New Genotypes and Genomic Regions for Resistance to Wheat Blast in South Asian Germplasm
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Variation and Heritability of WB and Its Association with Other Traits
2.2. Population Structure and GWAS Analysis
2.3. Effect of the 2NS/2AS Translocation on WB
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Experimental Design and Field Phenotyping
4.3. Genotyping
4.4. GWAS Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board statement
Informed Consent statement
Data Availability Statement
Conflicts of Interest
References
- Singh, P.K.; Gahtyari, N.C.; Roy, C.; Roy, K.K.; He, X.; Tembo, B.; Xu, K.; Juliana, P.; Sonder, K.; Kabir, M.R.; et al. Wheat blast: A disease spreading by intercontinental jumps and its management strategies. Front. Plant Sci. 2021, 12, 710707. [Google Scholar] [CrossRef] [PubMed]
- Ceresini, P.C.; Castroagudín, V.L.; Rodrigues, F.Á.; Rios, J.A.; Eduardo Aucique-Pérez, C.; Moreira, S.I.; Alves, E.; Croll, D.; Maciel, J.L.N. Wheat blast: Past, present, and future. Annu. Rev. Phytopathol. 2018, 56, 427–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barea, G.; Toledo, J. Identificación y zonificación de Pyricularia o brusone (Pyricularia oryzae) en el cutivo de trigo en el departamento de Santa Cruz. In Centro de Investigación Agrícola Tropical. Informe Tecnico. Proyecto de Investigacion Trigo; CRC Press: Santa Cruz de la Sierra, Bolivia, 1996; pp. 76–86. [Google Scholar]
- Perelló, A.; Martinez, I.; Molina, M. First report of virulence and effects of Magnaporthe oryzae isolates causing wheat blast in Argentina. Plant Dis. 2015, 99, 1177. [Google Scholar] [CrossRef]
- Malaker, P.K.; Barma, N.C.D.; Tiwari, T.P.; Collis, W.J.; Duveiller, E.; Singh, P.K.; Joshi, A.K.; Singh, R.P.; Braun, H.-J.; Peterson, G.L.; et al. First report of wheat blast caused by Magnaporthe oryzae pathotype triticum in Bangladesh. Plant Dis. 2016, 100, 2330. [Google Scholar] [CrossRef]
- Tembo, B.; Mulenga, R.M.; Sichilima, S.; M’siska, K.K.; Mwale, M.; Chikoti, P.C.; Singh, P.K.; He, X.; Pedley, K.F.; Peterson, G.L.; et al. Detection and characterization of fungus (Magnaporthe oryzae pathotype Triticum) causing wheat blast disease on rain-fed grown wheat (Triticum aestivum L.) in Zambia. PLoS ONE 2020, 15, e0238724. [Google Scholar] [CrossRef]
- Islam, M.T.; Croll, D.; Gladieux, P.; Soanes, D.M.; Persoons, A.; Bhattacharjee, P.; Hossain, M.S.; Gupta, D.R.; Rahman, M.M.; Mahboob, M.G.; et al. Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biol. 2016, 14, 84. [Google Scholar] [CrossRef] [Green Version]
- Mottaleb, K.A.; Singh, P.K.; Sonder, K.; Kruseman, G.; Tiwari, T.P.; Barma, N.C.D.; Malaker, P.K.; Braun, H.J.; Erenstein, O. Threat of wheat blast to South Asia’s food security: An ex-ante analysis. PLoS ONE 2018, 13, e0197555. [Google Scholar] [CrossRef] [Green Version]
- Igarashi, S. Update on wheat blast (Pyricularia oryzae) in Brazil. In Wheat for the Nontraditional Warm Areas. A Proceedings of the International Conference, Foz do Iguaçu, Brazil, 29 July–3 August 1990; Saunders, D.A., Ed.; CIMMYT: Mexico, Mexico, 1990; pp. 480–485. [Google Scholar]
