ is the vertical accuracy, and
- RMSETotal is the total accuracy.
2.3. Volumetric Calculations
3. Results and Discussion
4. Conclusions and Recommendations
Author Contributions
Funding
Conflicts of Interest
References
- Seadon, J.K. Integrated waste management—Looking beyond the solid waste horizon. Waste Manag. 2006, 26, 1327–1336. [Google Scholar] [CrossRef] [PubMed]
- Mohee, R.; Mauthoor, S.; Bundhoo, Z.M.A.; Somaroo, G.; Soobhany, N.; Gunasee, S. Current status of solid waste management in small island developing states: A review. Waste Manag. 2015, 43, 539–549. [Google Scholar] [CrossRef] [PubMed]
- Grazhdani, D. Assessing the variables affecting on the rate of solid waste generation and recycling: An empirical analysis in Prespa Park. Waste Manag. 2016, 48, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Maheshi, D.; Steven, V.P.; Karel, V.A. Environmental and economic assessment of ‘open waste dump’ mining in Sri Lanka. Resour. Conserv. Recycl. 2015, 102, 67–79. [Google Scholar] [CrossRef]
- Manzo, C.; Mei, A.; Zampetti, E.; Bassani, C.; Paciucci, L.; Manetti, P. Top-down approach from satellite to terrestrial rover application for environmental monitoring of landfills. Sci. Total Environ. 2017, 584–585, 1333–1348. [Google Scholar] [CrossRef] [PubMed]
- Cuartas, M.; López, A.; Pérez, F.; Lobo, A. Analysis of landfill design variables based on scientific computing. Waste Manag. 2018, 71, 287–300. [Google Scholar] [CrossRef] [PubMed]
- Sumathi, V.R.; Natesan, U.; Sarkar, C. GIS-based approach for optimized siting of municipal solid waste landfill. Waste Manag. 2008, 28, 2146–2160. [Google Scholar] [CrossRef] [PubMed]
- Wiesmeth, H.; Häckl, D. Integrated environmental policy: A review of economic analysis. Waste Manag. Res. 2017, 35, 332–345. [Google Scholar] [CrossRef] [PubMed]
- Emran, B.; Tannant, D.; Najjaran, H. Low-Altitude Aerial Methane Concentration Mapping. Remote Sens. 2017, 9, 823. [Google Scholar] [CrossRef]
- Tanda, G.; Migliazzi, M.; Chiarabini, V.; Cinquetti, P. Application of close-range aerial infrared thermography to detect landfill gas emissions: A case study. J. Phys. Conf. Ser. 2017, 796, 1–10. [Google Scholar] [CrossRef]
- Gasperini, D.; Allemand, P.; Delacourt, C.; Grandjean, P. Potential and limitation of UAV for monitoring subsidence in municipal landfills. Int. J. Environ. Technol. Manag. 2014, 17, 1–13. [Google Scholar] [CrossRef]
- Vlncent, R.K. RemotSe ensinfgot SolidWasteLandfillasnd HazardoWusasteSites. Photogramm. Eng. Remote Sens. 1994, 60, 979–982. [Google Scholar]
- Karathanassi, V.; Choussiafis, C.; Grammatikou, Z. Monitoring the Change in Volume of Waste in Landfill Using SAR Interferometry. In Proceedings of the 32 EARSeL Symposium 2012 Advances in Geosciences, Mykonos Island, Greece, 21–24 May 2012. [Google Scholar]
- Immerzeel, W.W.; Kraaijenbrink, P.D.A.; Shea, J.M.; Shrestha, A.B.; Pellicciotti, F.; Bierkens, M.F.P.; de Jong, S.M. High-resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles. Remote Sens. Environ. 2014, 150, 93–103. [Google Scholar] [CrossRef]
- Gindraux, S.; Boesch, R.; Farinotti, D. Accuracy Assessment of Digital Surface Models from Unmanned Aerial Vehicles’ Imagery on Glaciers. Remote Sens. 2017, 9, 186. [Google Scholar] [CrossRef]
