Edible Chitosan/Propolis Coatings and Their Effect on Ripening, Development of Aspergillus flavus, and Sensory Quality in Fig Fruit, during Controlled Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Strain
2.2. Materials
2.3. Chitosan and Propolis Preparation
2.4. Chitosan and Propolis Nanoparticles Preparation
2.5. Formulations and Application of Coatings
2.6. Determination of Weight Loss, Firmness, Total Soluble Solids (TSS), Color, Respiration, and Ethylene
2.7. Antioxidant Capacity
2.8. Evaluation of the Antifungal Activity in Laboratory and Semi-Commercial Conditions
2.9. Aflatoxin Production in Fig Fruit Inoculated with A. flavus
2.10. Sensory Evaluation
2.11. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Caliskan, O. The Mediterranean Diet: An Evidence-Based Approach, 1st ed.; Academic Press: San Diego, CA, USA, 2015; p. 698. [Google Scholar] [CrossRef]
- Solomon, A.; Golubowicz, S.; Yablowicz, Z.; Grossman, S.; Bergman, M.; Gottlieb, H.E.; Altman, A.; Kerem, Z.; Flaishman, M.A. Antioxidant activities and anthocyanin content of fresh fruits of common fig (Ficus carica L.). J. Agric. Food Chem. 2006, 54, 7717–7723. [Google Scholar] [CrossRef] [PubMed]
- Centeno, S.; Carrera, Y. Actividad antifúngica y antiaflatoxigénica de extractos de Melissa officinalis (Lamiaceae) sobre Aspergillus flavus. Saber 2013, 25, 185–191. Available online: http://ve.scielo.org/pdf/saber/v25n2/art08.pdf (accessed on 15 September 2020).
- Mohammad, B.; Landeros, J. Plaguicidas que afectan a la salud humana y la sustentabilidad. CULCyT 2007, 19, 21–34. Available online: https://erevistas.uacj.mx/ojs/index.php/culcyt/article/view/454 (accessed on 8 August 2020).
- del Puerto, A.M.; Suárez, S.; Palacios, D.E. Efectos de los plaguicidas sobre el ambiente y la salud. Rev. Cuba. Hig. Epidemiol. 2014, 52, 372–387. Available online: http://scielo.sld.cu/pdf/hie/v52n3/hig10314.pdf (accessed on 15 September 2020).
- Bautista-Baños, S.; Barrera-Necha, L.L.; Hernández-López, M.; Rodríguez-González, F. Morphological and ultrastructural modifications of chitosan-treated fungal phytopathogens. In Chitosan in the Preservation of Agricultural Commodities; Bautista-Baños, S., Romanazzi, G., Jimenez-Aparicio, A., Eds.; Academic Press: New York, NY, USA, 2016; pp. 251–276. Available online: https://www.sciencedirect.com/science/article/pii/B9780128027356000094?via%3Dihub (accessed on 20 September 2020).
- Cortés-Higareda, M.; Ramos-García, M.D.L.; Correa-Pacheco, Z.N.; Del Río-García, J.C.; Bautista-Baños, S. Nanostructured chitosan/propolis formulations: Characterization and effect on the growth of Aspergillus flavus and production of aflatoxins. Heliyon 2019, 5, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Bautista, S.; Correa, Z.; Barrea, L.L.; Ventura Aguilar, R.I. Inserción del CEPROBI en el campo de la nanotecnología con temas sobre la conservación de productos agrícolas. In Agronanotecnología: Nuevo Paradigma Científico en la Producción de Alimentos, 1st ed.; Lira, S.R.H., Méndez, A.B., Vera, R.I., Eds.; Centro de Investigación en Quimica Aplicada: Saltillo, Mexico, 2017; pp. 88–103. [Google Scholar]
- Martínez-González, M.D.C.; Bautistabanos, S.; Correa-Pacheco, Z.N.; Correa-Pacheco, Z.N.; Ventura-Aguilar, R.I.; Del Río-García, J.C.; Ramos-García, M.D.L. Effect of nanostructured chitosan/propolis coatings on the quality and antioxidant capacity of strawberries during storage. Coatings 2020, 10, 90. [Google Scholar] [CrossRef] [Green Version]
