In Vitro Cultures of Some Medicinal Plant Species (Cistus × incanus, Verbena officinalis, Scutellaria lateriflora, and Scutellaria baicalensis) as a Rich Potential Source of Antioxidants—Evaluation by CUPRAC and QUENCHER-CUPRAC Assays
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. In Vitro Cultures
3.2. Soil-Grown Plants Raw Materials
3.3. Total Extractable Antioxidants
3.4. Global Antioxidant Response
3.5. Targeted Profiling of Natural Biologically Active Phenolic Compounds
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Acronyms and Symbols
ABTS | 2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) |
CUPRAC | Cupric ion reducing antioxidant capacity |
QUENCHER | Quick, easy, new, cheap, and reproducible treatment, involving forced solubilization of bound phenolics by oxidizing TAC (total antioxidant capacity) reagent |
DPPH | 1,1-diphenyl-2-picrylhydrazyl radical |
DW | Dry weight |
FRAP | The ferric ion reducing antioxidant potential |
HPLC | High-performance liquid chromatography |
MS | Murashige and Skoog |
ROS | Reactive oxygen species |
TAC | Total antioxidant capacity |
TACA | Total antioxidant capacity assays |
TEAC | Trolox equivalent antioxidant capacity |
References
- Young, I.S.; Woodside, J.V. Antioxidants in health and disease. J. Clin. Pathol. 2001, 54, 176–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liou, G.Y.; Storz, P. Reactive oxygen species in cancer. Free Radic. Res. 2010, 44, 479–496. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, V.; Tuli, H.S.; Varol, A.; Thakral, F.; Yerer, M.B.; Sak, K.; Varol, M.; Jain, A.; Khan, M.A.; Sethi, G. Role of reactive oxygen species in cancer progression: Molecular mechanisms and recent advancements. Biomolecules 2019, 9, 735. [Google Scholar] [CrossRef] [Green Version]
- Mateen, S.; Moin, S.; Khan, A.Q.; Zafar, A.; Fatima, N. Increased reactive oxygen species formation and oxidative stress in rheumatoid arthritis. PLoS ONE 2016, 11. [Google Scholar] [CrossRef] [Green Version]
- Cui, H.; Kong, Y.; Zhang, H. Oxidative Stress, Mitochondrial Dysfunction, and Aging. J. Signal Transduct. 2012, 2012, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Neha, K.; Haider, M.R.; Pathak, A.; Yar, M.S. Medicinal prospects of antioxidants: A review. Eur. J. Med. Chem. 2019, 178, 687–704. [Google Scholar] [CrossRef]
- Martelli, G.; Giacomini, D. Antibacterial and antioxidant activities for natural and synthetic dual-active compounds. Eur. J. Med. Chem. 2018, 158, 91–105. [Google Scholar] [CrossRef] [PubMed]
- Kornienko, J.S.; Smirnova, I.S.; Pugovkina, N.A.; Ivanova, J.S.; Shilina, M.A.; Grinchuk, T.M.; Shatrova, A.N.; Aksenov, N.D.; Zenin, V.V.; Nikolsky, N.N.; et al. High doses of synthetic antioxidants induce premature senescence in cultivated mesenchymal stem cells. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Botterweck, A.A.M.; Verhagen, H.; Goldbohm, R.A.; Kleinjans, J.; Van Den Brandt, P.A. Intake of butylated hydroxyanisole and butylated hydroxytoluene and stomach cancer risk: Results from analyses in the Netherlands Cohort Study. Food Chem. Toxicol. 2000, 38, 599–605. [Google Scholar] [CrossRef] [Green Version]
- Matkowski, A. Plant in vitro culture for the production of antioxidants—A review. Biotechnol. Adv. 2008, 26, 548–560. [Google Scholar] [CrossRef] [PubMed]
