Neuroprotective Assessment of Moringa oleifera Leaves Extract against Oxidative-Stress-Induced Cytotoxicity in SHSY5Y Neuroblastoma Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Preparation of Plant Extracts
2.3. Determination of Antioxidant Capacity
2.3.1. Scavenging of the 1,1-Diphenyl-1-Picrylhydrazyl Radical (DPPH)
2.3.2. Ferric-Reducing Antioxidant Power (FRAP)
2.4. Neuroblastoma Cell Cultures (SHSY5Y)
2.4.1. Culturing and Harvesting of the SHSY5Y Cells
2.4.2. Cytotoxicity of Plant Extracts on the SHSY5Y Cell Line
2.4.3. Neuroprotection of Plant Extracts on the SHSY5Y Cell Line
2.5. Determination of Intracellular O2− and ROS inside the SHSY5Y Cell Line
2.5.1. Determination of O2− by Nitro-Blue Tetrazolium (NBT) Reduction Test
2.5.2. Determination of Intracellular ROS by DCFHDA Assay
2.6. Liquid Chromatography–Quadrupole Time-of-Flight Mass Spectrometer (LC–QTOF/MS) Analysis
2.7. Statistical Analysis
3. Results and Discussion
Compound | Molecular Formula | Retention Time (min) | Candidate Mass | Effect | Reference |
---|---|---|---|---|---|
Barbatoflavan | C24H28O13 | 33.051 | 525.15 | -Established scavenging properties toward the DPPH radicals | [41] |
Isorhamnetin | C16H12O7 | 83.499 | 315.05 | -Scavenging DPPH free radical | [42] |
Quercetin | C15H10O7 | 48.551 | 303.04 | -Scavenging O2− and DPPH radicals | [43] |
Quercetin 3-(6″-malonylglucoside)-7-rhamnoside | C30H32O19 | 39.686 | 697.16 | -Scavenging O2− and DPPH radicals | [43] |
Quercetin 3-O-(6-O-malonyl-β-d-glucoside) | C24H22O15 | 51.250 | 549.08 | -Scavenging O2− and DPPH radicals | [43] |
Quercetin 3-methyl ether | C16H12O7 | 53.451 | 317.06 | -Free radical scavenging -Inhibitory effect on O2− generation | [44,45] |
Kaempferol 3-[6‴-p-coumarylglucosyl-(1→2)-rhamnoside] | C36H36O17 | 61.466 | 741.20 | -Improves the potency of the hydrogen-atom-transfer (HAT)-based pathways | [46] |
4,5-Di-O-caffeoylquinic acid | C25H24O12 | 69.978 | 515.11 | -Ability to protect cells by conducting electron transfer (ET), H+ transfer, and Fe2+ chelation | [47] |
6″-O-p-Coumaroyltrifolin | C30H26O13 | 72.336 | 593.12 | -Improving the ET- and HAT-based pathways -Boosts Fe2+ -Chelating ability | [48] |
(±)-Naringenin | C15H12O5 | 78.072 | 271.06 | -Electron-donating substituents via weakening the bond dissociation enthalpy (BDE) | [49,50] |
Pheophytin | C55H74N4O5 | 92.966 | 869.55 | -Fe(II) chelator -Suppresses lipid peroxidation -The conjugated double bonds presented in the porphyrin ring can act as electron transfer that will stabilize a radical compound | [51,52] |
Vitexin 4′-O-galactoside | C27H30O15 | 40.024 | 593.15 | -Electron donor that may act as a good radical scavenger -Suppresses O2− generation by promoting superoxide dismutase | [53] |
Luteolin 7-methyl glucuronide | C22H20O12 | 41.903 | 475.09 | -Suppresses O2− generation | [54] |
Quercetin 7-(6″-acetylglucoside) | C23H22O13 | 51.213 | 515.10 | -Influence on O2− -Reduction in radicals -Decreases intracellular hydrogen peroxide accumulation | [55] |
Isorhamnetin 3-(6″-acetylglucoside) | C24H24O13 | 58.203 | 519.11 | -Free radical scavenger -Inhibits O2− production -Suppresses lipid peroxidation by preventing the conversion of hydrogen peroxide into hydroxyl radical by the Haber–Weiss reaction | [55] |
Saponarin (apigenin-6-C-glucosyl-7-O-glucoside) | C27H30O15 | 37.047 | 593.14 | -O2− scavenging activity -Neutralizes hazardous free radicals | [56] |