- Correa-Pacheco, Z.N.; García-Paniagua, K.D.; Bautista-Baños, S.; Corona-Rangel, M.L. Efecto de nanorecubrimientos de quitosano-aceite esencial de tomillo sobre la calidad postcosecha en frutos de jitomate. Rev. Mex. Fitopatol. 2019, 37, 29–36. [Google Scholar] [CrossRef]
- González-Saucedo, A.; Barrera-Necha, L.; Ventura-Aguilar, R.I.; Correa-Pacheco, Z.N.; Bautista-Baños, S.; Hernández-López, M. Extension of the postharvest quality of bell pepper by applying nanostructured coatings of chitosan with Byrsonima crassifolia extract (L.) Kunth. Postharvest Biol. Technol. 2019, 149, 74–82. [Google Scholar] [CrossRef]
- Correa-Pacheco, Z.; Bautista-Baños, S.; Marquina-Valle, M.; Hernández-López, M. The effect of nanostructured chitosan and chitosan-thyme essential oil coatings on Colletotrichum gloeosporioides growth in vitro and on cv Hass Avocado and fruit quality. J. Phytopathol. 2017, 165, 297–305. [Google Scholar] [CrossRef]
- Baldoni, D.; Ventura-Aguilar, R.I.; Hernández-López, M.; Corona-Rangel, M.A.; Barrera-Necha, L.L.; Correa-Pacheco, Z.; Bautista-Baños, S. Calidad postcosecha de higos “Black mision” tratados con cubiertas naturales. Rev. Iberoam. Tecnol. Postcosecha 2016, 17, 267–275. Available online: https://www.redalyc.org/pdf/813/81349041014.pdf (accessed on 23 August 2020).
- Bautista-Baños, S.; González-Soto, R.; Ramos-García, M. Physycal properties of chitosan films with lemon essential oil added and their impact on the shelf life of tomatoes (Licopericon esculentum L.). Rev. Mex. Ing. Quím. 2018, 17, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Mervyn, C.; Suman, S.; Morris, I. Lycopene concentration of tomato fruit can be estimated from chromaticity values. HortScience 1992, 27, 465–466. [Google Scholar] [CrossRef] [Green Version]
- Contreras-Oliva, A.; Pérez-Gago, M.B.; Salvador, A.; Bermejo, A.; Rojas-Argudo, C. Physico-chemical, sensory and nutritional quality of oranges cv. Valencia coated with chitosan. Agrociencia 2012, 46, 441–453. Available online: http://www.scielo.org.mx/pdf/agro/v46n5/v46n5a2.pdf (accessed on 22 September 2020).
- Fernández-Valdés, D.; Bautista-Baños, S.; Ocampo-Ramírez, A.; García-Pereira, A.; Falcón-Rodríguez, A. Películas y recubrimientos comestibles: Una alternativa favorable en la conservación poscosecha de frutas y hortalizas. Rev. Cie Téc. Agr. 2015, 24, 52–57. Available online: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2071-00542015000300008 (accessed on 26 September 2020).
- Siripatrawan, U.; Vitchayakitti, W. Improving functional properties of chitosan films as active food packaging by incorporating with propolis. Food Hydrocoll. 2016, 12, 61. [Google Scholar] [CrossRef]
- Hernández-López, G.; Ventura-Aguilar, R.I.; Correa-Pacheco, Z.N.; Bautista-Baños, S.; Barrera, L.L. Nanostructured chitosan edible coating loaded with α-pinene for the preservation of the postharvest quality of Capsicum annuum L. and Alternaria alternata control. Int. J. Biol. Macromol. 2020, 165, 1881–1888. [Google Scholar] [CrossRef]
- Bodini, R.B.; Sobral, P.J.A.; Favaro-Trindade, C.S.; Carvalho, R.A. Properties of gelatin-based films with added ethanol–propolis extract. LWT Food Sci. Technol. 2013, 51, 104–110. [Google Scholar] [CrossRef]
- Premoli, G.; Laguado, P.; Diaz, N.; Villarreal, J.; y González, A. Uso del propóleo en odontología. Acta Odontol. Venez. 2009, 48, 1–13. Available online: https://www.actaodontologica.com/ediciones/2010/2/art-23/ (accessed on 18 September 2020).
