Ethephon Activates the Transcription of Senescence-Associated Genes and Nitrogen Mobilization in Grapevine Leaves (Vitis vinifera cv. Riesling)
Abstract
:1. Introduction
2. Results
2.1. Chlorophyll Degradation
2.2. Gene Transcription Analysis
2.3. Pathway Analysis
2.4. Nitrogen Remobilization
3. Discussion
4. Materials and Methods
4.1. Experimental Site
4.2. Chlorophyll Monitoring
4.3. Leaf Sampling and Assessment of Nitrogen Parameters
4.4. RNA Isolation, Library Preparation, and Sequencing
4.5. Bioinformatic Processing and Statistical Data Analysis
4.6. Gene Ontology Enrichment Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Organisation of Vine and Wine. OIV Statistical Report on World Vitiviniculture: 2018 World Vitiviniculture Situation. Available online: http://www.oiv.int/public/medias/6371/oiv-statistical-report-on-world-vitiviniculture-2018.pdf (accessed on 27 July 2020).
- Dauelsberg, P.; Matus, J.T.; Poupin, M.J.; Leiva-Ampuero, A.; Godoy, F.; Vega, A.; Arce-Johnson, P. Effect of pollination and fertilization on the expression of genes related to floral transition, hormone synthesis and berry development in grapevine. J. Plant Physiol. 2011, 168, 1667–1674. [Google Scholar] [CrossRef] [PubMed]
- Stoll, M.; Loveys, B.; Dry, P. Hormonal changes induced by partial rootzone drying of irrigated grapevine. J. Exp. Bot. 2000, 51, 1627–1634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Böttcher, C.; Harvey, K.E.; Boss, P.K.; Davies, C. Ripening of grape berries can be advanced or delayed by reagents that either reduce or increase ethylene levels. Funct. Plant Biol. 2013, 40, 566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Böttcher, C.; Davies, C. Hormonal control of grape berry development and ripening. In The Biochemistry of the Grape; Gerós, H.M., Chaves, M., Delrot, S., Eds.; Bentham Science Publishers: Sharjah, United Arab Emirates, 2012; pp. 194–217. [Google Scholar]
- Fasoli, M.; Dal Santo, S.; Zenoni, S.; Tornielli, G.B.; Farina, L.; Zamboni, A.; Porceddu, A.; Venturini, L.; Bicego, M.; Murino, V.; et al. The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program. Plant Cell 2012, 24, 3489–3505. [Google Scholar] [CrossRef] [Green Version]
- Buchanan-Wollaston, V. The molecular biology of leaf senescence. J. Exp. Bot. 1997, 48, 181–199. [Google Scholar] [CrossRef] [Green Version]
- Jibran, R.; A Hunter, D.; P Dijkwel, P. Hormonal regulation of leaf senescence through integration of developmental and stress signals. Plant Mol. Biol. 2013, 82, 547–561. [Google Scholar] [CrossRef]
- Schippers, J.H.M. Transcriptional networks in leaf senescence. Curr. Opin. Plant Biol. 2015, 27, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Buchanan-Wollaston, V.; Earl, S.; Harrison, E.; Mathas, E.; Navabpour, S.; Page, T.; Pink, D. The molecular analysis of leaf senescence—A genomics approach. Plant Biotechnol. J. 2003, 1, 3–22. [Google Scholar] [CrossRef]
- Guiboileau, A.; Sormani, R.; Meyer, C.; Masclaux-Daubresse, C. Senescence and death of plant organs: Nutrient recycling and developmental regulation. C. R. Biol. 2010, 333, 382–391. [Google Scholar] [CrossRef]