Apigenin | C15H10O5 | 79.602 | 269.04 | -Scavenges O2− by reversed decreasing of superoxide dismutase | [57] |
Quercetin 3-galactoside | C21H20O12 | 48.637 | 713.15 | -Scavenges ROS | [58] |
Kaempferol | C15H10O6 | 35.262 | 287.05 | -Efficiently prevents ROS generation | [59] |
Luteolin | C15H10O6 | 80.827 | 285.04 | -Scavenges O2− -Inhibits H2O2 production and scavenges H2O2 -Reduction in ROS production | [60] |
Luteolin 7-(6′′′-acetyl allosyl-(1→2)-glucoside) | C29H32O17 | 37.044 | 651.16 | -Ability to scavenge ROS | [26] |
l-Ascorbic acid-2-glucoside (AA2G) | C12H18O11 | 3.129 | 337.08 | -Directly interacts and scavenges free radicals -Suppresses H2O2, which induces oxidative stress | [61] |
Diosmetin | C16H12O6 | 63.793 | 299.05 | -Slight decrease in ROS | [62] |
Esculetin | C9H6O4 | 21.757 | 177.01 | -Attenuates ROS production to approximately 40% | [63] |
Apigenin 7-rhamnosyl-(1→2)-galacturonide | C27H28O15 | 56.514 | 591.13 | -Supports a powerful antioxidant activity | [64] |
Cartormin | C27H29NO13 | 45.007 | 574.15 | -Increases the total antioxidative activity | [65] |
Kaempferol 4′-glucoside | C21H20O11 | 52.776 | 447.09 | -Supports a powerful antioxidant activity | [66] |
Eriodictyol | C15H12O6 | 54.307 | 259.06 | -Protects cells against oxidative-stress-induced cell damage | [67] |
Hesperetin | C16H14O6 | 79.820 | 301.07 | -Supports antioxidant activity | [49] |
Hydroxy tyrosol 1-O-glucoside (HT) | C14H20O8 | 13.423 | 315.10 | -Scavenges the free radicals -Scavenges O2− by promoting superoxide dismutase activity | [68] |
Gallic acid | C7H6O5 | 49.582 | 169.01 | -Protects cells from free-radical-induced cell damage | [69] |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NirmalaDevi, D.; Venkataramana, M.; Chandranayaka, S.; Ramesha, A.; Jameel, N.M.; Srinivas, C. Neuroprotective effects of bikaverin on H2O2-induced oxidative stress mediated neuronal damage in SH-SY5Y cell line. Cell. Mol. Neurobiol. 2014, 34, 973–985. [Google Scholar] [CrossRef]
- Feng, C.; Luo, T.; Zhang, S.; Liu, K.; Zhang, Y.; Luo, Y.; Ge, P. Lycopene protects human SH-SY5Y neuroblastoma cells against hydrogen peroxide-induced death via inhibition of oxidative stress and mitochondria-associated apoptotic pathways. Mol. Med. Rep. 2016, 13, 4205–4214. [Google Scholar] [CrossRef] [PubMed]
- Dhuna, K.; Dhuna, V.; Bhatia, G.; Singh, J.; Kamboj, S.S. Cytoprotective effect of methanolic extract of Nardostachys jatamansi against hydrogen peroxide induced oxidative damage in C6 glioma cells. Acta Biochim. Pol. 2013, 60. [Google Scholar] [CrossRef] [Green Version]
- González-Sarrías, A.; Núñez-Sánchez, M.Á.; Tomás-Barberán, F.A.; Espín, J.C. Neuroprotective effects of bioavailable polyphenol-derived metabolites against oxidative stress-induced cytotoxicity in human neuroblastoma SH-SY5Y Cells. J. Agric. Food Chem. 2017, 65, 752–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawidowicz, A.L.; Olszowy, M.; Jóźwik-Dolęba, M. Importance of solvent association in the estimation of antioxidant properties of phenolic compounds by DPPH method. J. Food Sci. Technol. 2014, 52, 4523–4529. [Google Scholar] [CrossRef] [Green Version]
- Cortés-Castell, E.; Veciana-Galindo, C.; Torró-Montell, L.; Palazón-Bru, A.; Sirvent-Segura, E.; Gil-Guillén, V.; Rizo-Baeza, M. Protection by polyphenol extract from olive stones against apoptosis produced by oxidative stress in human neuroblastoma cells. Nutr. Hosp. 2016, 33, 118–122. [Google Scholar] [CrossRef] [Green Version]
