Genetic Analysis of Early White Quality Protein Maize Inbreds and Derived Hybrids under Low-Nitrogen and Combined Drought and Heat Stress Environments
Abstract
:1. Introduction
2. Results
2.1. Analysis of Variance of Agronomic Traits
2.2. Proportionate Contributions of Genetic Variances under Low-Nitrogen, CDHS, Optimal and across Test Environments
2.3. Estimates of General Combining Ability Effects of the 24 QPM Inbred Lines
2.4. Heterotic Grouping of Inbred Lines Based on General Combining Ability of Multiple Traits (HGCAMT) Method
2.5. Identification of Inbred and Single-Cross Hybrid Testers
2.6. Grain Yield in Contrasting Environments
2.7. Grain Yield Stability of Hybrids across Test Environments
2.8. Step-Wise Multiple Regression and Sequential Path Analyses
3. Discussion
4. Materials and Method
4.1. Genetic Materials and Testcrosses
4.2. Experimental Sites and Field Evaluation
4.3. Data Collection
4.4. Data Analysis
4.5. The Proportionate Contribution of Combining Ability
4.6. Heterotic Grouping of the Inbred Lines
4.7. Identification of Inbred and Single-Cross Testers
4.8. Stability of Hybrids across Test Environments
4.9. Inter-Trait Relationships under CDHS and Low-Nitrogen Environments
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Food and Agricultural Organization Statistical Database; FAO: Rome, Italy, 2017; Available online: http://faostart.fao.org (accessed on 24 April 2021).
- US Department of Agriculture (USDA). Foreign Agricultural Service. World Agricultural Production; Foreign Agricultural Service: Washington DC, USA, 2021. Available online: https://data.nal.usda.gov/dataset/world-agricultural-production (accessed on 15 November 2021).
- CIMMYT; IITA. Maize—Global Alliance for Improving Food Security and the Livelihoods of the Resource—Poor in the Developing World; CIMMYT: El Batán, Mexico, 2010. [Google Scholar]
- Badu-Apraku, B.; Fakorede, M.A.B. Advances in Genetic Enhancement of Early and Extra-Early Maize for Sub-Saharan Africa; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Sofi, P.A.; Wani, A.S.; Rather, A.G.; Wani, H.S. Review article: Quality protein maize (QPM): Genetic manipulation for the nutritional fortification of maize. J. Plant Breed Crop Sci. 2009, 1, 244–253. [Google Scholar] [CrossRef]
- Tripathy, S.K.; Ithape, D.M.; Maharana, M.; Prusty, A.M. Quality Protein Maize (QPM): Genetic basis and breeding perspective. Trop. Plant Res. 2017, 4, 145–152. [Google Scholar] [CrossRef]
- Akuamoah-Boateng, A. Quality Protein Maize Infant Feeding Trials in Ghana; Ghana Health Service: Accra, Ghana, 2002. [Google Scholar]
- Mbuya, K.; Nkogolo, K.K.; Kalonji-Mbuyi, A. Nutritional analysis of quality protein maize varieties selected for agronomic characteristics in a breeding program. Int. J. Plant Breed Genet. 2011, 5, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Panda, A.K.; Raju, M.V.L.N.; Rao, S.V.; Lavanya, G.; Reddy, E.; Sunder, G.S. Replacement of normal maize with quality protein maize on performance, immune response and carcass characteristics of broiler chickens. Asian Australas. J. Anim. Sci. 2010, 12, 1626–1631. [Google Scholar] [CrossRef]
- Mageto, E.K.; Makumbi, D.; Njoroge, K.; Nyankanga, R. Genetic analysis of early maize (Zea mays L.) inbred lines under stress and nonstress conditions. J. Crop Improv. 2017, 4, 560–588. [Google Scholar] [CrossRef]
- Obeng-Bio, E.; Badu-Apraku, B.; Ifie, B.E.; Danquah, A.; Blay, E.T.; Annor, B. Genetic analysis of grain yield and agronomic traits of early provitamin A quality protein maize inbred lines in contrasting environments. J. Agric. Sci. 2019, 157, 413–433. [Google Scholar] [CrossRef] [Green Version]
- Ertiro, B.T.; Olsen, M.; Das, B.; Gowda, M.; Labuschagne, M. Efficiency of indirect selection for grain yield in maize (Zea mays L.) under low nitrogen conditions through secondary traits under low nitrogen and grain yield under optimal conditions. Euphytica 2020, 8, 134–146. [Google Scholar] [CrossRef]