- Amorati, R.; Valgimigli, L. Advantages and limitations of common testing methods for antioxidants. Free Radic. Res. 2015, 49, 633–649. [Google Scholar] [CrossRef]
- Özyürek, M.; Güçlü, K.; Apak, R. The main and modified CUPRAC methods of antioxidant measurement. TrAC Trends Anal. Chem. 2011, 30, 652–664. [Google Scholar] [CrossRef]
- Tufan, A.N.; Çelik, S.E.; Özyürek, M.; Güçlü, K.; Apak, R. Direct measurement of total antioxidant capacity of cereals: QUENCHER-CUPRAC method. Talanta 2013, 108, 136–142. [Google Scholar] [CrossRef]
- Krishnaiah, D.; Sarbatly, R.; Nithyanandam, R. A review of the antioxidant potential of medicinal plant species. Food Bioprod. Process. 2011, 89, 217–233. [Google Scholar] [CrossRef]
- Kubica, P.; Szopa, A.; Ekiert, H. In vitro shoot cultures of pink rock-rose (Cistus × incanus L.) as a potential source of phenolic compounds. Acta Soc. Bot. Pol. 2017, 86, 1–13. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Opinion of the Scientific Panel on Dietetic Products, Nutrition and Allergies on a request from the Commission related to an application concerning the use in bread. EFSA J. 2005, 278, 1–12. [Google Scholar]
- Kubica, P.; Szopa, A.; Ekiert, H. Production of verbascoside and phenolic acids in biomass of Verbena officinalis L. (vervain) cultured under different in vitro conditions. Nat. Prod. Res. 2017, 31, 1663–1668. [Google Scholar] [CrossRef] [PubMed]
- Rehecho, S.; Hidalgo, O.; García-Iñiguez de Cirano, M.; Navarro, I.; Astiasarán, I.; Ansorena, D.; Cavero, R.Y.; Calvo, M.I. Chemical composition, mineral content and antioxidant activity of Verbena officinalis L. LWT–Food Sci. Technol. 2011, 44, 875–882. [Google Scholar] [CrossRef]
- Bochořáková, H.; Paulová, H.; Slanina, J.; Musil, P.; Táborská, E. Main flavonoids in the root of Scutellaria baicalensis cultivated in Europe and their comparative antiradical properties. Phyther. Res. 2003, 17, 640–644. [Google Scholar] [CrossRef]
- European Directorate for the Quality of Medicines European Pharmacopoeia 9.0, Strasburg. 2017. Available online: https://www.edqm.eu/en/news/shutdown-european-pharmacopoeia-9th-edition (accessed on 1 March 2020).
- Shang, X.; He, X.; He, X.; Li, M.; Zhang, R.; Fan, P.; Zhang, Q.; Jia, Z. The genus Scutellaria an ethnopharmacological and phytochemical review. J. Ethnopharmacol. 2010, 128, 279–313. [Google Scholar] [CrossRef] [PubMed]
- Kawka, B.; Kwiecień, I.; Ekiert, H. Influence of Culture Medium Composition and Light Conditions on the Accumulation of Bioactive Compounds in Shoot Cultures of Scutellaria lateriflora L. (American Skullcap) Grown In Vitro. Appl. Biochem. Biotechnol. 2017, 183, 1414–1425. [Google Scholar] [CrossRef] [Green Version]
- Szopa, A.; Kokotkiewicz, A.; Kubica, P.; Banaszczak, P.; Wojtanowska-Krośniak, A.; Krośniak, M.; Marzec-Wróblewska, U.; Badura, A.; Zagrodzki, P.; Bucinski, A.; et al. Comparative analysis of different groups of phenolic compounds in fruit and leaf extracts of Aronia sp.: A. melanocarpa, A. arbutifolia, and A. × prunifolia and their antioxidant activities. Eur. Food Res. Technol. 2017, 243, 1645–1657. [Google Scholar] [CrossRef] [Green Version]
- Williamson, G.; Faulkner, K.; Plumb, G.W. Glucosinolates and phenolics as antioxidants from plant foods. Eur. J. Cancer Prev. 1998, 7, 17–21. [Google Scholar] [PubMed]