- Matic, I.; Guidi, A.; Kenzo, M.; Mattei, M.; Galgani, A. Investigation of medicinal plants traditionally used as dietary supplements: A review on Moringa oleifera. J. Public Health Afr. 2018, 9, 841. [Google Scholar] [CrossRef]
- Chouni, A.; Paul, S. Review on phytochemical and pharmacological potential of Alpinia galanga. Pharm. J. 2018, 10, 9–15. [Google Scholar] [CrossRef] [Green Version]
- García-Lomillo, J.; González-SanJosé, M.L. Applications of wine pomace in the food industry: Approaches and functions. Compr. Rev. Food Sci. Food Saf. 2017, 16, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Kim, J.K.; Tabassum, N.; Uddin, R.; Park, S.U. Ginseng: A miracle sources of herbal and pharmacological uses. Orient. Pharm. Exp. Med. 2016, 16, 243–250. [Google Scholar] [CrossRef]
- Xicoy, H.; Wieringa, B.; Martens, G.J. The SH-SY5Y cell line in Parkinson’s disease research: A systematic review. Mol. Neurodegener. 2017, 12, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Vayupharp, B.; Laksanalamai, V. Recovery of antioxidants from grape seeds and its application in fried food. J. Food Process. Technol. 2012, 3, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Wang, X.; Li, P.; Li, Y.; Wang, H. Comparative study of antioxidant activity of grape (Vitis vinifera) seed powder assessed by different methods. J. Food Drug Anal. 2008, 16, 12. [Google Scholar] [CrossRef]
- Torres-Castillo, J.A.; Sinagawa-García, S.R.; Martínez-Ávila, G.C.G.; López-Flores, A.B.; Sánchez-González, E.I.; Aguirre-Arzola, V.E.; Gutiérrez-Díez, A. Moringa oleifera: Phytochemical detection, antioxidants, enzymes and antifugal properties. Int. J. Exp. Bot. 2013, 82, 193–202. [Google Scholar]
- Hashim, F.J.; Mathkor, T.H.; Hussein, H.; Shawkat, M.S. GC-MS and FTIR analysis of Moringa oleifera leaves different extracts and evaluation of their antioxidant activity. Asian J. Microbiol. Biotechnol. Environ. Sci. 2017, 19, 861–871. [Google Scholar]
- Shin, S.; Lee, J.-A.; Son, D.; Park, D.; Jung, E. Anti-skin-aging activity of a standardized extract from Panax ginseng leaves in vitro and in human volunteer. Cosmetics 2017, 4, 18. [Google Scholar] [CrossRef] [Green Version]
- Hwang, E.; Park, S.-Y.; Yin, C.S.; Kim, H.-T.; Kim, Y.M.; Yi, T.H. Antiaging effects of the mixture of Panax ginseng and Crataegus pinnatifida in human dermal fibroblasts and healthy human skin. J. Ginseng Res. 2017, 41, 69–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo, C.-Y.; Liu, P.-L.; Lin, L.-C.; Chen, Y.-T.; Hseu, Y.-C.; Wen, Z.-H.; Wang, H.-M. Antimelanoma and antityrosinase from Alpinia galangal constituents. Sci. World J. 2013, 2013, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, D.; McGhie, T.K.; Zhang, J.; Adaim, A.; Skinner, M. Effects of anthocyanins and other phenolics of boysenberry and blackcurrant as inhibitors of oxidative stress and damage to cellular DNA in SH-SY5Y and HL-60 cells. J. Sci. Food Agric. 2006, 86, 678–686. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Hashim, F.J.; Shawkat, M.S.; Al-Jewari, H. Cytotoxicity of curcumin against leukemic cell lines via apoptosis activity. Curr. Res. J. Biol. Sci. 2012, 4, 60–64. [Google Scholar]
- Muñoz, M.; Cedeño, R.; Rodríguez, J.; Van Der Knaap, W.P.; Mialhe, E.; Bachère, E. Measurement of reactive oxygen intermediate production in haemocytes of the penaeid shrimp, Penaeus vannamei. Aquaculture 2000, 191, 89–107. [Google Scholar] [CrossRef] [Green Version]