- Weber, V.S.; Melchinger, A.E.; Magorokosho, C.; Makumbi, D.; Bänziger, M.; Atlin, G.N. Efficiency of managed-stress screening of elite maize hybrids under drought and low nitrogen for yield under rainfed conditions in southern Africa. Crop Sci. 2012, 52, 1011–1020. [Google Scholar] [CrossRef] [Green Version]
- Ray, D.K.; Gerber, J.S.; MacdoDonald, G.K.; West, P.C. Climatic variation explains a third of global yield variability. Nat. Commun. 2015, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Cairns, J.E.; Crossa, J.; Zaidi, P.H.; Grudloyma, P.; Sanchez, C.; Araus, J.L.; Thaitad, S.; Makumbi, D.; Magorokosho, C.; Bänziger, M.; et al. Identification of drought, heat, and combined drought and heat tolerant donors in maize. Crop Sci. 2013, 53, 1335–1346. [Google Scholar] [CrossRef] [Green Version]
- Anderson, R.; Bayer, P.E.; Edwards, D. Climate change and the need for agricultural adaptation. Curr. Opin. Plant Biol. 2020, 56, 197–202. [Google Scholar] [CrossRef]
- Knox, J.; Hess, T.; Daccache, A.; Wheeler, T. Climate change impacts on crop productivity in Africa and South Asia. Environ. Res. Lett. 2012, 3, 34–43. [Google Scholar] [CrossRef]
- Lobell, D.B.; Hammer, G.L.; McLean, G.; Messina, C.; Roberts, M.J.; Schlenker, W. The critical role of extreme heat for maize production in the United States. Nat. Clim. Chang. 2013, 3, 497–501. [Google Scholar] [CrossRef]
- Shaw, S.B.; Mehta, D.; Riha, S.J. Using simple data experiments to explore the influence of non-temperature controls on maize yields in the mid-West and Great Plains. Clim. Chang. 2014, 4, 747–755. [Google Scholar] [CrossRef]
- Carter, E.K.; Melkonian, J.; Riha, S.J.; Shaw, S.B. Separating heat stress from moisture stress: Analyzing yield response to high temperature in irrigated maize. Environ. Res. Lett. 2016, 9, 094012. [Google Scholar] [CrossRef]
- Meseka, S.; Menkir, A.; Bossey, B.; Mengesha, W. Performance Assessment of Drought Tolerant Maize Hybrids under CDHS. Agronomy 2018, 12, 274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelimor, C.; Badu-Apraku, B.; Tetteh, A.Y.; N’guetta, A.S.P. Assessment of Genetic Diversity for Drought, Heat and CDHS Tolerance in Early Maize Landraces. Plants 2019, 11, 518. [Google Scholar] [CrossRef] [Green Version]
- Nelimor, C.; Badu-Apraku, B.; Tetteh, A.Y.; Garcia-Oliveira, A.L.; N’guetta, A.S.P. Assessing the Potential of Extra-Early Landraces for Improving Tolerance to Drought, Heat, and Both Combined Stresses in Maize. Agronomy 2020, 3, 318. [Google Scholar] [CrossRef] [Green Version]
- Chiuta, N.E.; Mutengwa, C.S. Combining Ability of Quality Protein Maize Inbred Lines for Yield and Morpho-Agronomic Traits under Optimal as Well as Combined Drought and Heat-Stressed Conditions. Agronomy 2020, 2, 184. [Google Scholar] [CrossRef] [Green Version]
- Neate, P. Climate-Smart Agriculture Success Stories from Farming Communities around the World; CGIAR Research Program on Climate Change; Agriculture and Food Security (CCAFS); Technical Centre for Agricultural and Rural Cooperation (CTA): Wageningen, The Netherlands, 2013. [Google Scholar]
- Badu-Apraku, B.; Fakorede, M.A.B.; Talabi, A.O.; Oyekunle, M.; Akaogu, I.C.; Akinwale, R.O.; Annor, B.; Melaku, G.; Fasanmade, Y.; Aderounmu, M. Gene action and heterotic groups of early white quality protein maize inbreds under multiple stress environments. Crop Sci. 2016, 56, 183–199. [Google Scholar] [CrossRef] [Green Version]
- Cairns, J.E.; Sonder, K.; Zaidi, P.H.; Verhulst, N.; Mahuku, G.; Babu, R.; Prasanna, B.M. Maize Production in a Changing Climate. Adv. Agron. 2012, 114, 1–58. [Google Scholar] [CrossRef]
- Oyetunde, O.A.; Badu-Apraku, B.; Ariyo, O.J.; Alake, C.O. Efficiencies of Heterotic Grouping Methods for Classifying Early Maize Inbred Lines. Agronomy 2020, 8, 1198. [Google Scholar] [CrossRef]
