Antioxidant and Cytotoxic Activities of Usnea barbata (L.) F.H. Wigg. Dry Extracts in Different Solvents
Abstract
:1. Introduction
2. Results
2.1. Preparation of Usnea barbata (L.) F.H. Wigg. Dry Extracts and Determination of Metabolites Content
2.1.1. Lichen Extraction Yield
2.1.2. UHPLC Determination of the Usnic Acid Content
2.1.3. Determination of the Total Polyphenols Content
2.1.4. Determination of the Tannins Content
2.1.5. Determination of the Total Polysaccharides Content
2.2. Evaluation of the Antioxidant Activity
2.3. Evaluation of the Cytotoxic Activity by Brine Shrimp Lethality Assay
3. Discussion
4. Materials and Methods
4.1. Lichen Extraction Yield
4.2. UHPLC Determination of the Usnic Acid Content
4.3. Determination of the Total Polyphenols Content
4.4. Determination of the Tannins Content
4.5. Determination of the Polysaccharides Content
4.6. Evaluation of the Antioxidant Activity
4.7. Evaluation of the Cytotoxic Activity by Brine Shrimp Lethality Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Poljsak, B.; Šuput, D.; Milisav, I. Achieving the balance between ROS and antioxidants: When to use the synthetic antioxidants. Oxid. Med. Cell. Longev. 2013, 2013, 956792. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.K.; Lee, S.B.; Won, J.; Choi, H.Y.; Kim, K.; Yang, G.M.; Dayem, A.A.; Cho, S.G. Correlation between oxidative stress, nutrition, and cancer initiation. Int. J. Mol. Sci. 2017, 18, 1544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Münzel, T.; Daiber, A. Environmental Stressors and Their Impact on Health and Disease with Focus on Oxidative Stress. Antioxid. Redox Signal. 2018, 28, 735–740. [Google Scholar] [CrossRef] [PubMed]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, V.; Tuli, H.S.; Varol, A.; Thakral, F.; Yerer, M.B.; Sak, K.; Varol, M.; Jain, A.; Khan, M.A.; Sethi, G. Role of reactive oxygen species in cancer progression: Molecular mechanisms and recent advancements. Biomolecules 2019, 9, 735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godos, J.; Currenti, W.; Angelino, D.; Mena, P.; Castellano, S.; Caraci, F.; Galvano, F.; Rio, D.D.; Ferri, R.; Grosso, G. Diet and mental health: Review of the recent updates on molecular mechanisms. Antioxidants 2020, 9, 346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daenen, K.; Andries, A.; Mekahli, D.; Van Schepdael, A.; Jouret, F.; Bammens, B. Oxidative stress in chronic kidney disease. Pediatr. Nephrol. 2019, 34, 975–991. [Google Scholar] [CrossRef] [Green Version]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubois-deruy, E.; Peugnet, V.; Turkieh, A.; Pinet, F. Oxidative stress in cardiovascular diseases. Antioxidants 2020, 9, 864. [Google Scholar] [CrossRef]
- Halvorsen, B.L.; Holte, K.; Myhrstad, M.C.W.; Barikmo, I.; Hvattum, E.; Remberg, S.F.; Wold, A.B.; Haffner, K.; Baugerød, H.; Andersen, L.F.; et al. A systematic screening of total antioxidants in dietary plants. J. Nutr. 2002, 132, 461–471. [Google Scholar] [CrossRef] [Green Version]
- Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef] [Green Version]
- Lewis, N.G. Plants Phenolics. In Antioxidants in Higher Plants, 1st ed.; Alscher, R.G., Hess, J.L., Eds.; CRC Press: Boca Raton, FL, USA, 2017; pp. 135–171. [Google Scholar]
- Goto, E. Environmental Stress and Secondary Metabolites. Shokubutsu Kankyo Kogaku 2019, 31, 7–20. [Google Scholar] [CrossRef] [Green Version]
- Narita, S.; Saito, E.; Sawada, N.; Shimazu, T.; Yamaji, T.; Iwasaki, M.; Ishihara, J.; Takachi, R.; Shibuya, K.; Inoue, M.; et al. Dietary consumption of antioxidant vitamins and subsequent lung cancer risk: The Japan Public Health Center-based prospective study. Int. J. Cancer 2018, 142, 2441–2460. [Google Scholar] [CrossRef] [Green Version]
- Agati, G.; Azzarello, E.; Pollastri, S.; Tattini, M. Flavonoids as antioxidants in plants: Location and functional significance. Plant Sci. 2012, 196, 67–76. [Google Scholar] [CrossRef]
- Stevenson, D.E.; Hurst, R.D. Review Polyphenolic phytochemicals—Just antioxidants or much more? Cell Mol. Life Sci. 2007, 64, 2900–2916. [Google Scholar] [CrossRef]
- Phương, D.L.; Thuy, N.T.; Long, P.Q.; Quan, P.M.; Thuy, T.T.T.; Minh, P.T.H.; Kuo, P.C.; Thang, T.D. Fatty acid, tocopherol, sterol compositions and antioxidant activity of three Garcinia seed oils. Rec. Nat. Prod. 2018, 12, 323–331. [Google Scholar] [CrossRef]
- Wang, J.; Hu, S.; Nie, S.; Yu, Q.; Xie, M. Reviews on Mechanisms of in Vitro Antioxidant Activity of Polysaccharides. Oxid. Med. Cell. Longev. 2016, 2016, 5692852. [Google Scholar] [CrossRef] [Green Version]
- Kosanić, M.; Ranković, B. Studies on antioxidant properties of lichen secondary metabolites. In Lichen Secondary Metabolites: Bioactive Properties and Pharmaceutical Potential; Ranković, B., Ed.; Springer International Publishing: Basel, Switzerland, 2015; pp. 105–125. [Google Scholar]
- Fernández-Moriano, C.; Divakar, P.K.; Crespo, A.; Gómez-Serranillos, M.P. Antioxidant and cytoprotective potentials of Parmeliaceae lichens and identification of active compounds. An. Real Acad. Nac. Farm. 2015, 81, 164–178. [Google Scholar]
- Paliya, B.S.; Bajpai, R.; Jadaun, V.; Kumar, J.; Kumar, S.; Upreti, D.K.; Singh, B.N.R.; Nayaka, S.; Joshi, Y.; Singh, B.N. The genus Usnea: A potent phytomedicine with multifarious ethnobotany, phytochemistry and pharmacology. RSC Adv. 2016, 6, 21672–21696. [Google Scholar]
- Ramírez, I.; Araya, S.; Piovano, M.; Carvajal, M.; Cuadros-Inostroza, A.; Espinoza, L.; Garbarino, J.A.; Peña-Cortés, H. Lichen depsides and depsidones reduce symptoms of diseases caused by Tobacco Mosaic Virus (TMV) in tobacco leaves. Nat. Prod. Commun. 2012, 7, 603–606. [Google Scholar] [CrossRef] [Green Version]
- Salgado, F.; Albornoz, L.; Cortéz, C.; Stashenko, E.; Urrea-Vallejo, K.; Nagles, E.; Galicia-Virviescas, C.; Cornejo, A.; Ardiles, A.; Simirgiotis, M.; et al. Secondary metabolite profiling of species of the genus usnea by UHPLC-ESI-OT-MS-MS. Molecules 2018, 23, 54. [Google Scholar] [CrossRef] [Green Version]