- Roesslein, M.; Hirsch, C.; Kaiser, J.-P.; Krug, H.F.; Wick, P. Comparability of in vitro tests for bioactive nanoparticles: A common assay to detect reactive oxygen species as an example. Int. J. Mol. Sci. 2013, 14, 24320–24337. [Google Scholar] [CrossRef] [Green Version]
- Liang, N.; Kitts, D.D. Antioxidant property of coffee components: Assessment of methods that define mechanisms of action. Molecules 2014, 19, 19180–19208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Lázaro, M. Distribution and biological activities of the flavonoid luteolin. Mini-Rev. Med. Chem. 2009, 9, 31–59. [Google Scholar] [CrossRef]
- Lin, D.; Xiao, M.; Zhao, J.; Li, Z.; Xing, B.; Li, X.; Kong, M.; Li, L.; Zhang, Q.; Liu, Y.; et al. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 2016, 21, 1374. [Google Scholar] [CrossRef]
- Ma, Z.F.; Zhang, H. Phytochemical constituents, health benefits, and industrial applications of grape seeds: A mini-review. Antioxidants 2017, 6, 71. [Google Scholar] [CrossRef] [Green Version]
- Leopoldini, M.; Russo, N.; Toscano, M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 2011, 125, 288–306. [Google Scholar] [CrossRef]
- Malik, T.; Pandey, D.K.; Roy, P.; Okram, A. Evaluation of phytochemicals, antioxidant, antibacterial and antidiabetic potential of Alpinia galanga and Eryngium foetidum Plants of Manipur (India). Pharm. J. 2016, 8, 459–464. [Google Scholar] [CrossRef] [Green Version]
- Vergara-Jimenez, M.; AlMatrafi, M.M.; Fernandez, M.L. Bioactive components in Moringa oleifera leaves protect against chronic disease. Antioxidants 2017, 6, 91. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Li, N.; Pu, Y.; Zhang, T.; Wang, B. Neuroprotective effects of ginseng phytochemicals: Recent perspectives. Molecules 2019, 24, 2939. [Google Scholar] [CrossRef] [Green Version]
- Ranira, G.; Rimi, H.; Kaushik, R.; Debajani, G. Effect of Moringa oleifera in experimental model of Alzheimer’s disease: Role of antioxidant. Ann. Neuscosci. 2005, 12, 33–36. [Google Scholar] [CrossRef]
- Mundugaru, R.; Sivanesan, S.; Udaykumar, P.; Vidyadhara, D.J.; Prabhu, S.N.; Ravishankar, B. Neuroprotective functions of Alpinia galanga in forebrain ischemia induced neuronal damage and oxidative insults in rat hippocampus. Indian J. Pharm. Educ. Res. 2018, 52, s77–s85. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, Z.; Wang, H.; Cai, N.; Zhou, S.; Zhao, Y.; Chen, X.; Zheng, S.; Si, Q.; Zhang, W. Neuroprotective effect of ginsenoside Rg1 prevents cognitive impairment induced by isoflurane anesthesia in aged rats via antioxidant, anti-inflammatory and anti-apoptotic effects mediated by the PI3K/AKT/GSK-3β pathway. Mol. Med. Rep. 2016, 14, 2778–2784. [Google Scholar] [CrossRef] [PubMed]
- Ahlina, F.N.; Nugraheni, N.; Salsabila, I.A.; Haryanti, S.; Da’i, M.; Meiyanto, E. Revealing the reversal effect of galangal (Alpinia galanga L.) extract against oxidative stress in metastatic breast cancer cells and normal fibroblast cells intended as a co-chemotherapeutic and anti-ageing agent. Asian Pac. J. Cancer Prev. 2020, 21, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Zhu, H.; Tan, J.; Wang, H.; Wang, Z.; Li, P.; Zhao, C.; Liu, J. Comparative analysis of chemical constituents of Moringa oleifera leaves from China and India by ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry. Molecules 2019, 24, 942. [Google Scholar] [CrossRef] [Green Version]