- Esposito, G.; Mastrorocco, G.; Salvini, R.; Oliveti, M.; Starita, P. Application of UAV photogrammetry for the multi-temporal estimation of surface extent and volumetric excavation in the Sa Pigada Bianca open-pit mine, Sardinia, Italy. Environ. Earth Sci. 2017, 76, 103. [Google Scholar] [CrossRef]
- Obanawa, H.; Hayakawa, Y.S. Variations in volumetric erosion rates of bedrock cliffs on a small inaccessible coastal island determined using measurements by an unmanned aerial vehicle with structure-from-motion and terrestrial laser scanning. Prog. Earth Planet. Sci. 2018, 5, 33. [Google Scholar] [CrossRef] [Green Version]
- Kasprzak, M.; Jancewicz, K.; Michniewicz, A. UAV and SfM in Detailed Geomorphological Mapping of Granite Tors: An Example of Starościńskie Skały (Sudetes, SW Poland). Pure Appl. Geophys. 2018, 175, 3193–3207. [Google Scholar] [CrossRef]
- Niethammer, U.; James, M.R.; Rothmund, S.; Travelletti, J.; Joswig, M. UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results. Eng. Geol. 2012, 128, 2–11. [Google Scholar] [CrossRef]
- Turner, D.; Lucieer, A.; de Jong, S. Time Series Analysis of Landslide Dynamics Using an Unmanned Aerial Vehicle (UAV). Remote Sens. 2015, 7, 1736–1757. [Google Scholar] [CrossRef] [Green Version]
- Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef] [Green Version]
- Pajares, G. Overview and Current Status of Remote Sensing Applications Based on Unmanned Aerial Vehicles (UAVs). Photogramm. Eng. Remote Sens. 2015, 81, 281–330. [Google Scholar] [CrossRef]
- Yazdani, M.; Monavari, S.M.; Omrani, G.A.; Shariat, M.; Hosseini, S.M. Landfill site suitability assessment by means of geographic information system analysis. Solid Earth 2015, 6, 945–956. [Google Scholar] [CrossRef] [Green Version]
- Colvero, D.A.; Gomes, A.P.D.; da Cruz Tarelho, L.A.; de Matos, M.A.A.; dos Santos, K.A. Use of a geographic information system to find areas for locating of municipal solid waste management facilities. Waste Manag. 2018, 77, 500–515. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Espejo Zaragoza, I.; Caroti, G.; Piemonte, A.; Riedel, B.; Tengen, D.; Niemeier, W. Structure from motion (SfM) processing of UAV images and combination with terrestrial laser scanning, applied for a 3D-documentation in a hazardous situation. Geomat. Nat. Hazards Risk 2017, 8, 1492–1504. [Google Scholar] [CrossRef] [Green Version]
- Mlambo, R.; Woodhouse, I.; Gerard, F.; Anderson, K. Structure from Motion (SfM) Photogrammetry with Drone Data: A Low Cost Method for Monitoring Greenhouse Gas Emissions from Forests in Developing Countries. Forests 2017, 8, 68. [Google Scholar] [CrossRef]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zheng, X.; Ai, G.; Zhang, Y.; Zuo, Y. Generating a High-Precision True Digital Orthophoto Map Based on UAV Images. ISPRS Int. J. Geo-Inf. 2018, 7, 333. [Google Scholar] [CrossRef]
- Martínez-Carricondo, P.; Agüera-Vega, F.; Carvajal-Ramírez, F.; Mesas-Carrascosa, F.-J.; García-Ferrer, A.; Pérez-Porras, F.-J. Assessment of UAV-photogrammetric mapping accuracy based on variation of ground control points. Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 1–10. [Google Scholar] [CrossRef]
- Gao, W.; Xu, W.; Bian, X.; Chen, Y. A practical approach for calculating the settlement and storage capacity of landfills based on the space and time discretization of the landfilling process. Waste Manag. 2017, 69, 202–214. [Google Scholar] [CrossRef]