- Nasser, L.M.; Badu-Apraku, B.; Gracen, V.E.; Mafouasson, H.N.A. Combining ability of early yellow maize inbreds under CDHS and well-watered environments. Agronomy 2020, 10, 1585. [Google Scholar] [CrossRef]
- Ifie, B.E.; Badu-Apraku, B.; Gracen, V.; Danquah, E.Y. Genetic analysis of grain yield of IITA and CIMMYT early maize inbreds under Striga-infested and low-soil-nitrogen environments. Crop Sci. 2015, 55, 610–623. [Google Scholar] [CrossRef]
- Annor, B.; Badu-Apraku, B. Gene action controlling grain yield and other agronomic traits of extra-early quality protein maize under stress and non-stress conditions. Euphytica 2016, 212, 213–228. [Google Scholar] [CrossRef]
- Abu, P.; Badu-Apraku, B.; Ifie, B.E.; Tongoona, P.; Ribeiro, P.F.; Obeng-Bio, E.; Offei, S.K. Genetics of extra-early yellow and orange quality-protein maize (QPM) inbreds and derived hybrids under low-soil nitrogen and Striga- infestation. Crop Sci. 2020, 61, 1052–1078. [Google Scholar] [CrossRef] [PubMed]
- Makumbi, D.; Betrán, F.J.; Bänziger, M.; Ribaut, J. Combining ability, heterosis and genetic diversity in tropical maize (Zea mays L.) under stress and non-stress conditions. Euphytica 2011, 180, 143–162. [Google Scholar] [CrossRef]
- Noëlle, M.A.H.; Richard, K.; Vernon, G.; Martin, Y.A.; Laouali, M.N.; Liliane, T.N.; Godswill, N.N. Combining Ability and Gene Action of Tropical Maize (Zea mays L.) Inbred Lines under Low and High Nitrogen Conditions. J. Agric. Sci. 2017, 9, 222–235. [Google Scholar] [CrossRef] [Green Version]
- Baker, R.J. Issues in diallel analysis. Crop Sci. 1978, 18, 533–536. [Google Scholar] [CrossRef]
- Pswarayi, A.; Vivek, B.S. Combining ability amongst CIMMYT’s early maize (Zea mays L.) germplasm under stress and non-stress conditions and identification of testers. Euphytica 2008, 162, 353–362. [Google Scholar] [CrossRef]
- Oyekale, S.A.; Badu-Apraku, B.; Adetimirin, V.O. Combining ability of extra-early biofortified maize inbreds under Striga infestation and low soil nitrogen. Crop Sci. 2020, 60, 1925–1945. [Google Scholar] [CrossRef]
- Badu-Apraku, B.; Oyekunle, M.; Fakorede, M.A.B.; Vroh, I.; Akinwale, R.O.; Aderounmu, M. Combining ability, heterotic patterns and genetic diversity of extra-early yellow inbreds under contrasting environments. Euphytica 2013, 192, 413–433. [Google Scholar] [CrossRef]
- Derera, J.; Tongoona, P.; Vivek, B.S.; Laing, M.D. Gene action controlling grain yield and secondary traits in southern African maize hybrids under drought and non-drought environments. Euphytica 2008, 162, 411–422. [Google Scholar] [CrossRef]
- Girma, C.H.; Sentayehu, A.; Berhanu, T.; Temesgen, M. Test cross performance and combining ability of maize (Zea mays L.) inbred lines at Bako, Western Ethiopia. Global J. Sci. Front. Res. D Agric. Vet. 2015, 15, 1–26. [Google Scholar]
- Terron, A.; Preciado, E.; Cordova, H.; Mickelson, H.; Lopez, R. Determinacion del patron heterotico de 30 line as de maizderivadas de la poblacion SR del CIMMYT. Agron. Mesoam. 1997, 43, 26–34. [Google Scholar]
- Talabi, A.O.; Badu-Apraku, B.; Fakorede, M.A.B. Genetic variances and relationship among traits of an early maize population under drought-stress and low nitrogen environments. Crop Sci. 2017, 57, 681–692. [Google Scholar] [CrossRef] [Green Version]
- Badu-Apraku, B.; Akinwale, R.O.; Franco, J.; Oyekunle, M. Assessment of reliability of secondary traits in selecting for improved grain yield in drought and low-nitrogen environments. Crop Sci. 2012, 52, 2050–2062. [Google Scholar] [CrossRef]
- Comstock, R.E.; Robinson, H.F. The components of genetic variance in population of biparental progenies and their use in estimating the average degree of dominance. Biometrics 1948, 4, 254–266. [Google Scholar] [CrossRef]
- SAS Institute Inc. SAS User’s Guide: Statistics, version 9.4; SAS Institute Inc.: Cary, NC, USA, 2017. [Google Scholar]
- Hallauer, A.R.; Miranda, J.B. Quantitative Genetics in Maize Breeding, 2nd ed.; Iowa State University Press: Ames, IA, USA, 1988. [Google Scholar]