- Ramos-García, M.L.; Bosquez-Molina, E.; Hernández-Romano, J.; Zavala-Padilla, G.; Terrés-Rojas, I.; Alia-Tejacal, E.; Hernández-López, M.; Barrera-Necha, L.L.; Bautista-Baños, S. Antimicrobial evaluation of edible coatings based-chitosan in combination with other natural compounds to control Rhizopus stolonifer and Escherichia coli DH5α on fresh whole tomatoes. Crop. Prot. 2012, 38, 1–6. [Google Scholar] [CrossRef]
- Barrera, E.; Gil, L.; García, C.M.; Durango, D.L.; Gil, J.H. Empleo de un recubrimiento formulado con propóleos para el manejo poscosecha de frutos de papaya (Carica papaya L. cv. Hawaiana). Rev. Fac. Nac. Agron. Medellin. 2012, 65, 6497–6506. Available online: http://www.scielo.org.co/pdf/rfnam/v65n1/v65n1a20.pdf (accessed on 11 September 2020).
- Pastor, C.; Sanchez-Gonzalez, L.; Marcilla, A.; Chiralt, A.; Chafer, M.; Gonzalez-Martinez, C.H. Quality and safety of table grapes coated with hydroxypropyl-methylcellulose edible coatings containing propolis extract. Postharvest Biol. Technol. 2010, 60, 64–70. [Google Scholar] [CrossRef]
- Figueroa, J.; Salcedo, J.; Aguas, Y.; Olivero, R.; Narvaez, G. Recubrimientos comestibles en la conservación del mango y aguacate, y perspectiva al uso del propoleo en su formulación. Rev. Colomb. Cienc. Anim. 2011, 3, 386–400. Available online: https://www.recia.edu.co/index.php/recia/article/view/414/456 (accessed on 22 September 2020). [CrossRef]
- Aguilera-Ortíz, M.; Alanis-Guzmán, M.G.; García-Díaz, C.L.; Hernández-Brenes, C.M. Caracterización y estabilidad de antocianinas de higo, variedad Mission. Univ. Cienc. 2009, 25, 151–158. Available online: http://www.scielo.org.mx/pdf/uc/v25n2/v25n2a5.pdf (accessed on 22 September 2020).
- Vargas-Sánchez, R.D.; Torrescano-Urrutia, G.R.; Mendoza-Wilson, A.M.; Vallejo-Galland, B.; Acedo-Félix, E.; Sánchez-Escalante, J.J. Sánchez-Escalante, A. Mecanismos involucrados en la actividad antioxidante y antibacteriana del propóleos. Biotecnia 2014, 16, 32–37. Available online: https://www.researchgate.net/publication/264083911_Mecanismos_involucrados_en_la_actividad_antioxidante_y_antibacteriana_del_propoleos (accessed on 12 August 2020). [CrossRef]
- Navarro-Navarro, M.; Lugo-Sepúlveda, R.; García-Moraga, M.; Rosa-López, R.; Robles-Zepeda, R.; Ruiz-Bustos, E.; Velázquez-Contreras, C. Actividad antimicrobiana y antioxidante de extractos metanolicos de propoleos de Magdalena de kino y Sonoyta, Sonora. Biotecnia 2012, 14, 9–15. Available online: https://biotecnia.unison.mx/index.php/biotecnia/article/view/167 (accessed on 12 September 2020). [CrossRef]
- López-Mata, M.A.; Ruiz-Cruz, S.; Navarro-Preciado, C.; Ornelas-Paz, J.J.; Estrada-Alvarado, M.I.; Gassos-Ortega, L.E. Rodrigo-García, J. Efecto de recubrimientos comestibles de quitosano en la reducción microbiana y conservación de la calidad de fresas. Biotecnia 2012, 14, 33–43. Available online: https://biotecnia.unison.mx/index.php/biotecnia/article/view/113 (accessed on 13 September 2020). [CrossRef]
- Pilon, L.; Spricigo, P.; Mora, M.; Mattoso, L.; Ferreira, M. Efectos de los Revestimientos Comestibles a Base de Nanopartículas de Quitosano en la Composición Gaseosa de Manzanas Mínimamente Procesadas. VII Congreso Iberoamericano de Tecnología Postcosecha y Agroexportaciones, la Plata, Argentina, 2012. Available online: https://www.alice.cnptia.embrapa.br/bitstream/doc/1008974/1/efectos.pdf (accessed on 21 September 2020).
- Ortiz, K.L.; Villalba, K.J.; Ochoa-Martinez, C.I.; Pasos, C.V. Evaluación de la permeabilidad al vapor de agua de películas de proteína de lactosuero/quitosano y su efecto sobre la respiración en banano recubierto. Innotec 2016, 11, 59–64. Available online: https://ojs.latu.org.uy/index.php/INNOTEC/article/view/331 (accessed on 8 October 2020).