- Lim, P.O.; Kim, H.J.; Nam, H.G. Leaf senescence. Annu. Rev. Plant Biol. 2007, 58, 115–136. [Google Scholar] [CrossRef] [Green Version]
- Avila-Ospina, L.; Moison, M.; Yoshimoto, K.; Masclaux-Daubresse, C. Autophagy, plant senescence, and nutrient recycling. J. Exp. Bot. 2014, 65, 3799–3811. [Google Scholar] [CrossRef] [Green Version]
- Buchanan-Wollaston, V.; Page, T.; Harrison, E.; Breeze, E.; Lim, P.O.; Nam, H.G.; Lin, J.-F.; Wu, S.-H.; Swidzinski, J.; Ishizaki, K.; et al. Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J. 2005, 42, 567–585. [Google Scholar] [CrossRef]
- Araújo, W.L.; Tohge, T.; Ishizaki, K.; Leaver, C.J.; Fernie, A.R. Protein degradation—An alternative respiratory substrate for stressed plants. Trends Plant Sci. 2011, 16, 489–498. [Google Scholar] [CrossRef]
- Matile, P. Chloroplast senescence. In Crop Photosynthesis: Spatial and Temporal Determinants; Baker, N.R., Thomas, H., Eds.; Elsevier Science: Burlington, MA, USA, 1992; pp. 413–440. [Google Scholar]
- Masclaux, C.; Valadier, M.H.; Brugière, N.; Morot-Gaudry, J.F.; Hirel, B. Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence. Planta 2000, 211, 510–518. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Balazadeh, S.; Tohge, T.; Erban, A.; Giavalisco, P.; Kopka, J.; Mueller-Roeber, B.; Fernie, A.R.; Hoefgen, R. Comprehensive dissection of spatiotemporal metabolic shifts in primary, secondary, and lipid metabolism during developmental senescence in Arabidopsis. Plant Physiol. 2013, 162, 1290–1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grover, A. How do senescing leaves lose photosynthetic activity? Curr. Sci. 1993, 64, 226–234. [Google Scholar]
- Bell, S.-J.; Henschke, P.A. Implications of nitrogen nutrition for grapes, fermentation and wine. Aust. J. Grape Wine Res. 2005, 11, 242–295. [Google Scholar] [CrossRef]
- Stines, A.P.; Grubb, J.; Gockowiak, H.; Henschke, P.A.; Hoj, P.B.; Heeswijk, R. Proline and arginine accumulation in developing berries of Vitis vinifera L. in Australian vineyards: Influence of vine cultivar, berry maturity and tissue type. Aust. J. Grape Wine Res. 2000, 6, 150–158. [Google Scholar] [CrossRef]
- Grbic, V.; Bleecker, A.B. Ethylene regulates the timing of leaf senescence in Arabidopsis. Plant J. 1995, 8, 595–602. [Google Scholar] [CrossRef]
- Jing, H.-C.; Sturre, M.J.G.; Hille, J.; Dijkwel, P.P. Arabidopsis onset of leaf death mutants identify a regulatory pathway controlling leaf senescence. Plant J. 2002, 32, 51–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jing, H.-C.; Schippers, J.H.M.; Hille, J.; Dijkwel, P.P. Ethylene-induced leaf senescence depends on age-related changes and OLD genes in Arabidopsis. J. Exp. Bot. 2005, 56, 2915–2923. [Google Scholar] [CrossRef]
- Koyama, T. The roles of ethylene and transcription factors in the regulation of onset of leaf senescence. Front. Plant Sci. 2014, 5, 650. [Google Scholar] [CrossRef] [PubMed]
- Bakshi, A.; Shemansky, J.M.; Chang, C.; Binder, B.M. History of research on the plant hormone ethylene. J. Plant Growth Regul. 2015, 34, 809–827. [Google Scholar] [CrossRef]
- Maynard, J.A.; Swan, J.M. Organophosphorus compounds.: I. 2-Chloroalkylphosphonic acids as phosphorylating agents. Aust. J. Chem. 1963, 16, 596. [Google Scholar] [CrossRef]