- Stocker-Wörgötter, E.; Cordeiro, L.M.C.; Iacomini, M. Accumulation of potential pharmaceutically relevant lichen metabolites in lichens and cultured lichen symbionts. In Studies in Natural Products Chemistry, 1st ed.; Atta-ur-Rahman, F.R.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 39, pp. 337–380. [Google Scholar]
- White, P.A.S.; Oliveira, R.C.M.; Oliveira, A.P.; Serafini, M.R.; Araújo, A.A.S.; Gelain, D.P.; Moreira, J.C.F.; Almeida, J.R.G.S.; Quintans, J.S.S.; Quintans-Junior, L.J.; et al. Antioxidant activity and mechanisms of action of natural compounds isolated from lichens: A systematic review. Molecules 2014, 19, 14496–14527. [Google Scholar] [CrossRef]
- Su, Z.-Q.; Liu, Y.-H.; Guo, H.-Z.; Sun, C.-Y.; Xie, J.-H.; Li, Y.-C.; Chen, J.-N.; Lai, X.-P.; Su, Z.-R.; Chen, H.-M. Effect-enhancing and toxicity-reducing activity of usnic acid in ascitic tumor-bearing mice treated with bleomycin. Int. Immunopharmacol. 2017, 46, 146–155. [Google Scholar] [CrossRef]
- Pérez-Torres, I.; Castrejón-Téllez, V.; Soto, M.E.; Rubio-Ruiz, M.E.; Manzano-Pech, L.; Guarner-Lans, V. Oxidative stress, plant natural antioxidants, and obesity. Int. J. Mol. Sci. 2021, 22, 1786. [Google Scholar] [CrossRef]
- Poudel, M.; Rajbhandari, M. Phytochemical Analysis of Ampelopteris Prolifera (Retzius) Copeland. Nepal J. Sci. Technol. 2020, 19, 78–88. [Google Scholar] [CrossRef]
- Zhong, Q.; Wei, B.; Wang, S.; Ke, S.; Chen, J.; Zhang, H.; Wang, H. The antioxidant activity of polysaccharides derived from marine organisms: An overview. Mar. Drugs 2019, 17, 674. [Google Scholar] [CrossRef] [Green Version]
- Rabelo, T.K.; Zeidán-Chuliá, F.; Vasques, L.M.; dos Santos, J.P.A.; da Rocha, R.F.; Pasquali, M.A.; Rybarczyk-Filho, J.L.; Araújo, A.A.S.; Moreira, J.C.F.; Gelain, D.P. Redox characterization of usnic acid and its cytotoxic effect on human neuron-like cells (SH-SY5Y). Toxicol. In Vitro 2012, 26, 304–314. [Google Scholar] [CrossRef] [Green Version]
- Ravaglia, L.M.; Gonçalves, K.; Oyama, N.M.; Coelho, R.G.; Spielmann, A.A.; Honda, N.K. In vitro radical-scavenging activity, toxicity against A. Salina, and Nmr profiles of extracts of lichens collected from Brazil and Antarctica. Quim. Nova 2014, 37, 1015–1021. [Google Scholar]
- Iancu, I.M.; Bucur, L.A.; Schroder, V.; Mireșan, H.; Sebastian, M.; Iancu, V.; Badea, V. Phytochemical evaluation and cytotoxicity assay of lythri herba extracts. Farmacia 2021, 69, 51–58. [Google Scholar] [CrossRef]
- Nunes, B.S.; Carvalho, F.D.; Guilhermino, L.M.; Van Stappen, G. Use of the genus Artemia in ecotoxicity testing. Environ. Pollut. 2006, 144, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Popovici, V.; Bucur, L.A.; Schröder, V.; Gherghel, D.; Mihai, C.T.; Caraiane, A.; Badea, F.C.; Vochița, G.; Badea, V. Evaluation of the cytotoxic activity of the Usnea barbata (L.) F. H. Wigg dry extract. Molecules 2020, 25, 1865. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.; Mishra, J.P.N.; Singh, R.P. Usnic acid induces apoptosis in human gastric cancer cells through ROS generation and DNA damage and causes up-regulation of DNA-PKcs and γ-H2A.X phosphorylation. Chem. Biol. Interact. 2020, 315, 108898. [Google Scholar] [CrossRef]