- Karthivashan, G.; Fard, M.T.; Arulselvan, P.; Abas, F.; Fakurazi, S. Identification of bioactive candidate compounds responsible for oxidative challenge from hydro-ethanolic extract of Moringa oleifera leaves. J. Food Sci. 2013, 78, C1368–C1375. [Google Scholar] [CrossRef]
- Wright, R.J.; Lee, K.S.; Hyacinth, H.I.; Hibbert, J.M.; Reid, M.E.; Wheatley, A.O.; Asemota, H.N. An investigation of the antioxidant capacity in extracts from Moringa oleifera plants grown in Jamaica. Plants 2017, 6, 48. [Google Scholar] [CrossRef] [Green Version]
- Sulastri, E.; Zubair, M.S.; Anas, N.I.; Abidin, S.; Hardani, R.; Yulianti, R.; Aliyah. Total phenolic, total flavonoid, quercetin content and antioxidant activity of standardized extract of Moringa oleifera leaf from regions with different elevation. Pharm. J. 2018, 10, s104–s108. [Google Scholar] [CrossRef] [Green Version]
- Hussain, S.A.; Hameed, A.; Nazir, Y.; Naz, T.; Wu, Y.; Suleria, H.A.R.; Song, Y. Microencapsulation and the characterization of poly herbal formulation (PHF) rich in natural polyphenolic compounds. Nutrients 2018, 10, 843. [Google Scholar] [CrossRef] [Green Version]
- Zuo, A.; Yu, Y.; Li, J.; Xu, B.; Yu, X.; Qiu, Y.; Cao, S. Study on the relation of structure and antioxidant activity of isorhamnetin, quercetin, phloretin, silybin and phloretin isonicotinyl hydrazone. Free Radic. Antioxid. 2011, 1, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Panat, N.A.; Amrute, B.K.; Bhattu, S.; Haram, S.K.; Sharma, G.K.; Ghaskadbi, S.S. Antioxidant profiling of C3 quercetin glycosides: Quercitrin, quercetin 3-β-d-glucoside and quercetin 3-O-(6″-O-malonyl)-β-D glucoside in cell free environment. Free Radic. Antiox. 2015, 5, 90–100. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Mottamal, M.; Li, H.; Liu, K.; Zhu, F.; Cho, Y.-Y.; Sosa, C.P.; Zhou, K.; Bowden, G.T.; Bode, A.M.; et al. Quercetin-3-methyl ether suppresses proliferation of mouse epidermal JB6 P+ cells by targeting ERKs. Carcinogenesis 2011, 33, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.-L.; Lu, C.-M.; Tsao, L.-T.; Wang, J.-P.; Lin, C.-N. In vitro anti-inflammatory effects of quercetin 3-O-methyl ether and other constituents from Rhamnuss species. Planta Medica 2001, 67, 745–747. [Google Scholar] [CrossRef] [PubMed]
- Pierre Luhata, L.; Gaston Luhata, W. Tiliroside: Biosynthesis, bioactivity and structure activity relationship (SAR)-a review. J. Phytopharmacol. 2017, 6, 343–348. [Google Scholar]
- Li, X.; Li, K.; Xie, H.; Xie, Y.; Li, Y.; Zhao, X.; Jiang, X.; Chen, D. Antioxidant and cytoprotective effects of the Di-O-caffeoylquinic acid family: The mechanism, structure–activity relationship, and conformational effect. Molecules 2018, 23, 222. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Tian, Y.; Wang, T.; Lin, Q.; Feng, X.; Jiang, Q.; Liu, Y.; Chen, D. Role of the p-coumaroyl moiety in the antioxidant and cytoprotective effects of flavonoid glycosides: Comparison of astragalin and tiliroside. Molecules 2017, 22, 1165. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-S.; Lim, S.-B. Semi-continuous subcritical water extraction of flavonoids from Citrus unshiu Peel: Their antioxidant and enzyme inhibitory activities. Antioxidants 2020, 9, 360. [Google Scholar] [CrossRef]