- Hirschfeld, G.; Lavee, S. Control of vegetative growth of grapevine shoots by ethylene-releasing substances.: Conditions and sites of action. VITIS 1980, 19, 308–316. [Google Scholar]
- Hilt, C.; Bessis, R. Abscission of grapevine fruitlets in relation to ethylene biosynthesis. VITIS 2003, 42, 1–3. [Google Scholar]
- Belhadj, A.; Telef, N.; Cluzet, S.; Bouscaut, J.; Corio-Costet, M.-F.; Mérillon, J.-M. Ethephon elicits protection against Erysiphe necator in grapevine. J. Agric. Food Chem. 2008, 56, 5781–5787. [Google Scholar] [CrossRef]
- Cramer, G.R.; Ghan, R.; Schlauch, K.A.; Tillett, R.L.; Heymann, H.; Ferrarini, A.; Delledonne, M.; Zenoni, S.; Fasoli, M.; Pezzotti, M. Transcriptomic analysis of the late stages of grapevine (Vitis vinifera cv. Cabernet Sauvignon) berry ripening reveals significant induction of ethylene signaling and flavor pathways in the skin. BMC Plant Biol. 2014, 14, 370. [Google Scholar] [CrossRef] [Green Version]
- Szyjewicz, E.; Rosner, N.; Kliewer, M.W. Ethephon ((2-chloroethyl) phosphonic acid, ethrel, CEPA) in viticulture—A review. Am. J. Enol.Vit. 1984, 35, 117–123. [Google Scholar]
- Guo, Y.; Gan, S. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J. 2006, 46, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Hinderhofer, K.; Zentgraf, U. Identification of a transcription factor specifically expressed at the onset of leaf senescence. Planta 2001, 213, 469–473. [Google Scholar] [CrossRef]
- Li, Z.; Peng, J.; Wen, X.; Guo, H. ETHYLENE-INSENSITIVE3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. Plant Cell 2013, 25, 3311–3328. [Google Scholar] [CrossRef] [Green Version]
- Lohman, K.N.; Gan, S.; John, M.C.; Amasino, R.M. Molecular analysis of natural leaf senescence in Arabidopsis thaliana. Physiol. Plant. 1994, 92, 322–328. [Google Scholar] [CrossRef]
- Gan, S.; Amasino, R.M. Making sense of senescence.: Molecular genetic regulation and manipulation of leaf senescence. Plant Physiol. 1997, 113, 313–319. [Google Scholar] [CrossRef] [Green Version]
- Woo, H.R.; Chung, K.M.; Park, J.-H.; Oh, S.A.; Ahn, T.; Hong, S.H.; Jang, S.K.; Nam, H.G. ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell 2001, 13, 1779–1790. [Google Scholar] [CrossRef] [Green Version]
- Masclaux-Daubresse, C.; Carrayol, E.; Valadier, M.-H. The two nitrogen mobilisation- and senescence-associated GS1 and GDH genes are controlled by C and N metabolites. Planta 2005, 221, 580–588. [Google Scholar] [CrossRef]
- Kamachi, K.; Yamaya, T.; Mae, T.; Ojima, K. A role for glutamine synthetase in the remobilization of leaf nitrogen during natural senescence in rice leaves. Plant Physiol. 1991, 96, 411–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breeze, E.; Harrison, E.; McHattie, S.; Hughes, L.; Hickman, R.; Hill, C.; Kiddle, S.; Kim, Y.-S.; Penfold, C.A.; Jenkins, D.; et al. High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 2011, 23, 873–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bueno, M.; Carrascón, V.; Ferreira, V. Release and Formation of Oxidation-Related Aldehydes during Wine Oxidation. J. Agric. Food Chem. 2016, 64, 608–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Graaff, E.; Schwacke, R.; Schneider, A.; Desimone, M.; Flugge, U.-I.; Kunze, R. Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol. 2006, 141, 776–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Springer, A.; Acker, G.; Bartsch, S.; Bauerschmitt, H.; Reinbothe, S.; Reinbothe, C. Differences in gene expression between natural and artificially induced leaf senescence in barley. J. Plant Physiol. 2015, 176, 180–191. [Google Scholar] [CrossRef]