- Tadhani, M.B.; Patel, V.H.; Subhash, R. In vitro antioxidant activities of Stevia rebaudiana leaves and callus. J. Food Compos. Anal. 2007, 20, 323–329. [Google Scholar] [CrossRef]
- Krolicka, A.; Szpitter, A.; Maciag, M.; Biskup, E.; Gilgenast, E.; Romanik, G.; Kaminski, M.; Wegrzyn, G.; Lojkowska, E. Antibacterial and antioxidant activity of the secondary metabolites from in vitro cultures of Drosera aliciae. Biotechnol. Appl. Biochem. 2008, 53, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Ben Mansour, R.; Gargouri, B.; Bouaziz, M.; Elloumi, N.; Belhadj Jilani, I.; Ghrabi, Z.; Lassoued, S. Antioxidant activity of ethanolic extract of inflorescence of Ormenis africana in vitro and in cell cultures. Lipids Health Dis. 2011, 10, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovacheva, E.; Georgiev, M.; Ilieva, M.; Pashova, S.; Angelova, M. Radical Quenching by Rosmarinic Acid from Lavandula vera MM Cell Culture. Zeitschrift fur Naturforsch.–Sect. C J. Biosci. 2006, 61, 517–520. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.Z.; Murch, S.J.; El-Demerdash, M.; Saxena, P.K. Artemisia judaica L.: Micropropagation and antioxidant activity. J. Biotechnol. 2004, 110, 63–71. [Google Scholar] [CrossRef]
- Sökmen, M.; Serkedjieva, J.; Daferera, D.; Gulluce, M.; Polissiou, M.; Tepe, B.; Akpulat, H.A.; Sahin, F.; Sokmen, A. In vitro antioxidant, antimicrobial, and antiviral activities of the essential oil and various extracts from herbal parts and callus cultures of Origanum acutidens. J. Agric. Food Chem. 2004, 52, 3309–3312. [Google Scholar] [CrossRef]
- Grzegorczyk, I.; Matkowski, A.; Wysokińska, H. Antioxidant activity of extracts from in vitro cultures of Salvia officinalis L. Food Chem. 2007, 104, 536–541. [Google Scholar] [CrossRef]
- Özyürek, M.; Güçlü, K.; Bektaşoğlu, B.; Apak, R. Spectrophotometric determination of ascorbic acid by the modified CUPRAC method with extractive separation of flavonoids–La(III) complexes. Anal. Chim. Acta 2007, 588, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Biesaga-Kościelniak, J.; Dziurka, M.; Ostrowska, A.; Mirek, M.; Kościelniak, J.; Janeczko, A. Brassinosteroid improves content of antioxidants in seeds of selected leguminous plants. Aust. J. Crop Sci. 2014, 8, 378–388. [Google Scholar]
- Ellnain-Wojtaszek, M.; Zgórka, G. High-performance liquid chromatography and thin-layer chromatography of phenolic acids from Ginkgo biloba L. leaves collected within vegetative period. J. Liq. Chromatogr. Relat. Technol. 1999, 22, 1457–1471. [Google Scholar] [CrossRef]
Antioxidant Response | TEAC (mmol (100 g)−1 DW) | ||||||
Stationary Culture | Agitated Culture | Soil-Grown Plant Raw Material (Herb) | |||||
(A)Cistus × incanus | |||||||
Total extractable antioxidants (methanol) | 35.1a ± 1.2 | 42.3b ± 2.4 | 69.5c ± 3.2 | ||||
Global antioxidant response | 48.6a ± 3.2 | 79.1b ± 2.2 | 72.0b ± 12.2 | ||||
(B)Verbena officinalis | |||||||
Total extractable antioxidants (methanol) | 44.0b ± 2.1 | 49.7c ± 3.4 | 20.9a ± 2.8 | ||||
Global antioxidant response | 64.0b ± 2.3 | 32.1a ± 5.2 | 97.8c ± 4.5 | ||||
(C)Scutellaria baicalensis and Scutellaria lateriflora | |||||||
Antioxidant Response | TEAC (mmol (100 g)−1 DW) | ||||||
Scutellaria baicalensis | Scutellaria lateriflora | ||||||
Stationary Culture | Soil-Grown Plant Raw Material (Root) | Stationary Culture | Soil-Grown Plant Raw Material (Herb) | ||||