- Qi, W.; Lu, C.; Huang, H.; Zhang, W.; Song, S.; Liu, B. (+)−Usnic Acid Induces ROS-dependent Apoptosis via Inhibition of Mitochondria Respiratory Chain Complexes and Nrf2 Expression in Lung Squamous Cell Carcinoma. Int. J. Mol. Sci. 2020, 21, 876. [Google Scholar] [CrossRef] [Green Version]
- Popovici, V.; Bucur, L.; Costache, T.; Gherghel, D.; Vochita, G.; Mihai, C.T.C.T.; Rotinberg, P.; Schroder, V.; Badea, F.C.F.C.; Badea, V.; et al. Studies on Preparation and UHPLC Analysis of the Usnea Barbata (L) F.H.Wigg Dry acetone extract. Rev. Chim. 2019, 70, 3775–3777. [Google Scholar] [CrossRef]
- Meyer, B.N.; Ferrigni, N.R.; Putnam, J.E.; Jacobsen, L.B.; Nichols, D.E.; McLaughln, J.L. Brine Shrimp: A Convenient General Bioassay for Active Plant Constituents. Planta Med. 1982, 45, 31–34. [Google Scholar] [CrossRef]
- Clarkson, C.; Maharaj, V.J.; Crouch, N.R.; Grace, O.M.; Pillay, P.; Matsabisa, M.G.; Bhagwandin, N.; Smith, P.J.; Folb, P.I. In vitro antiplasmodial activity of medicinal plants native to or naturalised in South Africa. J. Ethnopharmacol. 2004, 92, 177–191. [Google Scholar] [CrossRef]
- Duman, D.C.; Aras, S.; Atakol, O. Determination of Usnic Acid Content in Some Lichen Species Found in Anatolia. J. Appl. Biol. Sci. 2008, 2, 41–44. [Google Scholar]
- Dirar, A.I.; Alsaadi, D.H.M.; Wada, M.; Mohamed, M.A.; Watanabe, T.; Devkota, H.P. Effects of extraction solvents on total phenolic and flavonoid contents and biological activities of extracts from Sudanese medicinal plants. S. Afr. J. Bot. 2019, 120, 261–267. [Google Scholar] [CrossRef]
- Sultana, B.; Anwar, F.; Ashraf, M. Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules 2009, 14, 2167–2180. [Google Scholar] [CrossRef]
- Caprita, R.; Caprita, A. Chemical Methods for the Determination of Soluble and Insoluble Non-Starch Polysaccharides—Review. Sci. Pap. Anim. Sci. Biotechnol. 2011, 44, 81–84. [Google Scholar]
- Jin, J.Q.; Rao, Y.; Bian, X.L.; Zeng, A.G.; Yang, G. De Solubility of (+)−usnic acid in water, ethanol, acetone, ethyl acetate and n-hexane. J. Solut. Chem. 2013, 42, 1018–1027. [Google Scholar] [CrossRef]
- Maulidiyah, M.; Cahyana, A.H.; Suwarso, W.P. A New Phenolic Compound from Acetone Extract of Lichen Usnea flexuosa Tayl. Indones. J. Chem. 2011, 11, 290–294. [Google Scholar] [CrossRef]
- Fernández-Moriano, C.; Gómez-Serranillos, M.P.; Crespo, A. Antioxidant potential of lichen species and their secondary metabolites. A systematic review. Pharm. Biol. 2016, 54, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Zugic, A.; Jeremic, I.; Isakovic, A.; Arsic, I.; Savic, S.; Tadic, V. Evaluation of anticancer and antioxidant activity of a commercially available CO2 supercritical extract of old man’s beard (Usnea barbata). PLoS ONE 2016, 11, 0146342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.W.; Xu, J.L.; Zhang, H.; Zhang, Q.; Lu, J.; Wang, J.H. Structure elucidation of a polysaccharide from Umbilicaria esculenta and its immunostimulatory activity. PLoS ONE 2016, 11, 0168472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odabasoglu, F.; Cakir, A.; Suleyman, H.; Aslan, A.; Bayir, Y.; Halici, M.; Kazaz, C. Gastroprotective and antioxidant effects of usnic acid on indomethacin-induced gastric ulcer in rats. J. Ethnopharmacol. 