- Tweneboah, S.; Oh, S.-K. Biological roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in solanaceous crops. J. Plant Biotechnol. 2017, 44, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Uauy, C.; Distelfeld, A.; Fahima, T.; Blechl, A.; Dubcovsky, J. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 2006, 314, 1298–1301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miao, Y.; Laun, T.; Zimmermann, P.; Zentgraf, U. Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol. Biol. 2004, 55, 853–867. [Google Scholar] [CrossRef] [PubMed]
- Ju, C.; Chang, C. Mechanistic Insights in Ethylene Perception and Signal Transduction. Plant Physiol. 2015, 169, 85–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genschik, P.; Durr, A.; Fleck, J. Differential expression of several E2-type ubiquitin carrier protein genes at different developmental stages in Arabidopsis thaliana and Nicotiana sylvestris. Mol. Gen. Genet. 1994, 244, 548–556. [Google Scholar] [CrossRef]
- Lin, J.-F.; Wu, S.-H. Molecular events in senescing Arabidopsis leaves. Plant J. 2004, 39, 612–628. [Google Scholar] [CrossRef]
- Guiboileau, A.; Yoshimoto, K.; Soulay, F.; Bataillé, M.-P.; Avice, J.-C.; Masclaux-Daubresse, C. Autophagy machinery controls nitrogen remobilization at the whole-plant level under both limiting and ample nitrate conditions in Arabidopsis. New Phytol. 2012, 194, 732–740. [Google Scholar] [CrossRef]
- Iqbal, N.; Umar, S.; Per, T.S.; Khan, N.A. Ethephon increases photosynthetic-nitrogen use efficiency, proline and antioxidant metabolism to alleviate decrease in photosynthesis under salinity stress in mustard. Plant Signal. Behav. 2017, 12, e1297000. [Google Scholar] [CrossRef]
- Masclaux-Daubresse, C.; Daniel-Vedele, F.; Dechorgnat, J.; Chardon, F.; Gaufichon, L.; Suzuki, A. Nitrogen uptake, assimilation and remobilization in plants: Challenges for sustainable and productive agriculture. Ann. Bot. 2010, 105, 1141–1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schreiner, R.P.; Scagel, C.F.; Baham, J. Nutrient uptake and distribution in a mature ‘Pinot noir’ vineyard. HortScience 2006, 41, 336–345. [Google Scholar] [CrossRef] [Green Version]
- Maillard, A.; Diquélou, S.; Billard, V.; Laîné, P.; Garnica, M.; Prudent, M.; Garcia-Mina, J.-M.; Yvin, J.-C.; Ourry, A. Leaf mineral nutrient remobilization during leaf senescence and modulation by nutrient deficiency. Front. Plant Sci. 2015, 6, 317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coombe, B.G. Adoption of a system for identifying grapevine growth stages. Aust. J. Grape Wine Res. 1995, 1, 100–110. [Google Scholar] [CrossRef]