Total extractable antioxidants (methanol) | 13.3a ± 4.5 | 33.1b ± 6.5 | 10.4a ± 2.5 | 31.5b ± 3.5 | |||
Global antioxidant response | 26.7b ± 4.5 | 67.2c ± 8.5 | 16.0a ± 4.5 | 68.7c ± 13.5 |
Groups of Estimated Compounds | Contents (mmol (100 g)−1 DW) | ||||||
---|---|---|---|---|---|---|---|
Stationary Culture | Agitated Culture | Soil-Grown Plant Raw Material (Herb) | |||||
(A) Cistus × incanus | |||||||
Phenolic acids | 0.24b ± 0.01 | 0.06a ± 0.02 | 1.30c ± 0.02 | ||||
Catechins | 0.75c ± 0.01 | 0.25a ± 0.02 | 0.50b ± 0.01 | ||||
Flavonoids | 0.18b ± 0.03 | 0.04a ± 0.02 | 0.41c ± 0.02 | ||||
(B) Verbena officinalis | |||||||
Phenolic acids | 0.24b ± 0.03 | tr | 0.07a ± 0.04 | ||||
Phenylethanoid glycosides | 4.53c ± 0.02 | 11.08b ± 0.02 | 1.28a ± 0.02 | ||||
(C) Scutellaria baicalensis and Scutellaria lateriflora | |||||||
Groups of Estimated Compounds | Contents (mmol (100 g)−1 DW) | ||||||
Scutellaria baicalensis | Scutellaria lateriflora | ||||||
Stationary Cultures | Soil-Grown Plant Raw Material (Root) | Stationary Cultures | Soil-Grown Plant Raw Material (Herb) | ||||
Phenolic acids | 0.10a ± 0.02 | 2.16c ± 0.02 | 0.15a ± 0.02 | 0.28b ± 0.02 | |||
Flavonoids | 0.79a ± 0.04 | 6.26c ± 0.03 | 1.20b ± 0.02 | 1.54b ± 0.02 | |||
Phenylethanoid glycosides | 1.33c ± 0.02 | 0.12a ± 0.02 | 0.43b ± 0.02 | 1.15c ± 0.02 | |||
Phenylethanoid glycosides | 1.33c ± 0.02 | 0.12a ± 0.02 | 0.43b ± 0.02 | 1.15c ± 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziurka, M.; Kubica, P.; Kwiecień, I.; Biesaga-Kościelniak, J.; Ekiert, H.; Abdelmohsen, S.A.M.; Al-Harbi, F.F.; El-Ansary, D.O.; Elansary, H.O.; Szopa, A. In Vitro Cultures of Some Medicinal Plant Species (Cistus × incanus, Verbena officinalis, Scutellaria lateriflora, and Scutellaria baicalensis) as a Rich Potential Source of Antioxidants—Evaluation by CUPRAC and QUENCHER-CUPRAC Assays. Plants 2021, 10, 454. https://doi.org/10.3390/plants10030454
Dziurka M, Kubica P, Kwiecień I, Biesaga-Kościelniak J, Ekiert H, Abdelmohsen SAM, Al-Harbi FF, El-Ansary DO, Elansary HO, Szopa A. In Vitro Cultures of Some Medicinal Plant Species (Cistus × incanus, Verbena officinalis, Scutellaria lateriflora, and Scutellaria baicalensis) as a Rich Potential Source of Antioxidants—Evaluation by CUPRAC and QUENCHER-CUPRAC Assays. Plants. 2021; 10(3):454. https://doi.org/10.3390/plants10030454
Chicago/Turabian StyleDziurka, Michał, Paweł Kubica, Inga Kwiecień, Jolanta Biesaga-Kościelniak, Halina Ekiert, Shaimaa A. M. Abdelmohsen, Fatemah F. Al-Harbi, Diaa O. El-Ansary, Hosam O. Elansary, and Agnieszka Szopa. 2021. "In Vitro Cultures of Some Medicinal Plant Species (Cistus × incanus, Verbena officinalis, Scutellaria lateriflora, and Scutellaria baicalensis) as a Rich Potential Source of Antioxidants—Evaluation by CUPRAC and QUENCHER-CUPRAC Assays" Plants 10, no. 3: 454. https://doi.org/10.3390/plants10030454
APA StyleDziurka, M., Kubica, P., Kwiecień, I., Biesaga-Kościelniak, J., Ekiert, H., Abdelmohsen, S. A. M., Al-Harbi, F. F., El-Ansary, D. O., Elansary, H. O., & Szopa, A. (2021). In Vitro Cultures of Some Medicinal Plant Species (Cistus × incanus, Verbena officinalis, Scutellaria lateriflora, and Scutellaria baicalensis) as a Rich Potential Source of Antioxidants—Evaluation by CUPRAC and QUENCHER-CUPRAC Assays. Plants, 10(3), 454. https://doi.org/10.3390/plants10030454