- Goulart, A.C.P.; Paiva, F.A. Incidence of (Pyricularia oryzae) in different wheat cultivars under field conditions. Fitopatol. Bras. 1992, 17, 321–325. [Google Scholar]
- Goulart, A.C.P.; Paiva, F.A. Perdas no rendimento de graos de trigo causadas por Pyricularia grisea nos anos de 1991 e 1992, no Mato Grosso do Sul. Summa Phytopathol. 2000, 26, 279–282. [Google Scholar]
- Duveiller, E.; He, X.; Singh, P.K. Wheat blast: An emerging disease in South America potentially threatening wheat production. In The World Wheat Book Vol. 3; Bonjean, A.P., Angus, W.J., van Ginkel, M., Eds.; Lavoisier: Paris, France, 2016; pp. 1107–1122. [Google Scholar]
- McDonald, B.A.; Stukenbrock, E.H. Rapid emergence of pathogens in agro-ecosystems: Global threats to agricultural sustainability and food security. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20160026. [Google Scholar] [CrossRef] [Green Version]
- Goulart, A.C.P.; Sousa, P.G.; Urashima, A.S. Damages in wheat caused by infection of Pyricularia grisea. Summa Phytopathol. 2007, 33, 358–363. [Google Scholar] [CrossRef] [Green Version]
- Urashima, A.S.; Grosso, C.; Stabili, A.; Freitas, E.; Silva, D.; Netto, D.; Franco, I.; Bottan, M. Effect of Magnaporthe grisea on seed germination, yield and quality of wheat. In Advances in Genetic, Genomics and Control of Rice Blast Disease; Wang, G.L., Valent, B., Eds.; Springer: New York, NY, USA, 2009; pp. 267–277. [Google Scholar]
- Cardoso, C.A.D.A.; Reis, E.M.; Moreira, E.N. Development of a warning system for wheat blast caused by Pyricularia grisea. Summa Phytopathol. 2008, 34, 216–221. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.P. Wheat blast—A new challenge to wheat production in South Asia. Indian Phytopathol. 2017, 70, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Urashima, A.S.; Alves, A.F.; Silva, F.N.; Oliveira, D.; Gazaffi, R. Host range, mating type and population structure of Magnaporthe sp. of a single barley field in São Paulo state, Brazil. J. Phytopathol. 2017, 165, 1–11. [Google Scholar] [CrossRef]
- Castroagudín, V.L.; Ceresini, P.C.; De Oliveira, S.C.; Reges, J.T.A.; Maciel, J.L.N.; Bonato, A.L.V.; Dorigan, A.F.; McDonald, B.A. Resistance to QoI fungicides is widespread in Brazilian populations of the wheat blast pathogen Magnaporthe oryzae. Phytopathology 2015, 105, 284–294. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, A.K.; Saharan, M.S.; Aggrawal, R.; Malaker, P.K.; Barma, N.C.D.; Tiwari, T.P.; Duveiller, E.; Singh, P.K.; Srivastava, A.K.; Sonder, K.; et al. Occurrence of wheat blast in Bangladesh and its implications for South Asian wheat production. Indian J. Genet. Plant Breed. 2017, 77, 1–9. [Google Scholar] [CrossRef]
- Cruppe, G.; Cruz, C.D.; Peterson, G.; Pedley, K.; Asif, M.; Fritz, A.; Calderon, L.; da Silva, C.L.; Todd, T.; Kuhnem, P.; et al. Novel sources of wheat head blast resistance in modern breeding lines and wheat wild relatives. Plant Dis. 2020, 104, 35–43. [Google Scholar] [CrossRef]
- Cruz, C.D.; Valent, B. Wheat blast disease: Danger on the move. Trop. Plant Pathol. 2017, 42, 210–222. [Google Scholar] [CrossRef] [Green Version]
