Ecophysiological Variability of Alnus viridis (Chaix) DC. Green Alder Leaves in the Bieszczady Mountains (Poland) †
Abstract
:1. Introduction
2. Results
2.1. Leaf Morphology
2.2. Chlorophyll (Chl) Content in Leaves
2.3. The Leaf Isotopic Signature: 13C and 15N
2.4. Analyses of Chl a Fluorescence
2.5. Reflectance of A. viridis Leaves
3. Discussion
4. Material and Methods
4.1. Study Sites and Plant Material
4.2. Leaf Morphology Parameters
4.3. Chlorophyll Content in Leaves
4.4. The Content of Carbon Isotope 13C and Nitrogen 15N
4.5. Chl a Fluorescence Measurements
4.6. Reflection of Radiation from the Leaves
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- White, P.S.; Pickett, S.T.A. Natural disturbances and patch dynamics: An introduction. In The Ecology of Natural Disturbances and Patch Dynamics; Pickett, S.T.A., White, P.S., Eds.; Academic Press: Cambridge, MA, USA, 1985; pp. 3–9. [Google Scholar]
- Zemanek, B.; Winnicki, T. Rośliny naczyniowe Bieszczadzkiego Parku Narodowego. Monogr. Bieszcz. 1999, 3, 1–249, (In Polish, with English abstract and descriptions for figures and tables). [Google Scholar]
- Skiba, S.; Szymanski, W.; Skiba, M.; Winnicki, T. Gleby zbiorowisk olszy zielonej Pulmonario—Alnetum viridis w Karpatach Wschodnich (Bieszczady i Gorgany). Rocz. Bieszcz. 2010, 18, 192–204, (In Polish, with English abstract and descriptions for figures and tables). [Google Scholar]
- Mejstrik, V.; Benecke, U. The ectotrophic mycorrhizas of Alnus viridis (Chaix) DC. and their significance in respect to phosphorus uptake. New Phytol. 1969, 68, 141–149. [Google Scholar] [CrossRef]
- Benecke, U. Nitrogen fixation by Alnus viridis (Chaix) DC. Plant Soil 1970, 33, 30–48. [Google Scholar] [CrossRef]
- Peoples, M.B.; Palme, B.; Boddey, R.M. The use of 15N to study biological nitrogen fixation by perennial legumes. In Stable Isotope Techniques in the Study of Biological Processes and Functioning of Ecosystems; Unkovich, M., Pate, J.P., Mcneill, A., Gibbs, D.J., Eds.; Springer Science Business Media: Dordrecht, The Netherlands, 2001; pp. 119–144. [Google Scholar]
- Bühlmann, T.; Hiltbrunner, E.; Körner, C. Alnus viridis expansion contributes to excess reactive nitrogen release, reduces biodiversity and constrains forest succession in the Alps. Alp. Bot. 2014, 124, 187–191. [Google Scholar] [CrossRef] [Green Version]
- Anthelme, F.; Michalet, R.; Barbaro, L.; Brun, J.-L. Environmental and spatial influences of shrub cover (Alnus viridis DC.) on vegetation diversity at the upper treeline in the inner Western. Alps. Arct. Antarct. Alp. Res. 2003, 35, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Bühlmann, T.; Körner, C.; Hiltbrunner, E. Shrub expansion of Alnus viridis drives former montane grassland into nitrogen saturation. Ecosystems 2016, 19, 968–985. [Google Scholar] [CrossRef]
- Körner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems, 2nd ed.; Springer: Heidelberg/Berlin, Germany; New York, NY, USA, 2003. [Google Scholar]
- Nowosad, M. Z badań nad zróżnicowaniem klimatycznym Bieszczadów. Acta Agrophys. Lublin 2000, 34, 125–135, (In Polish, with English abstract and descriptions for figures and tables). [Google Scholar]