- Barrera, E.; Gil, L.; García, C.; Durango, D.; Gil, J. A coating of chitosan and propolis extract for the postharvest treatment of papaya (Carica papaya L. cv. Hawaiiana). Rev. Fac. Nac. Agron. 2015, 68, 7667–7678. Available online: http://www.scielo.org.co/pdf/rfnam/v68n2/v68n2a08.pdf (accessed on 8 October 2020). [CrossRef]
- Locaso, D.E.y.d.C.M. Empaque sin costo ambiental formulado con quitosano para reducir la podredumbre verde en postcosecha de naranjas. Rev. Iberoam. Tecnol. Postcosecha 2011, 12, 35–43. Available online: https://www.redalyc.org/articulo.oa?id=81318808006 (accessed on 22 September 2020).
- Bautista-Baños, S.; Ventura-Aguilar, R.I.; Correa-Pacheco, Z.; Corona-Rangel, M.L. Chitosan: A versatile antimicrobial polysaccharide for fruit and vegetables in postharvest—A review. Rev. Chapingo. Hortic. 2017, 23, 103–121. [Google Scholar] [CrossRef]
- Bautista-Baños, S.; Hernández-Lauzardo, A.N.; Velázquez-del-Valle, M.G.; Hernández-López, M.; Ait, E.; Bosques-Molina, E.; Wilson, C.L. Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop. Prot. 2006, 25, 108–118. [Google Scholar] [CrossRef]
- Torlak, E.; Sert, D. Antibacterial effectiveness of chitosan–propolis coated polypropylene films against foodborne pathogens. Int. J. Biol. Macromol. 2013, 60, 52–55. [Google Scholar] [CrossRef]
- Juarez-Morales, L.A.; Hernandez-Cocoletzi, H.; Chigo-Anota, E.; Aguila-Almanza, E.; Tenorio-Arvide, M.G. Chitosan-Aflatoxins B1, M1 interaction: A computational approach. Curr. Org. Chem. 2018, 21, 2877–2883. Available online: https://www.researchgate.net/publication/316650226_Chitosan-Aflatoxins_B1_M1_Interaction_A_Computational_Approach (accessed on 17 September 2020). [CrossRef]
- Montero-Álvarez, J.A.; Paredes-Bautista, M.J.; Rivera-Morales, M.C. Utilización de quitosana para la remoción de arsénico (As) del agua. Superf. Vacío 2010, 23, 136–139. Available online: http://smcsyv.fis.cinvestav.mx/supyvac/23_S/SV23S136.pdf (accessed on 17 August 2020).
Firmness (N) | |||||
---|---|---|---|---|---|
Coatings | Storage Days | ||||
1 | 3 | 6 | 9 | 12 | |
CS + PNPs | 5.6 ± 1.4 a | 3.1 ± 1.1 a | 5.4 ± 1.4 ab | 6.2 ± 2.1 a | 5.1 ± 1.3 b |
CS + CSNPs | 6.3 ± 1.7 a | 4.6 ± 3.0 ab | 7.0 ± 1.0 b | 5.8 ± 2.0 a | 4.5 ± 1.1 ab |
CS + P | 7.0 ± 0.8 a | 4.3 ± 1.3 ab | 5.3 ± 1.9 ab | 5.6 ± 1.5 a | 2.8 ± 1.1 a |
CS + CSNPs + PNPs | 4.5 ± 1.4 a | 6.0 ± 1.1 ab | 4.6 ± 1.7 ab | 5.3 ± 0.9 a | 6.0 ± 1.3 b |
CS + PNPs + CSNPs + P | 6.1 ± 1.7 a | 6.2 ± 0.4 ab | 6.1 ± 1.6 ab | 4.4 ± 0.9 a | 5.6 ± 1.0 b |