- Fehr, W. Principle of Cultivar Development; Macmillian Publishing Company: New York, NY, USA, 1991; Volume 1, p. 2. [Google Scholar]
- Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetics, 4th ed.; Longman: New York, NY, USA, 1996. [Google Scholar]
- Singh, R.K.; Chaudhary, B.D. Biometrical Methods in Quantitative Genetic Analysis; Kalyani Publisher: New Delhi, India, 1985. [Google Scholar]
- Cox, J.; Frey, K.J. Combining ability and the selection of parents for specific oat mating. Crop Sci. 1984, 24, 963–967. [Google Scholar] [CrossRef]
- Badu-Apraku, B.; Fakorede, M.A.B.; Oyekunle, M.; Akinwale, R.O. Selection of extra-early maize inbreds under low N and drought at flowering and grain-filling for hybrid production. Maydica 2011, 56, 29–41. [Google Scholar]
- Yan, W. GGE biplot—A windows application for graphical analysis of multi environment trial data and other types of two-way data. Agron. J. 2001, 93, 1111–1118. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.; Kang, M.S.; Ma, S.; Woods, S.; Cornelius, P.L. GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci. 2007, 47, 643–653. [Google Scholar] [CrossRef]
- Pacheco, A.; Vargas, M.; Alvarado, G.; Rodríguez, F.; Crossa, J.; Burgueño, J. GEA-R (Genotype × Environment Analysis with R for Windows); Version 2.0.; CIMMYT: El Batán, Mexico, 2016. [Google Scholar]
- Mohammadi, S.A.; Prasanna, B.M.; Singh, N.N. Sequential path model for determining interrelationships among grain yield and related characters in maize. Crop Sci. 2003, 43, 1690–1697. [Google Scholar] [CrossRef]
- Statistical Package for Social Sciences (SPSS), Inc. SPSS Base 17.0 for Windows User’s Guide; SPSS Inc.: Chicago, IL, USA, 2007. [Google Scholar]
SV | DF | YIELD | DA | DS | ASI | PLHT | EHT | PASP | EASP | STGR | TABLAST |
---|---|---|---|---|---|---|---|---|---|---|---|
CDHS environment | |||||||||||
ENV | 1 | 595549601.1 ** | 4.190 ** | 3.45 ** | 0.02 ** | 1021.33ns | 4365.28 ** | 9.20 ** | 69.69 ** | 32.77 ** | 2.45 ** |
SET | 5 | 90806981.5 ** | 42.08 ** | 28.27 ** | 4.18 ** | 3402.94ns | 2542.63 ** | 10.94 ** | 14.09 ** | 1.30ns | 0.11ns |
ENV*SET | 5 | 95851846.7 ** | 12.14 ** | 4.69ns | 4.27 ** | 3008.44ns | 61.51ns | 7.72 ** | 1.61ns | 1.13ns | 0.10ns |
Rep(ENV*SET) | 10 | 3262635.4ns | 4.83ns | 5.55ns | 0.66ns | 1965.49ns | 33.84ns | 1.36ns | 0.86ns | 0.70ns | 0.08ns |
Block(ENV*Rep) | 36 | 6681421.9 ** | 16.47 ** | 22.09 ** | 1.66 * | 3090.16ns | 165.32 ** | 3.89 ** | 2.95 ** | 3.32 ** | 0.12 ** |
HYBRID | 99 | 1419012 ** | 8.53 ** | 9.98 ** | 1.26ns | 4279.06ns | 323.48 ** | 1.96 ** | 2.86 ** | 1.07 * | 0.12 ** |
GCAMALE(SET) | 18 | 1666352.2ns | 9.92 ** | 12.88 ** | 1.14ns | 5610.35ns | 311.05 ** | 1.20ns | 2.01ns | 1.32 * | 0.14 ** |
GCAFEMALE(SET) | 18 | 6944283.3 ** | 10.65 ** | 13.13 ** | 1.24ns | 5084.04ns | 269.36 ** | 2.42 ** | 1.95ns | 1.37 * | 0.08ns |
SCA(SET) | 54 | 3790544.1 * | 4.20 * | 5.81ns | 1.21ns | 3610.24ns | 118.18 ** | 0.99ns | 2.14ns | 1.01ns | 0.14 ** |
ENV*HYBRID | 99 | 781347.6 ** | 4.74 ** | 6.38 ** | 1.47 * | 3898.23ns | 64.11ns | 1.86 ** | 2.58 ** | 1.16 * | 0.11 ** |
ENV*GCAMALE(SET) | 18 | 2723378.3ns | 2.67ns | 2.97ns | 1.42ns | 4486.43ns | 79.26ns | 1.43ns | 4.36 ** | 1.13ns | 0.14 ** |
ENV*GCAFEMALE(SET) | 18 | 6455338.8 ** | 3.48ns | 6.88 * | 1.57ns | 4644.67ns | 48.45ns | 2.11 * | 3.36 ** | 1.38 * | 0.07ns |
ENV*SCA(SET) | 54 | 4069373.8 ** | 5.54 ** | 8.02 ** | 1.33ns | 3588.54ns | 63.04ns | 1.35ns | 1.47ns | 1.18 * | 0.10 ** |
Error | 143 | 2517929 | 2.95 | 4.19 | 1.06 | 3995.32 | 57.15 | 1 1.14 | 1.56 | 0.78 | 0.05 |
H2 | - | 0.37 | 0.54 | 0.50 | 0.27 | 0.39 | 0.74 | 0.41 | 0.51 | 0.26 | 0.31 |
Repeatability | - | 0.53 | 0.47 | 0.39 | 0.44 | 0.64 | 0.79 | 0.43 | 0.60 | 0.41 | 0.62 |
Low-nitrogen environment | |||||||||||
ENV | 1 | 2092131.3 * | 2218.83 ** | 1492.62 ** | 256.67 ** | 16102.05 ** | 2585.48 ** | 56.80 ** | 39.09 ** | 27.589 ** | - |