- Yakar, M.; Yilmaz, H.M.; Mutluoglu, O. Close range photogrammetry and robotic total station in volume calculation. Int. J. Phys. Sci. 2010, 5, 86–96. [Google Scholar]
- Cook, K.L. An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection. Geomorphology 2017, 278, 195–208. [Google Scholar] [CrossRef]
- Tien Bui, D.; Long, N.Q.; Bui, X.-N.; Nguyen, V.-N.; Van Pham, C.; Van Le, C.; Ngo, P.-T.T.; Bui, D.T.; Kristoffersen, B. Lightweight Unmanned Aerial Vehicle and Structure-from-Motion Photogrammetry for Generating Digital Surface Model for Open-Pit Coal Mine Area and Its Accuracy Assessment. In Advances and Applications in Geospatial Technology and Earth Resources; Tien Bui, D., Ngoc Do, A., Bui, H.-B., Hoang, N.-D., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 17–33. ISBN 978-3-319-68239-6. [Google Scholar]
- Martin, C.; Parkes, S.; Zhang, Q.; Zhang, X.; McCabe, M.F.; Duarte, C.M. Use of unmanned aerial vehicles for efficient beach litter monitoring. Mar. Pollut. Bull. 2018, 131, 662–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messinger, M.; Silman, M. Unmanned aerial vehicles for the assessment and monitoring of environmental contamination: An example from coal ash spills. Environ. Pollut. 2016, 218, 889–894. [Google Scholar] [CrossRef] [PubMed]
- Puniach, E.; Bieda, A.; Ćwiąkała, P.; Kwartnik-Pruc, A.; Parzych, P. Use of Unmanned Aerial Vehicles (UAVs) for Updating Farmland Cadastral Data in Areas Subject to Landslides. ISPRS Int. J. Geo-Inf. 2018, 7, 331. [Google Scholar] [CrossRef]
- Tahar, K.N.; Kamarudin, S.S. UAV Onboard GPS in Positioning Determination. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B1, 1037–1042. [Google Scholar] [CrossRef]
- Glendell, M.; McShane, G.; Farrow, L.; James, M.R.; Quinton, J.; Anderson, K.; Evans, M.; Benaud, P.; Rawlins, B.; Morgan, D.; et al. Testing the utility of structure-from-motion photogrammetry reconstructions using small unmanned aerial vehicles and ground photography to estimate the extent of upland soil erosion: Unmanned aerial vehicles and ground photography to estimate erosion. Earth Surf. Process. Landf. 2017, 42, 1860–1871. [Google Scholar] [CrossRef]
- Salach, A.; Bakuła, K.; Pilarska, M.; Ostrowski, W.; Górski, K.; Kurczyński, Z. Accuracy Assessment of Point Clouds from LiDAR and Dense Image Matching Acquired Using the UAV Platform for DTM Creation. ISPRS Int. J. Geo-Inf. 2018, 7, 342. [Google Scholar] [CrossRef]
- Gonçalves, G.R.; Pérez, J.A.; Duarte, J. Accuracy and effectiveness of low cost UASs and open source photogrammetric software for foredunes mapping. Int. J. Remote Sens. 2018, 39, 5059–5077. [Google Scholar] [CrossRef]
- Kršák, B.; Blišťan, P.; Pauliková, A.; Puškárová, P.; Kovanič, Ľ.; Palková, J.; Zelizňaková, V. Use of low-cost UAV photogrammetry to analyze the accuracy of a digital elevation model in a case study. Measurement 2016, 91, 276–287. [Google Scholar] [CrossRef]
District | Location of Open Dump Site |
---|---|
Central District | Next to Yesilirmak River and 5 km away from the center |
Turhal | On Tokat road, 2 km away from the center and 100 m away from the Yesilirmak River |
Zile | In a rocky area, 5 km away from the center |
Pazar | Next to the Yesilirmak River and 2 km away from the residential areas |
Flight ID | Flight Date | Remaining Volume (m3) |
---|---|---|
1 | 9 February 2016 | 911,078.9 |