- Caldwell, M.M.; Teramura, A.H.; Tevini, M. The changing solar climate and the ecological consequences for higher plants. Trends Ecol. Evol. 1989, 4, 63–367. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Vegetation stress: An introduction to the stress concept in plants. Plant Physiol. 1996, 148, 4–14. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Jajoo, A.; Oukkarroum, A.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Łukasik, I.; Goltsev, V.; Ladle, R.J.; et al. The use of chlorophyll fluorescence kinetics analysis to study the performance of photosynthetic machinery in plants. In Emerging Technologies and Management of Crop Stress Tolerance; Elsevier: Amsterdam, The Netherlands, 2014; pp. 347–384. [Google Scholar]
- Golovko, T.K.; Dalke, I.V.; Zakhozhiy, I.G.; Dymova, O.V.; Tabalenkova, G.N. Functional plasticity of photosynthetic apparatus and its resistance to photoinhibition in Plantago media. Russ. J. Plant Physiol. 2011, 58, 549–559. [Google Scholar] [CrossRef]
- Waldmann, G. Zur Anreicherung von Säuren im Baumkronenberich. Allg. Forst J. Jagdztg. 1985, 156, 204–210. [Google Scholar]
- Oukarroum, A.; El Madidi, S.; Schansker, G.; Strasser, R.J. Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environ. Exp. Bot. 2007, 60, 438–446. [Google Scholar] [CrossRef]
- Wójcicki, J.J. Zmienność liści olszy zielonej—Alnus viridis (Betulaceae). Fragm. Flor. Geobot. Ser. Pol. Suppl. Kraków 1997, 2, 5–13. Available online: https://botany.pl/ibwyd/fragm-pl/fragm-pl-s2.html#1 (accessed on 5 January 2021). (In Polish, with English abstract and descriptions for figures and tables).
- Franklin, K.A. Shade avoidance. New Phytol. 2008, 179, 930–944. [Google Scholar] [CrossRef] [PubMed]
- Dymova, O.; Fiedor, L. Chlorophylls and their role in photosynthesis. In Photosynthetic Pigments: Chemical Structure, Biological Function and Ecology; Golovko, T.K., Gruszecki, W.I., Prasad, M.N.V., Strzałka, K., Eds.; Russian Academy of Sciences: Syktyvkar, Russia, 2014; pp. 140–160. [Google Scholar]
- Jedynak, P.; Strzalka, K.; Malec, P. Light regulation of chlorophyll biosynthesis in angiosperm plants: The role of photoreceptors and the photomorphogenesis repressor COP1. In Photosynthetic Pigments: Chemical Structure, Biological Function and Ecology; Golovko, T.K., Gruszecki, W.I., Prasad, M.N.V., Strzałka, K., Eds.; Russian Academy of Sciences: Syktyvkar, Russia, 2014; pp. 86–107. [Google Scholar]
- Frosch, S.; Bergfeld, R.; Mehnert, C.; Wagner, E.; Greppin, H. Ribulose bisphosphate carboxylase capacity and chlorophyll content in developing seedlings of Chenopodium rubrum L. growing under light of different qualities and fluence rates. Photosynth. Res. 1985, 7, 41–67. [Google Scholar] [CrossRef]
- Deines, P. The isotopic composition of reduced organic carbon. In Handbook of Environmental Isotope Geochemistry; Fritz, P., Fontes, J., Eds.; Elsevier: Amsterdam, The Netherlands, 1980; pp. 329–406. [Google Scholar]
- Ehleringer, J.R. Carbon isotope ratios and physiological processes in arid-land plants. In Stable Isotopes in Ecological Research; Rundel, P.W., Ehleringer, J.R., Nagy, K.A., Eds.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1989; pp. 41–54. [Google Scholar]
- Farquhar, G.D. On the nature of carbon isotope discrimination in C4 species. Aust. J. Plant Physiol. 1983, 10, 205–226. [Google Scholar] [CrossRef]
- Handley, L.L.; Raven, J.A. The use of natural abundance of nitrogen isotopes in plant physiology and ecology. Plant Cell Environ. 1992, 15, 965–985. [Google Scholar] [CrossRef]