- Anh, V.L.; Anh, N.T.; Tagle, A.G.; Vy, T.T.P.; Inoue, Y.; Takumi, S.; Chuma, I.; Tosa, Y. Rmg8, a new gene for resistance to Triticum isolates of Pyricularia oryzae in hexaploid wheat. Phytopathology 2015, 105, 1568–1572. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Asuke, S.; Vy, T.T.P.; Inoue, Y.; Chuma, I.; Win, J.; Kato, K.; Tosa, Y. A new resistance gene in combination with Rmg8 confers strong resistance against triticum isolates of Pyricularia oryzae in a common wheat landrace. Phytopathology 2018, 108, 1299–1306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz, C.D.; Peterson, G.L.; Bockus, W.W.; Kankanala, P.; Dubcovsky, J.; Jordan, K.W.; Akhunov, E.; Chumley, F.; Baldelomar, F.D.; Valent, B. The 2NS translocation from Aegilops ventricosa confers resistance to the Triticum pathotype of Magnaporthe oryzae. Crop Sci. 2016, 56, 990–1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badaeva, E.D.; Dedkova, O.S.; Koenig, J.; Bernard, S.; Bernard, M. Analysis of introgression of Aegilops ventricosa Tausch. genetic material in a common wheat background using C-banding. Theor. Appl. Genet. 2008, 117, 803–811. [Google Scholar] [CrossRef] [PubMed]
- Juliana, P.; He, X.; Kabir, M.R.; Roy, K.K.; Anwar, M.B.; Marza, F.; Poland, J.; Shrestha, S.; Singh, R.P.; Singh, P.K. Genome-wide association mapping for wheat blast resistance in CIMMYT’s international screening nurseries evaluated in Bolivia and Bangladesh. Sci. Rep. 2020, 10, 15972. [Google Scholar] [CrossRef] [PubMed]
- Cardozo Téllez, L.; Chavez, A.; Bobadilla, N.; Pérez-Estigarribia, P.; Kohli, M. Variable resistance of bread wheat (Triticum aestivum) lines carrying 2NS/2AS translocation to wheat blast. Plant Breed. 2018, 138, 1–7. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Juliana, P.; Kabir, M.R.; Roy, K.K.; Islam, R.; Marza, F.; Peterson, G.; Singh, G.P.; Chawade, A.; Joshi, A.K.; et al. Screening and mapping for head blast resistance in a panel of CIMMYT and South Asian bread wheat germplasm. Front. Genet. 2021, 12, 679162. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Kabir, M.R.; Roy, K.K.; Anwar, M.B.; Xu, K.; Marza, F.; Odilbekov, F.; Chawade, A.; Duveiller, E.; Huttner, E.; et al. QTL mapping for field resistance to wheat blast in the Caninde#1/Alondra population. Theor. Appl. Genet. 2020, 133, 2673–2683. [Google Scholar] [CrossRef]
- Cruppe, G.; Silva, P.; da Silva, C.L.; Peterson, G.; Pedley, K.F.; Cruz, C.D.; Asif, M.; Lollato, R.P.; Fritz, A.K.; Valent, B. Genome-wide association reveals limited benefits of pyramiding the 1B and 1D loci with the 2NS translocation for wheat blast control. Crop Sci. 2021, 61, 1089–1103. [Google Scholar] [CrossRef]
- Williamson, V.M.; Thomas, V.; Ferris, H.; Dubcovsky, J. An Aegilops ventricosa translocation confers resistance against root-knot nematodes to common wheat. Crop Sci. 2013, 53, 1412–1418. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Wang, X.; Kumar, U.; Gao, L.; Noor, M.; Imtiaz, M.; Singh, R.P.; Poland, J. High-throughput phenotyping enabled genetic dissection of crop lodging in wheat. Front. Plant Sci. 2019, 10, 394. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Koo, D.-H.; Juliana, P.; Rife, T.; Singh, D.; Lemes da Silva, C.; Lux, T.; Dorn, K.M.; Clinesmith, M.; Silva, P.; et al. The Aegilops ventricosa 2NvS segment in bread wheat: Cytology, genomics and breeding. Theor. Appl. Genet. 2020, 134, 529–542. [Google Scholar] [CrossRef]