- Zheng, Y.-Z.; Deng, G.; Guo, R.; Chen, D.-F.; Fu, Z.-M. DFT Studies on the antioxidant activity of naringenin and its derivatives: Effects of the substituents at C3. Int. J. Mol. Sci. 2019, 20, 1450. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.-Y.; Chao, P.-Y.; Hu, S.-P.; Yang, C.-M. The antioxidant and free radical scavenging activities of chlorophylls and pheophytins. Food Nutr. Sci. 2013, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kusmita, L.; Puspitaningrum, I.; Limantara, L. Identification, isolation and antioxidant activity of pheophytin from green tea (Camellia sinensis (L.) Kuntze). Procedia Chem. 2015, 14, 232–238. [Google Scholar] [CrossRef] [Green Version]
- Babaei, F.; Moafizad, A.; Darvishvand, Z.; Mirzababaei, M.; Hosseinzadeh, H.; Nassiri-Asl, M. Review of the effects of vitexin in oxidative stress-related diseases. Food Sci. Nutr. 2020, 8, 2569–2580. [Google Scholar] [CrossRef] [Green Version]
- Nugroho, A.; Choi, J.S.; Park, H.-J. Analysis of flavonoid composition of Korean herbs in the family of compositae and their utilization for health. Nat. Prod. Sci. 2016, 22, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Zielińska, M.; Kostrzewa, A.; Ignatowicz, E.; Budzianowski, J. The flavonoids, quercetin and isorhamnetin 3-O-acylglucosides diminish neutrophil oxidative metabolism and lipid peroxidation. Acta Biochim. Pol. 2001, 48, 183–189. [Google Scholar] [CrossRef] [Green Version]
- Simeonova, R.; Vitcheva, V.; Kondeva-Burdina, M.; Krasteva, I.; Manov, V.; Mitcheva, M. Hepatoprotective and antioxidant effects of saponarin, isolated from Gypsophila trichotoma Wend. on paracetamol-induced liver damage in rats. BioMed Res. Int. 2013, 2013, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Salehi, B.; Venditti, A.; Sharifi-Rad, M.; Kręgiel, D.; Sharifi-Rad, J.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E.B.; Novellino, E.; et al. The therapeutic potential of apigenin. Int. J. Mol. Sci. 2019, 20, 1305. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, D.; Yang, L.; Zhou, D.; Zhang, J. Purification and characterization of flavonoids from the leaves of Zanthoxylum bungeanum and correlation between their structure and antioxidant activity. PLoS ONE 2014, 9, e105725. [Google Scholar] [CrossRef] [Green Version]
- Imran, M.; Salehi, B.; Sharifi-Rad, J.; Gondal, T.A.; Saeed, F.; Imran, A.; Shahbaz, M.; Fokou, P.V.T.; Arshad, M.U.; Khan, H.; et al. Kaempferol: A key emphasis to its anticancer potential. Molecules 2019, 24, 2277. [Google Scholar] [CrossRef] [Green Version]
- Seelinger, G.; Merfort, I.; Schempp, C.M. Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin. Planta Medica 2008, 74, 1667–1677. [Google Scholar] [CrossRef]
- Wang, S.-F.; Liu, X.; Ding, M.-Y.; Ma, S.; Zhao, J.; Wang, Y.; Li, S. 2-O-β-d-glucopyranosyl-l-ascorbic acid, a novel vitamin C derivative from Lycium barbarum, prevents oxidative stress. Redox Biol. 2019, 24, 101173. [Google Scholar] [CrossRef] [PubMed]
- Poór, M.; Veres, B.; Jakus, P.B.; Antus, C.; Montskó, G.; Zrínyi, Z.; Vladimir-Knežević, S.; Petrik, J.; Kőszegi, T. Flavonoid diosmetin increases ATP levels in kidney cells and relieves ATP depleting effect of ochratoxin A. J. Photochem. Photobiol. B Biol. 2014, 132, 1–9. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, J. Esculetin inhibits adipogenesis and increases antioxidant activity during adipocyte differentiation in 3T3-L1 Cells. Prev. Nutr. Food Sci. 2017, 22, 118–123. [Google Scholar] [PubMed]
- Tamayose, C.I.; Romoff, P.; Toyama, D.O.; Gaeta, H.H.; Costa, C.R.C.; Belchor, M.N.; Ortolan, B.D.; Velozo, L.S.M.; Kaplan, M.A.C.; Ferreira, M.J.P.; et al. Non-clinical studies for evaluation of 8-C-rhamnosyl apigenin purified from Peperomia obtusifolia against acute edema. Int. J. Mol. Sci. 2017, 18, 1972. [Google Scholar] [CrossRef]