- Högberg, P. 15N natural abundance in soil—Plant systems. New Phytol. 1997, 137, 179–203. [Google Scholar] [CrossRef]
- Yoneyama, T.; Fujita, K.; Yoshida, T.; Matsumoto, T.; Kambayashi, I.; Yazaki, J. Variation in natural abundance of 15N among plant parts and in 15N/14N fractionation during N2 fixation in the legume—Rhiozobia symbiotic system. Plant Cell Physiol. 1986, 27, 791–799. [Google Scholar] [CrossRef]
- Unkovich, M.; Pate, J.S. Assessing N2 fixation in annual legumes using 15N natural abundance. In Stable Isotope Techniques in the Study of Biological Processes and Functioning of Ecosystems; Unkovich, M., Pate, J.P., Mcneill, A., Gibbs, D.J., Eds.; Springer Science Business Media: Dordrecht, The Netherlands, 2001; pp. 103–118. [Google Scholar]
- Handley, L.L.; Scrimgeour, C.M. Terrestrial plant ecology and 15N natural abundance: The present limits to interpretation for uncultivated systems with original data from a Scottish old field. Adv. Ecol. Res. 1997, 27, 133–212. [Google Scholar]
- Unkovich, M.J.; Pate, J.S. An appraisal of recent field measurements of symbiotic N2 fixation by annual legumes. Field Crop Res. 2000, 65, 211–228. [Google Scholar] [CrossRef]
- Bergersen, F.J.; Turner, G.L.; Amarger, N.; Mariotti, F.; Mariotti, A. Strain of Rhizobium lupini determines natural abundance of 15N in root nodules of Lupinus species. Soil Biol. Biochem. 1986, 18, 97–101. [Google Scholar] [CrossRef]
- Unkovich, M.J.; Pate, J.S.; Sanford, P.; Armstrong, E.L. Potential precision of the δ 15N natural abundance method in field estimates of nitrogen fixation by crop and pasture legumes in S.W. Australia. Aust. J. Agric. Res. 1994, 45, 119–132. [Google Scholar] [CrossRef]
- Unkovich, M.J.; Sanford, P.; Pate, J.S.; Hyder, M. Effects of grazing on plant and soil nitrogen relations of pasture-crop rotations. Aust. J. Agric. Res. 1998, 49, 475–485. [Google Scholar] [CrossRef]
- Lazar, D. The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. Funct. Plant Biol. 2006, 33, 9–30. [Google Scholar] [CrossRef]
- Tsimilli-Michael, M.; Strasser, R.J. Biophysical phenomics: Evaluation of the impact of mycorrhization with Piriformospora indica. In Piriformospora Indica; Varma, A., Kost, G., Oelmüller, R., Eds.; Springer: Berlin, Germany, 2013; pp. 173–190. [Google Scholar]
- Schansker, G.; Toth, S.Z.; Strasser, R.J. Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochim. Biophys. Acta Bioenerg. 2005, 1706, 250–261. [Google Scholar] [CrossRef] [Green Version]
- Bąba, W.; Kalaji, H.M.; Kompała-Bąba, A.; Goltsev, V. Acclimatization of photosynthetic apparatus of tor grass (Brachypodium pinnatum) during expansion. PLoS ONE 2016, 11, e0156201. [Google Scholar] [CrossRef] [Green Version]
- Dąbrowski, P.; Baczewska, A.H.; Pawluśkiewicz, B.; Paunov, M.; Alexandrov, V.; Goltsev, V.; Kalaji, M.H. Prompt chlorophyll a fluorescence as a rapid tool for diagnostic changes in PSII structure inhibited by salt stress in perennial ryegrass. J. Photochem. Photobiol. B 2016, 157, 22–31. [Google Scholar] [CrossRef]
- Strasser, R.J.; Srivastava, A.; Tsimilli-Michael, M. Analysis of the chlorophyll a fluorescence transient. In Advances in Photosynthesis and Respiration Chlorophyll Fluorescence a Signature of Photosynthesis; Papageorgiou, G., Govindjee, Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; Volume 19, pp. 321–362. [Google Scholar]