SET | 5 | 4087462.8 ** | 5.39ns | 1.14ns | 1.49ns | 3901.85 ** | 1005.06 ** | 0.7 ** | 1.71 ** | 1.70 * | - |
ENV*SET | 5 | 2249671.8 ** | 8.88ns | 9.11ns | 0.47ns | 214.05ns | 176.55ns | 0.15ns | 0.39ns | 1.02ns | - |
Rep(ENV*SET) | 10 | 458860ns | 4.48ns | 3.93ns | 3.12 ** | 133.83ns | 199.94ns | 0.18ns | 0.44ns | 1.11ns | - |
Block(ENV*Rep) | 36 | 5795924.1 ** | 12.51 ** | 27.29 ** | 2.27 * | 1222.36 ** | 510.66 ** | 2.80 ** | 3.63 ** | 3.07 ** | - |
HYBRID | 99 | 977907.6 ** | 5.54 ** | 7.12 ** | 0.51ns | 481.69 ** | 178.59 ** | 2.26ns | 1.92 ** | 1.92 ** | - |
GCAMALE(SET) | 18 | 1129415.8 ** | 7.73 ** | 12.78 ** | 1.28 ** | 545.15 ** | 156.09ns | 0.64 * | 0.46ns | 0.8ns | - |
GCAFEMALE(SET) | 18 | 952771.1 * | 6.01 * | 10.60 ** | 0.72ns | 452.67 ** | 171.41ns | 0.31 * | 0.53 ** | 0.37 * | - |
SCA(SET) | 54 | 463614.4ns | 3.93ns | 5.05ns | 0.88ns | 100.34ns | 101.36ns | 0.32ns | 0.34ns | 0.77ns | - |
ENV*HYBRID | 99 | 977907.6 ** | 5.54 ** | 7.12 ** | 0.51ns | 481.69 ** | 178.59 ** | 2.26 ** | 1.92 ** | 1.92 ** | - |
ENV*GCAMALE(SET) | 18 | 684249ns | 4.53ns | 5.06ns | 1.70 ** | 139.48ns | 101.64ns | 0.55ns | 0.56ns | 0.69ns | - |
ENV*GCAFEMALE(SET) | 18 | 1254953.7 ** | 5.48ns | 4.16ns | 1.18ns | 114.92ns | 126.85ns | 0.29 * | 0.63 ** | 0.71ns | - |
ENV*SCA(SET) | 54 | 564756.6ns | 3.66ns | 5.64ns | 0.93ns | 139.4ns | 87.42ns | 0.31ns | 0.43ns | 0.87ns | - |
Error | 143 | 560355.6 | 3.49 | 4.76 | 0.76 | 151.37 | 109.3 | 0.39 | 0.54 | 0.73 | - |
H2 | - | 0.37 | 0.33 | 0.34 | 0.23 | 0.52 | 0.44 | 0.21 | 0.12 | 0.20 | - |
Repeatability | - | 0.71 | 0.66 | 0.68 | 0.58 | 0.83 | 0.69 | 0.63 | 0.56 | 0.58 | - |
SV | DF | YIELD | DA | DS | ASI | PLHT | EHT | PASP | EASP | EROT |
---|---|---|---|---|---|---|---|---|---|---|
Optimal environments | ||||||||||
ENV | 2 | 654194407 ** | 11058.25 ** | 12565.68 ** | 196.41 ** | 431852.40 ** | 110406.77 ** | 82.65 ** | 45.28 ** | 1053.99 ** |
SET | 5 | 19427073 ** | 9.54 ** | 6.97ns | 2.62 ** | 9601.23 ** | 2308.62 ** | 10.21 ** | 11.46 ** | 1.36ns |
ENV*SET | 10 | 8473814ns | 19.75 ** | 27.58 ** | 1.02ns | 201.49 ** | 177.39 ** | 0.61ns | 1.04ns | 1.21ns |
Rep(ENV*SET) | 15 | 2900486ns | 2.13ns | 5.47ns | 1.22 ** | 116.18ns | 96.09ns | 0.48ns | 0.78ns | 1.80ns |
Block(ENV*Rep) | 54 | 6629211ns | 6.56 ** | 6.17 ** | 0.73ns | 480.07 ** | 324.82 ** | 0.55 ** | 1.13 ** | 4.62 ** |
HYBRID | 99 | 5711483ns | 12.52 ** | 10.35 ** | 1.10 ** | 940.42 ** | 312.43 ** | 1.47 ** | 1.69 ** | 2.32ns |
GCAMALE(SET) | 18 | 8462986 ** | 10.74 ** | 9.98 ** | 0.45ns | 632.78 ** | 294.88 ** | 0.90 ** | 1.09 ** | 1.84ns |
GCAFEMALE(SET) | 18 | 2666167ns | 22.88 ** | 18.30 ** | 1.00ns | 823.93 ** | 322.12 ** | 1.43 ** | 1.08 ** | 2.94ns |
SCA(SET) | 54 | 4859033ns | 7.10 ** | 5.07 ** | 1.04 ** | 162.70 ** | 130.02 ** | 0.65 ** | 0.87 ** | 2.26ns |
ENV*HYBRID | 198 | 5182385ns | 6.97 ** | 7.62 ** | 1.00 ** | 190.53 ** | 146.94 ** | 0.57 ** | 0.71 * | 2.31ns |
ENV*GCAMALE(SET) | 36 | 6852042ns | 6.31 ** | 7.42 ** | 1.18 ** | 304.61 ** | 180.37 ** | 0.39ns | 0.79ns | 2.38ns |
ENV*GCAFEMALE(SET) | 36 | 5273256ns | 6.77 ** | 9.46 ** | 0.96 ** | 202.93 ** | 211.50 ** | 0.62 ** | 0.58ns | 2.95 ** |
ENV*SCA(SET) | 108 | 4299183ns | 5.20 ** | 5.33 ** | 0.99 ** | 148.51 ** | 116.89 ** | 0.57 ** | 0.71ns | 2.19ns |
Error | 215 | 4941851 | 3.57 | 3.54 | 0.62 | 100.2 | 88.35 | 0.4 | 0.57 | 1.97 |
H2 | - | 0.41 | 0.48 | 0.53 | 0.38 | 0.78 | 0.6 | 0.58 | 0.51 | - |
Repeatability | - | 0.65 | 0.54 | 0.59 | 0.43 | 0.81 | 0.56 | 0.62 | 0.61 | - |
Across environments | ||||||||||
ENV | 6 | 499379987 ** | 13849.13 ** | 15593.72 ** | 123.97 ** | 154513.34 ** | 45040.16 ** | 46.41 ** | 54.38 ** | 557.78 ** |
SET | 5 | 25520360 ** | 34.39 ** | 12.66 ** | 5.60 ** | 14753.19 ** | 5416.08 ** | 17.53 ** | 22.77 ** | 2.59ns |
ENV*SET | 30 | 3762534 * | 13.86 ** | 15.39 ** | 1.52 ** | 942.61ns | 171.52 ** | 2.28 ** | 1.45 * | 1.82ns |
Rep(ENV*SET) | 35 | 1608595ns | 3.58ns | 5.06ns | 1.59 ** | 649.6ns | 107.98ns | 0.65ns | 0.71ns | 1.42ns |