CS + PNPs + P | 4.8 ± 1.2 a | 4.9 ± 1.2 ab | 5.0 ± 1.0 ab | 4.4 ± 0.8 a | 4.4 ± 1.0 ab |
CS + CSNPs + P | 5.5 ± 1.2 a | 5.8 ± 2.2 ab | 6.2 ± 1.0 ab | 4.9 ± 0.4 a | 5.6 ± 0.5 b |
CS | 5.0 ± 1.7 a | 3.9 ± 0.5 ab | 3.9 ± 0.9 a | 3.8 ± 1.2 a | 4.1 ± 0.7 ab |
Control | 6.0 ± 1.6 a | 6.4 ± 1.1 b | 4.6 ± 0.9 ab | 4.4 ± 0.6 a | 4.9 ± 0.6 b |
TSS (°BRIX) | |||||
---|---|---|---|---|---|
Coatings | Storage Days | ||||
1 | 3 | 6 | 9 | 12 | |
CS + PNPs | 16.2 ± 1.9 ab | 20.6 ± 3.8 abc | 20.8 ± 1.8 a | 23.0 ± 3.7 ab | 22.2 ± 4.0 a |
CS + CSNPs | 14.8 ± 2.9 a* | 20.8 ± 3.6 abc | 18.2 ± 2.4 a | 20.6 ± 3.8 ab | 21.2 ± 2.6 a |
CS + P | 17.4 ± 3.4 ab | 19.8 ± 2.8 abc | 16.4 ± 5.0 a | 26.6 ± 0.6 b | 24.0 ± 3.9 a |
CS + CSNPs + PNPs | 18.2 ± 2.9 ab | 17.4 ± 2.9 ab | 15.8 ± 2.2 a | 19.8 ± 3.4 ab | 24.0 ± 3.7 a |
CS + PNPs + CSNPs + P | 16.6 ± 2.7 ab | 17.6 ± 4.5 ab | 19.2 ± 3.4 a | 22.4 ± 4.7 ab | 22.8 ± 5.5 a |
CS + PNPs + P | 21.2 ± 2.4 b | 23.0 ± 3.4 abc | 21.4 ± 2.6 a | 20.4 ± 3.5 ab | 25.6 ± 2.1 a |
CS + CSNPs + P | 21.2 ± 2.8 b | 24.8 ± 2.6 c | 19.6 ± 4.5 a | 21.8 ± 3.7 ab | 22.6 ± 2.8 a |
CS | 21 ± 3.6 b | 23.6 ± 2.5 bc | 19.4 ± 2.7 a | 18.4 ± 2.88 a | 20.0 ± 4.5 a |
Control | 18 ± 1.9 ab | 16.8 ± 2.8 a | 18.8 ± 2.4 a | 23.0 ± 2.1 ab | 22.0 ± 5.7 a |
CHROMATICITY (C*) | |||||
---|---|---|---|---|---|
Coatings | Storage Days | ||||
1 | 3 | 6 | 9 | 12 | |
CS + PNPs | 8.3 ± 2.6 a | 6.4 ± 2.3 a | 4.5 ± 2.0 a | 4.7 ± 2.4 a | 3.7 ± 2.2 a |
CS + CSNPs | 7.2 ± 2.6 a | 5.5 ± 1.5 a | 4.2 ± 1.2 a | 3.9 ± 1.8 ª | 3.7 ± 1.5 a |
CS + P | 7.5 ± 3.5 a | 7.4 ± 2.5 a | 5.8 ± 2.3 a | 4.8 ± 1.7 ª | 3.9 ±1.3 a |
CS + CSNPs + PNPs | 6.8 ± 2.8 a | 6.2 ± 2.9 a | 4.8 ± 2.6 a | 4.1 ± 2.4 ª | 3.4 ± 2.3 a |
CS + PNPs + CSNPs + P | 7.7 ± 4.1 a | 5.5 ± 2.3 a | 4.1 ± 2.1 a | 2.9 ± 1.2 ª | 2.7 ± 1.8 a |
CS + PNPs + P | 6.5 ± 3.0 a | 6.3 ± 3.1 ª | 4.7 ± 2.4 a | 4.0 ± 2.0 a | 3.2 ± 1.4 a |
CS + CSNPs + P | 8.2 ± 5.0 a | 7.6 ± 4.2 a | 4.8 ± 2.3 a | 4.5 ± 2.7 a | 3.7 ± 2.1 a |
CS | 6.7 ± 2.4 a | 6.9 ± 3.3 a | 4.8 ± 1.3 a | 4.2 ± 1.3 a | 3.3 ± 1.7 a |
Control | 7.7 ± 3.7 a | 6.9 ± 3.7 a | 5.3 ± 3.1 a | 3.8 ± 2.7 a | 3.5 ± 2.1 a |
Coatings | Antioxidant Capacity (DPPH %) Storage Days | ||||
---|---|---|---|---|---|
1 | 3 | 6 | 9 | 12 | |
CS + PNPs | 36.4 ± 10.0 abc* | 38.1 ± 6.8 ab* | 54.8 ± 13.0 a | 39.0 ± 24.3 ab | 48.8 ± 3.0 ab |
CS + CSNPs | 29.3 ± 3.1 ab | 49.0 ± 10.1 abc | 57.6 ± 16.9 a | 38.1 ± 9.6 ab | 43.0 ± 18.0 ab |
CS + P | 42.5 ± 26.2 abc | 32.9 ± 16.6 a | 47.7 ± 3.3 a | 32.8 ± 3.0 a | 60.7 ± 12.6 bc |
CS + CSNPs + PNPs | 56.0 ± 7.3 c | 34.9 ± 6.1 ab | 56.6 ± 11.3 a | 67.7 ± 15.6 cd | 62.7 ± 7.1 bc |