- Kalaji, H.M.; Bąba, W.; Gediga, K.; Goltsev, V.; Samborska, I.A.; Cetner, M.D.; Dimitrova, S.; Piszcz, U.; Bielecki, K.; Karmowska, K.; et al. Chlorophyll fluorescence as a tool for nutrient status identification in rapeseed plants. Photosynth. Res. 2018, 136, 329–343. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence: A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Björkman, O.; Demmig, B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins. Planta 1987, 170, 489–504. [Google Scholar] [CrossRef] [PubMed]
- Murchie, E.H.; Lawson, T. Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. J. Exp. Bot. 2013, 64, 3983–3998. [Google Scholar] [PubMed] [Green Version]
- Miszalski, Z.; Niewiadomska, E.; Kępa, E.; Skawiński, P. Evaluating the superoxide dismutase activity and chlorophyll fluorescence in Picea abies leaves growing at different altitudes. Photosyntethica 2001, 38, 379–384. [Google Scholar] [CrossRef]
- Jones, C.L.; Weckler, P.R.; Maness, N.O.; Stone, M.L.; Jayasekara, R. Estimating water stress in plants using hyperspectral sensing. In Proceedings of the 2004 ASAE/CSA Annual International Meeting, Ottawa, ON, Canada, 1–4 August 2004. [Google Scholar] [CrossRef]
- Carter, G.A. Responses of leaf spectral reflectance to plant stress. Am. J. Bot. 1993, 80, 239–243. [Google Scholar] [CrossRef]
- Chapin, F.S. Integrated responses of plants to stress. BioScience 1991, 41, 29–36. [Google Scholar] [CrossRef]
- Letts, M.G.; Phelan, C.A.; Johnson, D.R.; Rood, S.B. Seasonal photosynthetic gas exchange and leaf reflectance characteristics of male and female cottonwoods in a riparian woodland. Tree Physiol. 2008, 28, 1037–1048. [Google Scholar] [CrossRef] [Green Version]
- Peñuelas, J.; Piñol, J.; Ogaya, R.; Filella, I. Estimation of plant water concentration by the reflectance water index WI (R900/R970). Int. J. Remote Sens. 1997, 18, 2869–2875. [Google Scholar] [CrossRef]
- Filella, I.; Amaro, T.; Araus, J.L.; Peñuelas, J. Relationship between photosynthetic radiation-use efficiency of barley canopies and the photochemical reflectance index (PRI). Physiol. Plant. 1996, 96, 211–216. [Google Scholar] [CrossRef]
- Gamon, A.; Serrano, L.; Surfus, S. The photochemical reflectance index: An optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 1997, 112, 492–501. [Google Scholar] [CrossRef]
- Barnes, J.D.; Balaguer, L.; Manrique, E.; Elvira, S.; Davison, A.W. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environ. Exp. Bot. 1992, 32, 85–100. [Google Scholar] [CrossRef]
- Coplen, T.B.; Brand, W.A.; Gehre, M.; Gröning, M.; Meijer, H.A.; Toman, B.; Verkouteren, R.M. New guidelines for 13C measurements. Anal. Chem. 2006, 78, 2439–2441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strasser, R.J.; Srivastava, A.; Tsimilli-Michael, M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In Probing Photosynthesis: Mechanism, Regulation and Adaptation; Yunus, M., Pathre, U., Mohanty, P., Eds.; Taylor and Francis: London, UK, 2000; pp. 443–480. [Google Scholar]
- Solovchenko, A. Photoprotection in Plants; Springer Series in Biophysics 14; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Peñuelas, J.; Filella, I.; Biel, C.; Serrano, L.; Savé, R. The reflectance at the 950–970 nm region as an indicator of plant water status. Int. J. Remote Sens. 1993, 14, 1887–1905. [Google Scholar] [CrossRef]