Block(ENV*Rep) | 126 | 4851705 ** | 11.09 ** | 16.75 ** | 1.41 ** | 1437.89 | 332.34 ** | 2.15 ** | 2.37 ** | 5.77 ** |
HYBRID | 99 | 4126473 ** | 15.01 ** | 15.52 ** | 1.40 ** | 3033.39 ** | 605.93 ** | 2.41 ** | 2.74 ** | 2.94 ** |
GCAMALE(SET) | 18 | 4424226 ** | 19.75 ** | 24.77 ** | 1.52 * | 3653.58 ** | 532.65 ** | 1.21 ** | 1.16ns | 4.11 ** |
GCAFEMALE(SET) | 18 | 2103577 * | 24.74 ** | 25.50 ** | 0.69ns | 3564.40 ** | 586.29 ** | 2.50 ** | 1.57 * | 3.90 ** |
SCA(SET) | 54 | 2094763ns | 5.53 ** | 4.97ns | 1.18 * | 1368.91ns | 149.13 ** | 0.97 ** | 1.26 * | 1.72ns |
ENV*HYBRID | 594 | 2629285 ** | 5.86 ** | 6.56 ** | 1.14 ** | 1173.7ns | 111.95 ** | 0.81 ** | 1.20 ** | 2.31 ** |
ENV*GCAMALE(SET) | 108 | 3505822 * | 4.67 * | 5.64 * | 1.13 ** | 1443.02ns | 127.85 ** | 0.71ns | 1.46 ** | 1.96 |
ENV*GCAFEMALE(SET) | 108 | 2453356 ** | 6.25 ** | 7.74 ** | 1.13 ** | 1357.17ns | 130.50 ** | 0.86 * | 1.21 ** | 2.84 ** |
ENV*SCA(SET) | 323 | 2295330ns | 4.93 ** | 5.98 ** | 1.05 ** | 1085.28ns | 97.5ns | 0.64ns | 0.94ns | 2.30 * |
Error | 501 | 2474083 | 3.37 | 4.08 | 0.8 | 1226.59 | 85.42 | 0.61 | 0.85 | 1.9 |
TRAITS | Low-Nitrogen | CDHS | Optimal Conditions | Across Test Environments | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GCA | SCA | GCA | SCA | GCA | SCA | GCA | SCA | |||||
Male | Female | Male | Female | Male | Female | Male | Female | |||||
Grain yield (kg ha−1) | 32.5 | 27.5 | 39.9 | 8.3 | 34.8 | 56.9 | 32.9 | 10.4 | 56.7 | 34.5 | 16.4 | 49.0 |
Days to 50% anthesis | 32.6 | 25.0 | 42.4 | 29.9 | 32.1 | 38.0 | 19.6 | 41.7 | 38.8 | 32.3 | 40.5 | 27.2 |
Days to 50% silking | 33.7 | 27.1 | 39.2 | 29.6 | 30.2 | 40.1 | 22.9 | 42.1 | 35.0 | 38.0 | 39.1 | 22.9 |
Anthesis-silking interval | 31.6 | 15.0 | 53.4 | 19.0 | 20.6 | 60.4 | 9.8 | 22.0 | 68.2 | 26.5 | 12.0 | 61.5 |
Plant height | 41.2 | 35.6 | 23.2 | 26.1 | 23.6 | 50.3 | 32.5 | 42.4 | 25.1 | 32.3 | 31.5 | 36.3 |
>Ear height | 24.9 | 27.1 | 48.0 | 33.3 | 28.8 | 37.9 | 29.3 | 32.0 | 38.7 | 34.0 | 37.4 | 28.6 |
Plant aspect | 30.1 | 26.8 | 43.1 | 18.2 | 36.8 | 45.0 | 21.0 | 33.5 | 45.5 | 18.4 | 37.8 | 43.8 |
Ear aspect | 22.0 | 36.2 | 41.8 | 19.4 | 18.8 | 61.9 | 22.9 | 22.6 | 54.5 | 17.8 | 24.1 | 58.1 |
Ears per plant | 28.3 | 25.8 | 45.9 | 13.9 | 18.4 | 67.7 | 21.8 | 25.8 | 52.4 | 20.1 | 30.2 | 49.7 |
Stay-green characteristics | 23.0 | 27.3 | 49.6 | 23.2 | 23.9 | 52.9 | - | - | - | - | - | - |
Tassel blast | - | - | - | 21.8 | 12.1 | 66.1 | - | - | - | - | - | - |
Low Soil Nitrogen | Combined Drought and Heat Stress Conditions | Optimal Conditions | Across Test Environments | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Grain Yield | Stay Green Characteristic | Grain Yield | ASI | Stay Green Characteristic | Grain Yield | Grain Yield | ||||||||
INBREDS | GCAm | GCAf | GCAm | GCAf | GCAm | GCAf | GCAm | GCAf | GCAm | GCAf | GCAm | GCAf | GCAm | GCAf |
TZEQI 106 | 310.57 * | 174.91 | −0.45 ** | −0.40 * | −53.52 | 63.06 | 0.1 | 0.27 | 0.21 | 0.32 * | −179.3 | −210.65 | 3.22 | 372.64 |
TZEQI 113 | 415.18 ** | −10.83 | −0.1 | 0.13 | 502.79 * | −265.53 | −0.38 ** | −0.05 | −0.11 | −0.31 * | 266.62 | −49.47 | 372.64 | −96.19 |
TZEQI 122 | −216.37 | 163.56 | 0.3 | 0.29 | −521.41 * | −159.89 | 0.21 | −0.13 | 0.03 | −0.11 | 200.59 | 12.34 | −116.3 | 26.39 |
TZEQI 123 | −509.38 ** | −327.64 | 0.26 | −0.02 | 72.14 | 362.37 | 0.07 | −0.09 | −0.13 | 0.1 | −287.91 | 247.78 | −259.56 | 107.96 |
TZEQI 130 | 175.84 | 33.17 | −0.32 * | 0.01 | 133.17 | 96.02 | −0.46 ** | −0.21 | 0.1 | 0.03 | −114.56 | −128.97 | 52.9 | −40.64 |
TZEQI 132 | −91.59 | −486.44 * | 0.26 | 0.03 | 16.35 | 75.92 | 0.11 | 0.2 | 0.07 | −0.34 * | 192.46 | 189.82 | 3.88 | −27.77 |
TZEQI 140 | 208.01 | 298.45 | −0.45 ** | 0.11 | −126.57 | 197.95 | 0 | 0.14 | −0.44 ** | 0.43 * | 143.61 | 9.55 | 111.06 | 138.82 |
TZEQI 143 | −292.25 * | 154.82 | 0.51 ** | −0.15 | −22.95 | −369.89 | 0.35 * | −0.13 | 0.27 * | −0.13 | −221.52 | −70.39 | −167.84 | −70.42 |