CS + PNPs + CSNPs + P | 40.8 ± 11.4 abc | 61.0 ± 9.7 c | 54.6 ± 6.9 a | 48.7 ± 12.8 abc | 61.1 ± 9.1 bc |
CS + PNPs + P | 28.1 ± 9.4 a | 44.8 ± 11.7 abc | 63.9 ± 11.6 a | 60.6 ± 10.7 bcd | 73.6 ± 17.4 c |
CS + CSNPs + P | 50.4 ± 6.2 bc | 49.4 ± 2.7 abc | 52.9 ± 10.7 a | 83.3 ± 2.8 d | 43.6 ± 9.8 ab |
CS | 54.5 ± 11.9 c | 50.9 ± 5.1 bc | 47.4 ± 25.4 a | 47.7 ± 7.1 abc | 37.6 ± 9.2 a |
Control | 45.0 ± 4.4 abc | 44.9 ± 3.1 abc | 52.0 ± 6.8 a | 53.8 ± 7.9 abc | 57.0 ± 14.8 ab |
Treatment | Appearance | Smell | Flavour |
---|---|---|---|
CS + PNPs | 8.6 ± 0.5 b | 6.8 ± 1.4 ab | 6.6 ± 2.5 a |
CS + CSNPs | 7.2 ± 1.5 a | 6.5 ± 1.3 ab | 6.7 ± 1.8 a |
CS + PNPs + CSNPs + P | 7.8 ± 0.9 ab | 6.7 ± 1.5 ab | 7.6 ± 1.8 a |
CS + CSNPs + P | 8.3 ± 1.0 ab | 8.0 ± 0.5 b | 7.2 ± 1.6 a |
Control | 7.3 ± 1.1 ab | 6.2 ± 1.0 a | 7.2 ± 1.7 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aparicio-García, P.F.; Ventura-Aguilar, R.I.; del Río-García, J.C.; Hernández-López, M.; Guillén-Sánchez, D.; Salazar-Piña, D.A.; Ramos-García, M.d.L.; Bautista-Baños, S. Edible Chitosan/Propolis Coatings and Their Effect on Ripening, Development of Aspergillus flavus, and Sensory Quality in Fig Fruit, during Controlled Storage. Plants 2021, 10, 112. https://doi.org/10.3390/plants10010112
Aparicio-García PF, Ventura-Aguilar RI, del Río-García JC, Hernández-López M, Guillén-Sánchez D, Salazar-Piña DA, Ramos-García MdL, Bautista-Baños S. Edible Chitosan/Propolis Coatings and Their Effect on Ripening, Development of Aspergillus flavus, and Sensory Quality in Fig Fruit, during Controlled Storage. Plants. 2021; 10(1):112. https://doi.org/10.3390/plants10010112
Chicago/Turabian StyleAparicio-García, Pablo F., Rosa I. Ventura-Aguilar, Juan C. del Río-García, Mónica Hernández-López, Dagoberto Guillén-Sánchez, Dolores A. Salazar-Piña, Margarita de L. Ramos-García, and Silvia Bautista-Baños. 2021. "Edible Chitosan/Propolis Coatings and Their Effect on Ripening, Development of Aspergillus flavus, and Sensory Quality in Fig Fruit, during Controlled Storage" Plants 10, no. 1: 112. https://doi.org/10.3390/plants10010112
APA StyleAparicio-García, P. F., Ventura-Aguilar, R. I., del Río-García, J. C., Hernández-López, M., Guillén-Sánchez, D., Salazar-Piña, D. A., Ramos-García, M. d. L., & Bautista-Baños, S. (2021). Edible Chitosan/Propolis Coatings and Their Effect on Ripening, Development of Aspergillus flavus, and Sensory Quality in Fig Fruit, during Controlled Storage. Plants, 10(1), 112. https://doi.org/10.3390/plants10010112