2006, 103, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Bian, X.; Jin, J.; Ding, D.; Zhang, H. Study on the scavenging action of polysaccharide of Usnea longissima to oxygen radical and its anti-lipi peroxidation effects. Zhong Yao Cai 2002, 25, 188–189. [Google Scholar]
- Ranković, B.; Kosanić, M.; Stanojković, T.; Vasiljević, P.; Manojlović, N. Biological activities of toninia candida and usnea barbata together with their norstictic acid and usnic acid constituents. Int. J. Mol. Sci. 2012, 13, 14707–14722. [Google Scholar] [CrossRef] [Green Version]
- Odabasoglu, F.; Aslan, A.; Cakir, A.; Suleyman, H.; Karagoz, Y.; Halici, M.; Bayir, Y. Comparison of antioxidant activity and phenolic content of three lichen species. Phyther. Res. 2004, 18, 938–941. [Google Scholar] [CrossRef]
- Brisdelli, F.; Perilli, M.; Sellitri, D.; Piovano, M.; Garbarino, J.A.; Nicoletti, M.; Bozzi, A.; Amicosante, G.; Celenza, G. Cytotoxic activity and antioxidant capacity of purified lichen metabolites: An in vitro study. Phyther. Res. 2013, 27, 431–437. [Google Scholar] [CrossRef]
- Kim, M.; Lee, W.; Park, J.; Kim, W.; Jo, S.; Kim, W.; Kim, C.; Park, H.; Lee, G.; Park, J. Advanced tracking system of multiple Artemia and various behavioral endpoints for ecotoxicological analysis. Ecol. Indic. 2020, 116, 106503. [Google Scholar] [CrossRef]
- Alahmadi, A.A. Usnic acid biological activity: History, evaluation and usage. Int. J. Basic Clin. Pharmacol. 2017, 6, 2752–2759. [Google Scholar] [CrossRef] [Green Version]
- Joshi, D.R.; Adhikari, N. An Overview on Common Organic Solvents and Their Toxicity. J. Pharm. Res. Int. 2019, 28, 1–18. [Google Scholar] [CrossRef]
- Mafole, T.C.; Aremu, A.O.; Van Staden, J.; Solhaug, K.A.; Beckett, R.P.; Finnie, J.F. Effect of seasonal variation on the biological activities and lichen metabolites in Usnea undulata and Heterodermia speciosa found in KwaZulu-Natal Province, South Africa. S. Afr. J. Bot. 2016, 103, 324. [Google Scholar] [CrossRef]
- Bjerke, J.W.; Elvebakk, A.; Domínguez, E.; Dahlback, A. Seasonal trends in usnic acid concentrations of Arctic, alpine and Patagonian populations of the lichen Flavocetraria nivalis. Phytochemistry 2005, 66, 337–344. [Google Scholar] [CrossRef]
- Prasad, S.B.; Sharma, A. Standardisation of convolvulus pluricaulis choisy herbs collected from Jalandhar, Punjab. Int. J. Pharmacogn. Phytochem. Res. 2016, 8, 1412–1416. [Google Scholar]
- Pedjie, N. Rapid UHPLC Determination of Common Preservatives in Cosmetic Products. LCGC Asia Pac. 2010, 13, 45. [Google Scholar]