- Kohli, M.M.; Mehta, Y.R.; Guzman, E.; de Viedma, L.; Cubilla, L.E. Pyricularia blast-a threat to wheat cultivation. Czech J. Genet. Plant Breed. 2011, 47, 130–134. [Google Scholar] [CrossRef] [Green Version]
- Roy, K.K.; Reza, M.M.A.; Muzahid-E-Rahman, M.; Anwar, M.B.; Kabir, M.R.; Malaker, P.K.; Barma, N.C.D.; Hossain, M.I.; He, X.; Chawade, A.; et al. Evaluation of elite bread wheat lines for resistance to blast disease in Bangladesh. Euphytica 2021, 217, 151. [Google Scholar] [CrossRef]
- Wu, L.; He, X.; Kabir, M.R.; Roy, K.K.; Anwar, M.B.; Marza, F.; He, Y.; Jiang, P.; Zhang, X.; Singh, P.K. Genetic sources and loci for wheat head blast resistance identified by genome-wide association analysis. Crop J. 2021. [Google Scholar] [CrossRef]
- Islam, M.T.; Gupta, D.R.; Hossain, A.; Roy, K.K.; He, X.; Kabir, M.R.; Singh, P.K.; Khan, M.A.R.; Rahman, M.; Wang, G.-L. Wheat blast: A new threat to food security. Phytopathol. Res. 2020, 2, 28. [Google Scholar] [CrossRef]
- Mustarin, K.E.; Roy, K.K.; Rahman, M.M.E.; Reza, M.M.A.; Hossain, M.I. Surveillance and monitoring of some major diseases of wheat in Bangladesh with special emphasis on wheat blast- a new disease in Bangladesh. J. Plant Pathol. 2021, 103, 473–481. [Google Scholar] [CrossRef]
- Bishnoi, S.K.; Kumar, S.; Singh, G.P. Wheat blast readiness of the Indian wheat sector. Curr. Sci. 2021, 120, 262–263. [Google Scholar] [CrossRef]
- Hossain, A.; Mottaleb, K.A.; Farhad, M.; Deb Barma, N.C. Mitigating the twin problems of malnutrition and wheat blast by one wheat variety, “BARI Gom 33”, in Bangladesh. Acta Agrobot. 2019, 72, 1775. [Google Scholar] [CrossRef] [Green Version]
- Shizhen, W.; Jiaoyu, W.; Zhen, Z.; Zhongna, H.; Xueming, Z.; Rongyao, C.; Haiping, Q.; Yanli, W.; Fucheng, L.; Guochang, S. The risk of wheat blast in rice–wheat co-planting regions in China: MoO strains of Pyricularia oryzae cause typical symptom and host reaction on both wheat leaves and spikes. Phytopathology 2021, 19, 1393–1400. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Li, H.; Vikram, P.; Singh, R.P.; Kilian, A.; Carling, J.; Song, J.; Burgueno-Ferreira, J.A.; Bhavani, S.; Huerta-Espino, J.; Payne, T.; et al. A high density GBS map of bread wheat and its application for dissecting complex disease resistance traits. BMC Genom. 2015, 16, 216. [Google Scholar] [CrossRef] [Green Version]
- Helguera, M.; Khan, I.A.; Kolmer, J.; Lijavetzky, D.; Zhong-qi, L.; Dubcovsky, J. PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop Sci. 2003, 43, 1839–1847. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Xie, J.; Guo, B.; Chen, Y.; Zhang, H.; Lu, P.; Wu, Q.; Li, M.; Zhang, D.; et al. Mapping stripe rust resistance genes by BSR-Seq: YrMM58 and YrHY1 on chromosome 2AS in Chinese wheat lines Mengmai 58 and Huaiyang 1 are Yr17. Crop J. 2018, 6, 91–98. [Google Scholar] [CrossRef]
- Money, D.; Gardner, K.; Migicovsky, Z.; Schwaninger, H.; Zhong, G.-Y.; Myles, S. LinkImpute: Fast and accurate genotype imputation for nonmodel organisms. G3 Genes Genomes Genet. 2015, 5, 2383–2390. [Google Scholar] [CrossRef] [Green Version]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Zhang, H.; Tang, Z.; Xu, J.; Yin, D.; Zhang, Z.; Yuan, X.; Zhu, M.; Zhao, S.; Li, X.; et al. rMVP: A Memory-efficient, Visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genom. Proteom. Bioinform. 2021. [Google Scholar] [CrossRef] [PubMed]