- Oliwa, J.; Skoczowski, A. Different response of photosynthetic apparatus to high–light stress in sporotrophophyll and nest leaves of Platycerium bifurcatum. Photosynthetica 2019, 57, 147–159. [Google Scholar] [CrossRef]
Leaf Morphological Parameters | Elevation (m a.s.l.) | |||
---|---|---|---|---|
568 | 980 | 1215 | 1320 | |
Surface area (cm2) | 11.17 ± 0.69 a | 9.46 ± 0.42 b | 6.63 ± 0.66 c | 6.31 ± 0.26 c |
Length (cm) | 4.65 ± 0.11 a | 4.24 ± 0.08 b | 3.50 ± 0.12 c | 3.55 ± 0.07 c |
Width (cm) | 3.45 ± 0.10 a | 3.12 ± 0.08 b | 2.49 ± 0.09 c | 2.52 ± 0.06 c |
Perimeter (cm) | 14.21 ± 0.44 a | 13.04 ± 0.34 b | 11.16 ± 0.50 c | 11.44 ± 0.27 c |
SLW coefficient (mgDW cm−2) | 7.94 ± 1.17 d | 9.43 ± 0.31 c | 14.11 ± 0.34 a | 13.24 ± 1.28 b |
Chlorophyll Content | Elevation (m a.s.l.) | |||||||
---|---|---|---|---|---|---|---|---|
568 | 980 | 1215 | 1320 | |||||
July | September | July | September | July | September | July | September | |
Chl a (mg cm−2) | 0.062 ± 0.0006 a | 0.040 ± 0.001 b | 0.062 ± 0.0002 a | 0.041 ± 0.006 b | 0.063 ± 0.0002 a | 0.041 ± 0.0002 b | 0.062 ± 0.0006 a | 0.041 ± 0.0004 b |
Chl b (mg cm−2) | 0.027 ± 0.0013 d | 0.039 ± 0.002 c | 0.054 ± 0.0016 ab | 0.036 ± 0.002 cd | 0.047 ± 0.002 bc | 0.065 ± 0.002 a | 0.040 ± 0.0025 c | 0.057 ± 0.003 a |
Chl a + b (mg cm−2) | 0.090 ± 0.002 d | 0.079 ± 0.002 e | 0.116 ± 0.001 a | 0.076 ± 0.007 e | 0.109 ± 0.002 ab | 0.107 ± 0.002 abc | 0.103 ± 0.003 bc | 0.098 ± 0.003 cd |
Chl a/b | 2.281 ± 0.093 a | 1.040 ± 0.041 d | 1.151 ± 0.036 cd | 1.178 ± 0.118 cd | 1.368 ± 0.054 bc | 0.641 ± 0.025 e | 1.601 ± 0.094 b | 0.749 ± 0.048 e |
Elevation (m a.s.l.) | δ13C (‰) | δ15N(‰) |
---|---|---|
568 | −30.78 ± 0.03 d | −2.00 ± 0.006 d |
980 | −28.12 ± 0.02 c | −1.88 ± 0.006 c |
1215 | −26.84 ± 0.02 a | −1.13 ± 0.009 a |
1320 | −27.97 ± 0.02 b | −1.42 ± 0.005 b |
Elevation (m a.s.l.) | Reflectance Indices | ||||
---|---|---|---|---|---|
ARI2 | CRI1 | FRI | WBI | sPRI | |
568 | 0.239 ± 0.030 b | 0.076 ± 0.002 a | −0.659 ± 0.090 b | 0.919 ± 0.009 b | 0.058 ± 0.002 a |
980 | 0.540 ± 0.063 a | 0.089 ± 0.004 a | −0.235± 0.065 b | 0.958 ± 0.005 a | 0.038 ± 0.006 b |
1215 | 0.455 ± 0.057 a | 0.065 ± 0.003 b | −0.701 ± 0.096 b | 0.872 ± 0.006 c | 0.020 ± 0.004 c |
1320 | 0.460± 0.041 a | 0.088 ± 0.002 a | 0.376 ± 0.182 a | 0.937 ± 0.005 ab | 0.011± 0.005 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skoczowski, A.; Odrzywolska-Hasiec, M.; Oliwa, J.; Ciereszko, I.; Kornaś, A. Ecophysiological Variability of Alnus viridis (Chaix) DC. Green Alder Leaves in the Bieszczady Mountains (Poland). Plants 2021, 10, 96. https://doi.org/10.3390/plants10010096
Skoczowski A, Odrzywolska-Hasiec M, Oliwa J, Ciereszko I, Kornaś A. Ecophysiological Variability of Alnus viridis (Chaix) DC. Green Alder Leaves in the Bieszczady Mountains (Poland). Plants. 2021; 10(1):96. https://doi.org/10.3390/plants10010096
Chicago/Turabian StyleSkoczowski, Andrzej, Magdalena Odrzywolska-Hasiec, Jakub Oliwa, Iwona Ciereszko, and Andrzej Kornaś. 2021. "Ecophysiological Variability of Alnus viridis (Chaix) DC. Green Alder Leaves in the Bieszczady Mountains (Poland)" Plants 10, no. 1: 96. https://doi.org/10.3390/plants10010096
APA StyleSkoczowski, A., Odrzywolska-Hasiec, M., Oliwa, J., Ciereszko, I., & Kornaś, A. (2021). Ecophysiological Variability of Alnus viridis (Chaix) DC. Green Alder Leaves in the Bieszczady Mountains (Poland). Plants, 10(1), 96. https://doi.org/10.3390/plants10010096