2 | 9 August 2016 | 878,941.9 |
3 | 21 February 2017 | 838,690.5 |
4 | 15 September 2017 | 800,758.6 |
5 | 5 April 2018 | 755,058.4 |
Period | Day | Difference Between Remaining Volume (m3) | Stored Waste Per Day (m3) |
---|---|---|---|
1–2 | 181 | 32,137 | 178 |
2–3 | 196 | 40,251 | 205 |
3–4 | 206 | 37,932 | 184 |
4–5 | 202 | 45,700 | 226 |
Population Statistics from the EIA Report | Population Statistics from the TSI | |||||||
---|---|---|---|---|---|---|---|---|
Year | Central District | Turhal | Zile | Pazar | Central District | Turhal | Zile | Pazar |
2008 | 149,653 | 119,271 | 62,211 | 5928 | 176,564 | 87,826 | 67,224 | 15,261 |
2009 | 154,584 | 122,375 | 63,412 | 6005 | 182,572 | 87,233 | 65,245 | 15,158 |
2010 | 159,587 | 125,501 | 64,610 | 6082 | 188,173 | 86,327 | 63,201 | 15,048 |
2011 | 165,657 | 128,649 | 65,876 | 6158 | 182,371 | 85,391 | 61,619 | 14,948 |
2012 | 169,792 | 131,816 | 67,076 | 6234 | 182,225 | 85,923 | 61,765 | 15,426 |
2013 | 174,985 | 134,998 | 68,270 | 6309 | 184345 | 83,036 | 59,744 | 14,712 |
2014 | 180,233 | 138,195 | 69,458 | 6384 | 185626 | 81,813 | 58,147 | 14,117 |
2015 | 185,531 | 141,401 | 70,743 | 6458 | 188736 | 80,171 | 56,727 | 13,804 |
2016 | 190,876 | 144,617 | 71,925 | 6531 | 192065 | 80,239 | 56,185 | 13,824 |
2017 | 196,261 | 147,839 | 73,097 | 6604 | 196386 | 79,844 | 55,131 | 13,570 |
2018 | 201,681 | 151,061 | 74,260 | 6676 | - | - | - | - |
Year | Central District | Turhal | Zile | Pazar | Total (tons/year) | Total (m3/year) |
---|---|---|---|---|---|---|
2008 | 43,054 | 28,597 | 14,916 | 1204 | 88,090 | 117,453 |
2009 | 44,919 | 29,633 | 15,355 | 1232 | 91,471 | 121,961 |
2010 | 46,838 | 30,693 | 15,801 | 1260 | 94,936 | 126,581 |
2011 | 48,811 | 31,779 | 16,272 | 1289 | 98,508 | 131,344 |
2012 | 50,839 | 32,888 | 16,736 | 1318 | 102,151 | 136,201 |
2013 | 52,921 | 34,018 | 17,203 | 1346 | 105,871 | 141,161 |
2014 | 55,050 | 35,170 | 17,677 | 1376 | 109,670 | 146,227 |
2015 | 57,233 | 36,346 | 18,184 | 1406 | 113,580 | 151,440 |
2016 | 59,468 | 37,545 | 18,673 | 1436 | 117,547 | 156,729 |
2017 | 61,754 | 38,767 | 19,167 | 1467 | 121,594 | 162,125 |
2018 | 64,092 | 40,010 | 19,668 | 1498 | 125,722 | 167,629 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Incekara, A.H.; Delen, A.; Seker, D.Z.; Goksel, C. Investigating the Utility Potential of Low-Cost Unmanned Aerial Vehicles in the Temporal Monitoring of a Landfill. ISPRS Int. J. Geo-Inf. 2019, 8, 22. https://doi.org/10.3390/ijgi8010022
Incekara AH, Delen A, Seker DZ, Goksel C. Investigating the Utility Potential of Low-Cost Unmanned Aerial Vehicles in the Temporal Monitoring of a Landfill. ISPRS International Journal of Geo-Information. 2019; 8(1):22. https://doi.org/10.3390/ijgi8010022
Chicago/Turabian StyleIncekara, Abdullah Harun, Ahmet Delen, Dursun Zafer Seker, and Cigdem Goksel. 2019. "Investigating the Utility Potential of Low-Cost Unmanned Aerial Vehicles in the Temporal Monitoring of a Landfill" ISPRS International Journal of Geo-Information 8, no. 1: 22. https://doi.org/10.3390/ijgi8010022
APA StyleIncekara, A. H., Delen, A., Seker, D. Z., & Goksel, C. (2019). Investigating the Utility Potential of Low-Cost Unmanned Aerial Vehicles in the Temporal Monitoring of a Landfill. ISPRS International Journal of Geo-Information, 8(1), 22. https://doi.org/10.3390/ijgi8010022