SNP | Chromosome | Physical Position | p-Value | Additive Effect | PVE (%) |
---|---|---|---|---|---|
Multiple SNPs | 2A | 261922–29121496 | 2.37 × 10−15–8.30 × 10−10 | (−)22.23–22.13 | 4.87–40.19 |
1003077 | 3B | 711240574 | 5.45 × 10−4 | −2.87 | 1.443 |
990037 | 3D | 38060848 | 1.80 × 10−4 | −7.02 | 7.387 |
2259170 | 4A | 263484695 | 4.30 × 10−4 | 1.48938 | 8.622 |
1714015 | 5A | 582828314 | 6.82 × 10−4 | −3.02 | 2.976 |
5324898 | 5D | 451911605 | 3.66 × 10−4 | −3.70 | 1.745 |
1213518 | 6A | 433695606 | 8.61 × 10−4 | −2.4756 | 1.098 |
3024082 | 6B | 721501177 | 5.31 × 10−5 | −2.57015 | 9.13 |
S.N. | Specific Name | Mean WB Index | Remarks |
---|---|---|---|
1. | DBW 252 | 2.2 | Resistance to foliar diseases and tolerance to drought, potential yield of 55.6 q/ha |
2. | HD 3171 | 2.8 | Tolerance to drought, potential yield of 46.33 q/ha, higher iron content (47.1 ppm 1) |
3. | DBW 88 | 2.0 | Higher protein content (13.8%) and perfect 10/10 Glu-1 score with with yield potential up to 69.9 q/ha |
4. | DBW 168 | 9.3 | Potential yield 70.1 q/ha with very good for chapati |
5. | DBW 173 | 0.0 | Heat tolerant suitable for late sown with potential yield 57.0 q/ha, iron 40.7 ppm |
6. | DBW 187 | 0.2 | Potential yield 95.9 q/ha with higher iron content (43.1 ppm) |
7. | DBW 222 | 8.1 | Potential yield 82.1 q/ha |
8. | HD 2967 | 3.2 | Average yield 44 q/ha |
9. | HD 3043 | 0.6 | Potential yield 66.0 q/ha |
10. | HD 3249 | 9.8 | Potential yield 67.5 q/ha; higher grain zinc (37 ppm) and iron content (42.5 ppm) |
11. | WH 1105 | 3.0 | Potential yield 71.6 q/ha |
12. | PBW 677 | 0.7 | Average yield 57.7 q/ha |
13. | PBW 752 | 24.6 | Potential yield 65.4q/ha, protein (12.4%) |
14. | WB 2 | 5.3 | Potential yield-58.9q/ha, rich in zinc (42.0 ppm) and iron (40.0 ppm) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roy, C.; Juliana, P.; Kabir, M.R.; Roy, K.K.; Gahtyari, N.C.; Marza, F.; He, X.; Singh, G.P.; Chawade, A.; Joshi, A.K.; et al. New Genotypes and Genomic Regions for Resistance to Wheat Blast in South Asian Germplasm. Plants 2021, 10, 2693. https://doi.org/10.3390/plants10122693
Roy C, Juliana P, Kabir MR, Roy KK, Gahtyari NC, Marza F, He X, Singh GP, Chawade A, Joshi AK, et al. New Genotypes and Genomic Regions for Resistance to Wheat Blast in South Asian Germplasm. Plants. 2021; 10(12):2693. https://doi.org/10.3390/plants10122693
Chicago/Turabian StyleRoy, Chandan, Philomin Juliana, Muhammad R. Kabir, Krishna K. Roy, Navin C. Gahtyari, Felix Marza, Xinyao He, Gyanendra P. Singh, Aakash Chawade, Arun K. Joshi, and et al. 2021. "New Genotypes and Genomic Regions for Resistance to Wheat Blast in South Asian Germplasm" Plants 10, no. 12: 2693. https://doi.org/10.3390/plants10122693
APA StyleRoy, C., Juliana, P., Kabir, M. R., Roy, K. K., Gahtyari, N. C., Marza, F., He, X., Singh, G. P., Chawade, A., Joshi, A. K., & Singh, P. K. (2021). New Genotypes and Genomic Regions for Resistance to Wheat Blast in South Asian Germplasm. Plants, 10(12), 2693. https://doi.org/10.3390/plants10122693