- Goulas, Y.; Cerovic, Z.G.; Cartelat, A.; Moya, I. Dualex: A new instrument for field measurements of epidermal ultraviolet absorbance by chlorophyll fluorescence. Appl. Opt. 2004, 43, 4488–4496. [Google Scholar] [CrossRef]
- Friedel, M.; Hendgen, M.; Stoll, M.; Löhnertz, O.; Friedel, M.; Hendgen, M.; Löhnertz, O. Performance of reflectance indices and of a handheld device for estimating in-field the nitrogen status of grapevine leaves. Aust. J. Grape Wine Res. 2020, 26, 110–120. [Google Scholar] [CrossRef] [Green Version]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 10. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.K.; Shi, W. FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, Y.; Smyth, G.K.; Shi, W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 2019, 47, e47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014. [Google Scholar]
- R Studio Team. R Studio; R Studio, Inc.: Boston, MA, USA, 2016. [Google Scholar]
- Schultheis, H.; Kuenne, C.; Preussner, J.; Wiegandt, R.; Fust, A.; Bentsen, M.; Looso, M. WIlsON: Web-based Interactive Omics VisualizatioN. Bioinformatics 2019, 35, 1055–1057. [Google Scholar] [CrossRef] [PubMed]
- Mi, H.; Muruganujan, A.; Huang, X.; Ebert, D.; Mills, C.; Guo, X.; Thomas, P.D. Protocol update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0). Nat. Protoc. 2019, 14, 703–721. [Google Scholar] [CrossRef] [PubMed]
SAG | Accession | Encoded Enzymes | Reference |
---|---|---|---|
NAC029 | VIT_01s0026g02710 | NAC-type transcription factor 29 | [33] |
WRKY53 | VIT_17s0000g01280 | WRKY-type transcription factor 53 | [34] |
NAM | VIT_19s0014g03300 | no apical meristem protein | [14] |
EIN3 | VIT_13s0047g00250 | ETHYLENE-INSENSITIVE3 | [35] |
SAG13 | VIT_13s0019g02180 | Troponine reductase | [36] |
MT | VIT_08s0007g00330 | Metallothionein protein | [7] |
SAG12 | VIT_18s0001g09990 | Cysteine protease | [37] |
Ubiquitin transferase | VIT_03s0063g02000 | Ubiquitin transferase | [38] |
GDH | VIT_16s0039g02720 | Glutamate dehydrogenase | [39] |
GS1 | VIT_01s0011g02200 | Glutamine synthetase-1 | [40] |
Control (log2(Counts)) | Ethephon Treatment (log2(Counts)) | Natural Senescence (log2(Counts)) | |||||||
---|---|---|---|---|---|---|---|---|---|
NAC029 | 7.56 | ± | 0.21 b | 12.37 | ± | 0.25 a | 12.77 | ± | 0.29 a |
WRKY53 | 3.84 | ± | 0.42 c | 11.61 | ± | 0.10 a | 10.79 | ± | 0.28 b |
NAM | 10.81 | ± | 0.14 c | 11.50 | ± | 0.07 b | 12.38 | ± | 0.08 a |
EIN3 | 14.40 | ± | 0.13 b | 15.25 | ± | 0.28 a | 15.52 | ± | 0.13 a |
SAG13 | 7.86 | ± | 0.61 c | 13.84 | ± | 0.17 a | 12.53 | ± | 0.27 b |
MT | 8.12 | ± | 0.21 c | 11.73 | ± | 0.58 a | 10.50 | ± | 0.69 b |
SAG12 | 13.99 | ± | 0.17 b | 16.89 | ± | 0.12 a | 16.64 | ± | 0.21 a |
Ubiquitin transferase | 10.60 | ± | 0.12 b | 11.50 | ± | 0.12 a | 11.56 | ± | 0.15 a |
GDH | 4.17 | ± | 0.25 c | 9.68 | ± | 0.58 a | 8.36 | ± | 0.31 b |
GS1 | 11.51 | ± | 0.10 b | 12.85 | ± | 0.25 a | 12.63 | ± | 0.29 a |
Control (mg kg−1 DM−1) | Ethephon Treatment (mg kg−1 DM−1) | Natural Senescence (mg kg−1 DM−1) | |||||||
---|---|---|---|---|---|---|---|---|---|
Alanine | 50.02 | ± | 8.36 a | 37.35 | ± | 8.58 a | 33.24 | ± | 10.63 a |
Arginine | 1.39 | ± | 1.11 b | 2.95 | ± | 2.21 ab | 5.66 | ± | 2.60 a |
Asparagine | 0.74 | ± | 0.91 b | 7.97 | ± | 2.53 a | 8.83 | ± | 1.51 a |