- Yue, S.; Tang, Y.; Li, S.; Duan, J.-A. Chemical and biological properties of quinochalcone C-glycosides from the florets of Carthamus tinctorius. Molecules 2013, 18, 15220–15254. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, C.; Zhang, H. Hepatoprotective effects of kaempferol 3-O-rutinoside and kaempferol 3-O-glucoside from Carthamus tinctorius L. on CCl4-induced oxidative liver injury in mice. J. Food Drug Anal. 2015, 23, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.E.; Yang, H.; Son, G.W.; Park, H.R.; Park, C.-S.; Jin, Y.-H.; Park, Y.S. Eriodictyol protects endothelial cells against oxidative stress-induced cell death through modulating ERK/Nrf2/ARE-dependent heme oxygenase-1 expression. Int. J. Mol. Sci. 2015, 16, 14526–14539. [Google Scholar] [CrossRef] [Green Version]
- Colica, C.; Di Renzo, L.; Trombetta, D.; Smeriglio, A.; Bernardini, S.; Cioccoloni, G.; De Miranda, R.C.; Gualtieri, P.; Salimei, P.S.; De Lorenzo, A. Antioxidant effects of a hydroxytyrosol-based pharmaceutical formulation on body composition, metabolic state, and gene expression: A randomized double-blinded, placebo-controlled crossover trial. Oxidative Med. Cell. Longev. 2017, 2017, 1–14. [Google Scholar] [CrossRef]
- Gao, J.; Hu, J.; Hu, D.; Yang, X. A role of gallic acid in oxidative damage diseases: A comprehensive review. Nat. Prod. Commun. 2019, 14, 1–9. [Google Scholar] [CrossRef] [Green Version]
Plant Extract | DPPH (Inhibition %) | FRAP (μmol/g) | Cytotoxicity by MTT Assay (IC50 mg/mL) | NBT Reduction Test (IC50 mg/mL) | Intracellular ROS Levels by DCFHDA (IC50 mg/mL) | Neuroprotection (% Cell Viability) |
---|---|---|---|---|---|---|
MLE | 58 | 26.76 ± 0.3 e | 2.7 ± 0.2 a | 0.83 ± 0.09 c | 0.71 ± 0.08 c | 44 |
VSE | 81 | 9.45 ± 0.08 d | 2.43 ± 0.1 b | 0.98 ± 0.08 c | 1.24 ± 0.06 a | 38 |
PLE | 0.05 | 7.46 ± 0.2 a | 1.96 ± 0.02 c | 1.65 ± 0.04 a | 1.34 ± 0.06 a | 34 |
PRE | 2 | 10.05 ± 0.08 c | 1.92 ± 0.04 c | 1.22 ± 0.06 b | 0.83 ± 0.08 c | 51 |
ALE | 41 | 33.57 ± 0.2 g | 2.53 ± 0.1 b | 1.24 ± 0.05 b | 2.48 ± 0.03 d | 32 |
ARE (PYL) | 0.01 | 5.62 ± 0.02 b | 0.34 ± 0.02 d | 1.62 ± 0.1 a | 0.96 ± 0.1 b | 40 |
ARE (BL) | 31 | 24.19 ± 0.1 f | ND | ND | ND | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
J. Hashim, F.; Vichitphan, S.; Boonsiri, P.; Vichitphan, K. Neuroprotective Assessment of Moringa oleifera Leaves Extract against Oxidative-Stress-Induced Cytotoxicity in SHSY5Y Neuroblastoma Cells. Plants 2021, 10, 889. https://doi.org/10.3390/plants10050889
J. Hashim F, Vichitphan S, Boonsiri P, Vichitphan K. Neuroprotective Assessment of Moringa oleifera Leaves Extract against Oxidative-Stress-Induced Cytotoxicity in SHSY5Y Neuroblastoma Cells. Plants. 2021; 10(5):889. https://doi.org/10.3390/plants10050889
Chicago/Turabian StyleJ. Hashim, Farah, Sukanda Vichitphan, Patcharee Boonsiri, and Kanit Vichitphan. 2021. "Neuroprotective Assessment of Moringa oleifera Leaves Extract against Oxidative-Stress-Induced Cytotoxicity in SHSY5Y Neuroblastoma Cells" Plants 10, no. 5: 889. https://doi.org/10.3390/plants10050889
APA StyleJ. Hashim, F., Vichitphan, S., Boonsiri, P., & Vichitphan, K. (2021). Neuroprotective Assessment of Moringa oleifera Leaves Extract against Oxidative-Stress-Induced Cytotoxicity in SHSY5Y Neuroblastoma Cells. Plants, 10(5), 889. https://doi.org/10.3390/plants10050889