TZEQI 158 | 567.43 ** | 353.41 | −0.11 | −0.21 | 242.39 | 17.36 | 0 | 0.01 | −0.39 ** | −0.04 | 25.9 | −81.61 | 222.11 | 57.76 |
TZEQI 159 | −94.48 | −260.67 | 0.15 | −0.07 | −163.59 | −390.22 | −0.04 | 0.25 | 0.57 ** | 0.43 * | −259.52 | −267.4 | −109.65 | −281.54 |
TZEQI 162 | −154.07 | −160 | 0.07 | 0 | −19.1 | 233.1 | −0.25 | −0.13 | −0.05 | −0.14 | −170.91 | −83.24 | −151.5 | −50.1 |
TZEQI 165 | −318.88 * | 67.26 | −0.12 | 0.28 | −59.7 | 139.75 | 0.29 * | −0.13 | −0.13 | −0.25 | 404.53 | 432.25 | 39.05 | 273.87 |
TZEQI 171 | −85.12 | 179.5 | 0.16 | 0.08 | −52.95 | −64.34 | −0.34 * | −0.57 ** | −0.12 | −0.30 * | −59 | −443.47 | −57.96 | −79.77 |
TZEQI 175 | −201.68 | −45.77 | 0.02 | −0.07 | 249.93 | 266.38 | 0.30 ** | −0.14 | −0.17 | −0.1 | −346 | 254.71 | −126.97 | 138.69 |
TZEQI 176 | −85.69 | −254.56 | −0.19 | 0.13 | −60.98 | 206.04 | 0.28 * | 0.48 ** | −0.12 | 0.35 * | 87.82 | 29.46 | −16.28 | −17.64 |
TZEQI 188 | 372.49 * | 120.83 | 0.01 | −0.15 | −136 | −408.08 | −0.25 * | 0.23 | 0.42 ** | 0.05 | 317.17 | 159.3 | 201.2 | −41.28 |
TZEQI 210 | 208.06 | 961.61 ** | −0.01 | −0.45 * | 81.41 | 256.99 | −0.08 | −0.27 * | −0.25 | 0.50 ** | −972.07 | 267.01 | −382.49 | 452.05 * |
TZEQI 216 | −292.18 * | −575.11 * | −0.30 * | 0.07 | 503.03 * | 356.13 | −0.05 | −0.09 | 0.07 | −0.12 | −391.84 | −61.44 | −166.81 | −104.27 |
TZEQI 219 | −144.21 | −101.23 | 0.02 | −0.07 | −633.01 ** | −470.69 | 0.12 | 0.29 * | 0.03 | −0.52 ** | 1868.26 ** | 148.87 | 685.06 ** | −74.52 |
TZEQI 228 | 228.33 | −285.26 | 0.28 * | 0.45 * | 48.56 | −142.44 | 0.01 | 0.07 | 0.15 | 0.14 | −504.36 | −354.45 | −135.76 | −273.26 |
TZEQI 240 | 77.6 | −612.63 * | 0.32 * | 0.22 | −185.6 | −233.38 | 0.01 | 0.27 | −0.13 | −0.02 | 167.76 | −716.16 | 42.49 | −530.95 * |
TZEQI 241 | −312.11 * | 60.19 | 0.13 | 0.04 | −372.45 | 104.62 | −0.12 | −0.33 * | −0.28 * | 0.12 | −409.54 | 763.95 | −388.39 | 410.10 * |
TZEQI 246 | −252.43 | −121.31 | 0.16 | 0.02 | 230.7 | −22.51 | 0.15 | 0.38 * | −0.18 | 0.29 | −247.34 | −225.03 | −115.52 | −136.02 |
TZEQI 6 | 486.95 ** | 673.75 ** | −0.61 ** | −0.28 | 327.35 | 151.28 | −0.04 | −0.32 * | 0.59 ** | −0.39 * | 489.12 | 177.24 | 461.42 * | 256.87 |
S.E | 135.26 | 225.71 | 0.14 | 0.17 | 206.28 | 317.59 | 0.15 | 0.16 | 0.13 | 0.15 | 427.46 | 459.27 | 230.05 | 195.79 |
Grain Yield | Yield Reduction (%) | ||||||
---|---|---|---|---|---|---|---|
Hybrids | CDHS | Low-Nitrogen | Optimal | Across | Low-Nitrogen | CDHS | MI |
TZEQI 6 × TZEQI 228 | 2134 | 3826 | 6386 | 4031 | 40.1 | 66.6 | 11.1 |
TZEQI 210 × TZEQI 188 | 1954 | 5388 | 6692 | 4582 | 19.5 | 70.8 | 11.0 |
TZEQI 6 × TZEQI 55(check) | 2104 | 3832 | 6622 | 4716 | 42.1 | 68.2 | 9.4 |
TZEQI 113 × TZEQI 6 | 1613 | 4451 | 5643 | 3760 | 21.1 | 71.4 | 8.5 |
TZEQI 6 × TZEQI 210 | 2471 | 4483 | 6671 | 3613 | 32.8 | 63.0 | 8.4 |
TZEQI 241 × TZEQI 228 | 2699 | 4700 | 5145 | 3815 | 8.6 | 47.5 | 7.9 |
TZEQI 246 × TZEQI 210 | 2146 | 4255 | 5055 | 3720 | 15.8 | 57.6 | 7.1 |
TZEQI 241 × TZEQI 216 | 3604 | 3066 | 3807 | 3566 | 19.5 | 5.3 | 6.8 |
TZEQI 6 × TZEQI 219 | 1350 | 4314 | 6359 | 4607 | 32.2 | 78.8 | 6.6 |
TZEQI 39 × TZEQI 44(check) | 3885 | 3877 | 6639 | 4627 | 41.6 | 41.5 | 5.6 |
TZEQI 39 × TZEQI 14(check) | 2303 | 4435 | 5543 | 3854 | 20.0 | 58.5 | 5.6 |
TZEQI 171 × TZEQI 158 | 2206 | 3878 | 4784 | 3288 | 19.0 | 53.9 | 5.5 |
TZEQI 106 × TZEQI 6 | 1620 | 3307 | 3943 | 2858 | 16.1 | 58.9 | 4.9 |
TZEQI 210 × TZEQI 171 | 2344 | 3390 | 6506 | 3871 | 47.9 | 64.0 | 4.5 |
TZEQI 140 × TZEQI 113 | 2139 | 4227 | 5098 | 3384 | 17.1 | 58.0 | 4.2 |
TZEQI 113 × TZEQI 240 | 632 | 2475 | 4877 | 2626 | 49.3 | 87.0 | -5.7 |
TZEQI 140 × TZEQI 106 | 664 | 2628 | 5161 | 2760 | 49.1 | 87.1 | -6.4 |
TZEQI 165 × TZEQI 132 | 1804 | 2698 | 5391 | 2827 | 49.9 | 66.5 | -6.4 |
TZEQI 130 × TZEQI 123 | 1418 | 2242 | 4780 | 2368 | 53.1 | 70.3 | -6.6 |
TZEQI 132 × TZEQI 113 | 1236 | 2180 | 4990 | 2584 | 56.3 | 75.2 | -7.0 |