- Maisetta, G.; Batoni, G.; Caboni, P.; Esin, S.; Rinaldi, A.C.; Zucca, P. Tannin profile, antioxidant properties, and antimicrobial activity of extracts from two Mediterranean species of parasitic plant Cytinus. BMC Complement. Altern. Med. 2019, 19, 82. [Google Scholar] [CrossRef] [Green Version]
- Nasser, M.; Cheikh-Ali, H.; Hijazi, A.; Merah, O.; Al-Rekaby, A.E.A.N.; Awada, R. Phytochemical profile, antioxidant and antitumor activities of green grape juice. Processes 2020, 8, 507. [Google Scholar] [CrossRef]
- Galvão, M.A.M.; de Arruda, A.O.; Bezerra, I.C.F.; Ferreira, M.R.A.; Soares, L.A.L. Evaluation of the Folin-Ciocalteu Method and Quantification of Total Tannins in Stem Barks and Pods from Libidibia ferrea (Mart. ex Tul) L. P. Queiroz. Braz. Arch. Biol. Technol. 2018, 61, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Tikhomirova, E.A.; Sorokina, A.A.; Bubenchikova, V.N.; Kostikova, E.N.; Zhilkina, V.Y.; Bessonov, V.V. Chemical composition and content of polysaccharides from the yellow iris (Iris pseudacorus L.) rhizomes. Pharmacogn. J. 2020, 12, 1012–1018. [Google Scholar] [CrossRef]
- Cakmak, K.C.; Gülçin, İ. Anticholinergic and antioxidant activities of usnic acid-an activity-structure insight. Toxicol. Rep. 2019, 6, 1273–1280. [Google Scholar] [CrossRef]
- Libralato, G.; Prato, E.; Migliore, L.; Cicero, A.M.; Manfra, L. A review of toxicity testing protocols and endpoints with Artemia spp. Ecol Indic. 2016, 69, 35–49. [Google Scholar] [CrossRef] [Green Version]
- Solis, P.N.; Wright, C.W.; Anderson, M.M.; Gupta, M.P.; Phillipson, J.D. A microwell cytotoxicity assay using Artemia salina (brine shrimp). Planta Med. 1993, 59, 250–252. [Google Scholar] [CrossRef]
UBDE | Temperature of Extraction | Yield (%) | UBDE Color |
---|---|---|---|
Acetone extract | 55–60 °C | 6.36 | Yellow-brown |
Ethyl acetate extract | 75–80 °C | 6.27 | Brown-yellow |
Ethanol extract | 75–80 °C | 12.52 | Light brown |
Methanol extract | 65 °C | 11.29 | Brown |
Water extract | 95–100 °C | 1.98 | Dark brown-reddish |
UBDE | UAC mg/g UBDE | TPC ± SD (mg PyE/g UBDE) | TC ± SD (mg PyE/g UBDE) |
---|---|---|---|
Acetone extract | 282.78 | 101.09 ± 0.50 | 24.4 ± 0.60 |
Ethyl acetate extract | 376.73 | 42.40 ± 1.40 | 3.85 ± 0.26 |
Ethanol extract | 127.21 | 67.3 ± 0.50 | 14.7 ± 0.05 |
Methanol extract | 137.60 | 70.7 ± 1.70 | 9.99 ± 1.70 |
Water extract | 0.00 | 45.8 ± 1.20 | 1.31 ± 0.20 |
UBDE | Acetone Extract | Ethyl Acetate Extract | Ethanol Extract | Methanol Extract | Water Extract |
---|---|---|---|---|---|
DPPH IC50 (µg/mL) | 4608 | 7701 | 4462 | 3300 | 6211 |
Parameter | UBDE | Acetone Extract | Ethyl acetate Extract | Ethanol Extract | Methanol Extract | Water Extract |
---|---|---|---|---|---|---|
TPC | Linear equation | y = 0.0527x + 5.189 | y = 0.0873x + 0.9336 | y = 0.0988x + 5.2527 | y = 0.104x + 3.5547 | y = 0.0861x + 4.0976 |
R2 value | 0.7051 | 0.5408 | 0.9308 | 0.9453 | 0.725 | |
TC | Linear equation | y = 0.22x + 5.1893 | y = 0.9576x + 3.9446 | y = 0.4525x + 5.2502 | y = 0.7356x + 3.5564 | y = 2.9895x + 4.1226 |
R2 value | 0.705 | 0.5383 | 0.9309 | 0.9452 | 0.7221 |