Aspartic acid | 451.33 | ± | 59.82 a | 330.91 | ± | 74.54 ab | 283.44 | ± | 28.31 b |
Citrulline | 0.00 | ± | 0.00 a | 0.63 | ± | 1.27 a | 0.91 | ± | 1.82 a |
Cystine | 2.38 | ± | 4.75 a | 11.52 | ± | 5.11 a | 10.98 | ± | 4.00 a |
Glutamic acid | 765.06 | ± | 89.73 a | 387.24 | ± | 78.28 b | 394.34 | ± | 28.42 b |
Glutamine | 118.78 | ± | 28.32 c | 531.32 | ± | 26.44 a | 354.11 | ± | 39.58 b |
Glycine | 15.63 | ± | 3.69 a | 17.57 | ± | 2.10 a | 18.28 | ± | 2.38 a |
Histidine | 15.33 | ± | 3.63 c | 57.07 | ± | 3.08 a | 33.43 | ± | 2.93 b |
Isoleucine | 20.55 | ± | 5.71 c | 74.14 | ± | 3.61 a | 51.29 | ± | 5.14 b |
Leucine | 16.10 | ± | 5.83 c | 83.22 | ± | 7.41 a | 65.25 | ± | 6.19 b |
Lysine | 32.84 | ± | 5.45 a | 15.83 | ± | 6.57 b | 14.10 | ± | 1.53 b |
Methionine | 1.34 | ± | 1.64 c | 23.37 | ± | 2.81 a | 15.48 | ± | 2.82 b |
Ornithine | 0.00 | ± | 0.00 a | 2.44 | ± | 3.32 a | 3.08 | ± | 2.22 a |
Phenylalanine | 39.62 | ± | 6.07 c | 76.19 | ± | 8.44 a | 55.57 | ± | 4.22 b |
Proline | 7.93 | ± | 1.47 b | 84.88 | ± | 21.56 a | 35.84 | ± | 15.75 b |
Serine | 68.05 | ± | 11.36 a | 57.79 | ± | 6.92 a | 62.61 | ± | 6.95 a |
Threonine | 34.80 | ± | 4.53 c | 80.65 | ± | 7.06 a | 56.78 | ± | 3.03 b |
Tryptophan | 1.62 | ± | 1.19 c | 95.37 | ± | 19.08 a | 28.94 | ± | 14.10 b |
Tyrosine | 0.94 | ± | 1.88 b | 11.93 | ± | 7.91 a | 6.76 | ± | 3.07 ab |
Valine | 28.70 | ± | 9.92 c | 99.65 | ± | 9.96 a | 59.46 | ± | 7.36 b |
β-Alanine | 6.64 | ± | 8.83 a | 9.63 | ± | 3.24 a | 13.92 | ± | 4.72 a |
β-Aminoisobutyric acid | 1.48 | ± | 2.96 a | 0.92 | ± | 1.83 a | 0.00 | ± | 0.00 a |
γ-Aminobutyric acid | 24.54 | ± | 3.74 a | 21.01 | ± | 4.02 a | 20.69 | ± | 2.48 a |
Total | 1705.8 | ± | 175.2 b | 2121.5 | ± | 176.3 a | 1633.0 | ± | 48.6 b |
Ammonium | 17.89 | ± | 0.89 a | 33.75 | ± | 3.37 a | 14.76 | ± | 17.89 a |
Glutamine:glutamate * | 0.155 | ± | 0.026 b | 1.421 | ± | 0.336 a | 0.904 | ± | 0.146 a |
Asparagine:aspartate * | 0.001 | ± | 0.002 b | 0.025 | ± | 0.007 a | 0.032 | ± | 0.007 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hendgen, M.; Günther, S.; Schubert, S.; Löhnertz, O. Ethephon Activates the Transcription of Senescence-Associated Genes and Nitrogen Mobilization in Grapevine Leaves (Vitis vinifera cv. Riesling). Plants 2021, 10, 333. https://doi.org/10.3390/plants10020333
Hendgen M, Günther S, Schubert S, Löhnertz O. Ethephon Activates the Transcription of Senescence-Associated Genes and Nitrogen Mobilization in Grapevine Leaves (Vitis vinifera cv. Riesling). Plants. 2021; 10(2):333. https://doi.org/10.3390/plants10020333
Chicago/Turabian StyleHendgen, Maximilian, Stefan Günther, Sven Schubert, and Otmar Löhnertz. 2021. "Ethephon Activates the Transcription of Senescence-Associated Genes and Nitrogen Mobilization in Grapevine Leaves (Vitis vinifera cv. Riesling)" Plants 10, no. 2: 333. https://doi.org/10.3390/plants10020333
APA StyleHendgen, M., Günther, S., Schubert, S., & Löhnertz, O. (2021). Ethephon Activates the Transcription of Senescence-Associated Genes and Nitrogen Mobilization in Grapevine Leaves (Vitis vinifera cv. Riesling). Plants, 10(2), 333. https://doi.org/10.3390/plants10020333