TZEQI 175 × TZEQI 159 | 1124 | 1930 | 4916 | 2491 | 60.8 | 77.1 | -7.2 |
TZEQI 132 × TZEQI 122 | 703 | 1511 | 5741 | 2548 | 73.7 | 87.8 | -7.6 |
TZEQI 143 × TZEQI 122 | 342 | 2759 | 5037 | 2449 | 45.2 | 93.2 | -7.7 |
TZEQI 159 × TZEQI 143 | 1045 | 2201 | 4883 | 2550 | 54.9 | 78.6 | -9.9 |
TZEQI 159 × TZEQI 132 | 394 | 2003 | 4903 | 2368 | 59.1 | 92.0 | −12.8 |
Mean | 1578 | 3057 | 5164 | 3158 | 44.9 | 67.0 | |
S.E | 67 | 72 | 76 | 62 |
S/N | INBREDS | PEDIGREE | Reaction to Low-Nitrogen | Reaction to CDHS | SET |
---|---|---|---|---|---|
1 | TZEQI 106 | (TZEEQI 7 × TZEQI 6)F1 4/13 BC1 S7 1/2−1/1-3/4-3/3-2/2−1/1−1/1 | S | S | A |
2 | TZEQI 113 | (TZEEQI 7 × TZEQI 6)F1 4/13 BC1 S7 2/2-2/3−1/4-5/5-2/8−1/1−1/1 | S | T | A |
3 | TZEQI 122 | (TZEEQI 7 × TZEQI 6)F1 4/13 BC1 S7 2/2-2/3-4/4-6/6-3/4−1/2−1/1 | T | T | A |
4 | TZEQI 123 | (TZEEQI 7 × TZEQI 6)F1 4/13 BC1 S7 2/2-2/3-4/4-6/6-4/4−1/1−1/1 | T | S | A |
5 | TZEQI 130 | (TZEEQI 7 × TZEQI 6)F1 10/13 BC1 S7 1/3−1/1-3/5-2/3-3/3−1/1−1/1 | T | T | B |
6 | TZEQI 132 | (TZEEQI 7 × TZEQI 6)F1 10/13 BC1 S7 2/3−1/1-3/5−1/2−1/2−1/1−1/1 | S | S | B |
7 | TZEQI 140 | (TZEEQI 7 × TZEQI 6)F1 12/13 BC1 S7 1/2−1/1−1/3−1/4−1/2−1/1−1/1 | T | S | B |
8 | TZEQI 143 | (TZEEQI 7 × TZEQI 6)F1 13/13 BC1 S7 1/2−1/1−1/3-3/3-2/3−1/1−1/1 | S | S | B |
9 | TZEQI 158 | (TZEEQI 7 × TZEQI 4)F1 2/10 BC1 S7 1/2−1/3-2/3-2/3-2/3−1/1−1/1 | T | S | C |
10 | TZEQI 159 | (TZEEQI 7 × TZEQI 4)F1 2/10 BC1 S7 1/2−1/3-2/3-2/3-3/3−1/1−1/1 | T | T | C |
11 | TZEQI 162 | (TZEEQI 7 × TZEQI 4)F1 2/10 BC1 S7 1/2-3/3−1/4-5/5−1/2−1/1−1/1 | T | T | C |
12 | TZEQI 165 | (TZEEQI 7 × TZEQI 4)F1 2/10 BC1 S7 1/2-3/3-3/4-3/4-2/4−1/1−1/1 | S | S | C |
13 | TZEQI 171 | (TZEEQI 7 × TZEQI 4)F1 3/10 BC1 S7 1/2−1/2−1/1-2/2−1/3−1/1−1/1 | S | T | D |
14 | TZEQI 175 | (TZEEQI 7 × TZEQI 4)F1 3/10 BC1 S7 2/2-2/3−1/1−1/4−1/3−1/2−1/1 | S | T | D |
15 | TZEQI 176 | (TZEEQI 7 × TZEQI 4)F1 3/10 BC1 S7 2/2-2/3−1/1−1/4-2/3−1/2−1/1 | T | S | D |
16 | TZEQI 188 | (TZEEQI 7 × TZEQI 4)F1 3/10 BC1 S7 3/3−1/4-5/6−1/3-2/2−1/1−1/1 | T | S | D |
17 | TZEQI 210 | (TZEEQI 102 × TZEQI 6)F1 2/11 BC1 S7 2/2−1/1−1/4−1/3−1/2−1/1−1/1 | S | T | E |
18 | TZEQI 216 | (TZEEQI 102 × TZEQI 6)F1 9/11 BC1 S7 1/3-2/2−1/2-2/2-2/2−1/1−1/1 | S | T | E |
19 | TZEQI 219 | (TZEEQI 7 × TZEQI 60)F1 2/17 BC1 S7 2/2−1/1-2/3−1/1−1/3−1/1−1/1 | S | T | E |
20 | TZEQI 228 | (TZEEQI 137 × TZEQI 49)F1 2/9 BC1 S7 2/2−1/2−1/3-2/2-2/2−1/1−1/1 | S | T | E |
21 | TZEQI 240 | (TZEEQI 7 × TZEQI 6)F1 4/13 BC1 S7 1/2−1/1−1/2-4/4-2/2−1/1−1/1 | T | S | F |
22 | TZEQI 241 | (TZEEQI 7 × TZEQI 6)F1 4/13 BC1 S7 2/2-2/3-2/4−1/6-2/3−1/1−1/1 | T | T | F |
23 | TZEQI 246 | (TZEEQI 7 × TZEQI 4)F1 3/10 BC1 S7 3/3−1/4-3/6-2/3−1/3−1/1−1/1 | T | S | F |
24 | TZEQI 6 | CHECK | S | S | F |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhadmus, O.A.; Badu-Apraku, B.; Adeyemo, O.A.; Ogunkanmi, A.L. Genetic Analysis of Early White Quality Protein Maize Inbreds and Derived Hybrids under Low-Nitrogen and Combined Drought and Heat Stress Environments. Plants 2021, 10, 2596. https://doi.org/10.3390/plants10122596
Bhadmus OA, Badu-Apraku B, Adeyemo OA, Ogunkanmi AL. Genetic Analysis of Early White Quality Protein Maize Inbreds and Derived Hybrids under Low-Nitrogen and Combined Drought and Heat Stress Environments. Plants. 2021; 10(12):2596. https://doi.org/10.3390/plants10122596
Chicago/Turabian StyleBhadmus, Olatunde A., Baffour Badu-Apraku, Oyenike A. Adeyemo, and Adebayo L. Ogunkanmi. 2021. "Genetic Analysis of Early White Quality Protein Maize Inbreds and Derived Hybrids under Low-Nitrogen and Combined Drought and Heat Stress Environments" Plants 10, no. 12: 2596. https://doi.org/10.3390/plants10122596
APA StyleBhadmus, O. A., Badu-Apraku, B., Adeyemo, O. A., & Ogunkanmi, A. L. (2021). Genetic Analysis of Early White Quality Protein Maize Inbreds and Derived Hybrids under Low-Nitrogen and Combined Drought and Heat Stress Environments. Plants, 10(12), 2596. https://doi.org/10.3390/plants10122596