Stock Solutions (mg/mL) | Usnic Acid | UBDE in Acetone | UBDE in Ethyl acetate | UBDE in Ethanol | UBDE in Methanol | UBDE in Water | Water/DMSO (0.1%) | |
---|---|---|---|---|---|---|---|---|
12.9 | 17.2 | 16.2 | 16.1 | 16.1 | 16.0 dil | 16.0 * | Control Samples | |
Tested samples | Concentrations (µg/mL) | |||||||
1:50 | 24.8 | 34.4 | 32.4 | 32.2 | 32.2 | 32 | 320 | - |
1:10 | 160 | 172 | 162 | 161 | 161 | 160 | 1600 | - |
1:3.4 | 387 | 516 | 486 | 483 | 483 | 480 | 4800 | - |
Mortality (%) | ||||||||
1:50 | 8.96 ± 7.60 | 14.94 ± 1.55 | 0.00 | 15.28 ± 3.69 | 23.51 ± 11.43 | 0 | 0 | 0 |
1:10 | 20.95 ± 6.32 | 38.82 ± 12.6 | 33.53 ± 14.7 | 29.37 ± 13.1 | 24.02 ± 3.35 | 0 | 50 ± 5.77 | 0 |
1:3.4 | 40.07 ± 17.8 | 54.24 ± 16.9 | 100 ±0 | 75.54 ± 28.2 | 87.82 ± 15.8 | 0 | 100 ± 0 | 0 |
ANOVA | |||||||
---|---|---|---|---|---|---|---|
Source of Variation | d.f. | SS | MS | F | p-Value | F Crit | Omega Sqr. |
1:50 | 6 | 2113.23 | 352.20 | 5.59 | 0.013 | 3.81 | 0.50 |
1:10 | 6 | 5932.10 | 988.68 | 1.76 | 0.16 | 3.81 | 0.14 |
1:3.4 | 6 | 32,172.06 | 5362.01 | 22.70 | 0.00000004 | 3.81 | 0.82 |
Samples |
LC50 (µg/mL) | Confidence Interval 95% | LC100 (µg/mL) | Toxicity Index * | |
---|---|---|---|---|---|
Lower | Upper | ||||
Usnic acid | 424.75 | 342.20 | 507.31 | 923.42 | highly toxic |
UBDE in acetone | 411.77 | 274.26 | 549.29 | 1103.41 | highly toxic |
UBDE in ethyl acetate | 219.59 | 176.09 | 263.09 | 359.70 | highly toxic |
UBDE in ethanol | 338.39 | 265.02 | 411.74 | 808.53 | highly toxic |
UBDE in methanol | 250.19 | 182.91 | 318.28 | 593.78 | highly toxic |
UBDE in water | 1983.68 | 1455.84 | 2511.52 | 3428.64 | non-toxic |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popovici, V.; Bucur, L.; Popescu, A.; Schröder, V.; Costache, T.; Rambu, D.; Cucolea, I.E.; Gîrd, C.E.; Caraiane, A.; Gherghel, D.; et al. Antioxidant and Cytotoxic Activities of Usnea barbata (L.) F.H. Wigg. Dry Extracts in Different Solvents. Plants 2021, 10, 909. https://doi.org/10.3390/plants10050909
Popovici V, Bucur L, Popescu A, Schröder V, Costache T, Rambu D, Cucolea IE, Gîrd CE, Caraiane A, Gherghel D, et al. Antioxidant and Cytotoxic Activities of Usnea barbata (L.) F.H. Wigg. Dry Extracts in Different Solvents. Plants. 2021; 10(5):909. https://doi.org/10.3390/plants10050909
Chicago/Turabian StylePopovici, Violeta, Laura Bucur, Antoanela Popescu, Verginica Schröder, Teodor Costache, Dan Rambu, Iulia Elena Cucolea, Cerasela Elena Gîrd, Aureliana Caraiane, Daniela Gherghel, and et al. 2021. "Antioxidant and Cytotoxic Activities of Usnea barbata (L.) F.H. Wigg. Dry Extracts in Different Solvents" Plants 10, no. 5: 909. https://doi.org/10.3390/plants10050909
APA StylePopovici, V., Bucur, L., Popescu, A., Schröder, V., Costache, T., Rambu, D., Cucolea, I. E., Gîrd, C. E., Caraiane, A., Gherghel, D., Vochita, G., & Badea, V. (2021). Antioxidant and Cytotoxic Activities of Usnea barbata (L.) F.H. Wigg. Dry Extracts in Different Solvents. Plants, 10(5), 909. https://doi.org/10.3390/plants10050909