Phenolic Composition and Antioxidant Activity of Plants Belonging to the Cephalaria (Caprifoliaceae) Genus
Abstract
:1. Introduction
2. Methodology of Evidence Aquisition
3. Phenolic Compounds in the Cephalaria Species
3.1. Flavonoids
Constituent Name | Species | Part of Plant | References |
---|---|---|---|
1. Kaempferol | C. kotschyi | aerial parts | Aliev and Movsumov, 1981 [52] |
C. anatolica C. aristata C. aytachii Göktürk & Sümbül C. balansae Raus C. davisiana Göktürk & Sümbül C. elazigensis var. purpureaa C. elmaliensis Hub.-Mor. & V.A.Matthews C. isaurica V.A.Matthews C. lycica V.A.Matthews C. paphlagonica Bobrov C. procera C. scoparia Contandr. & Quézel C. speciosa Boiss. & Kotschy C. stellipilis Boiss. C. sumbuliana Göktürk C. taurica Szabó C. tuteliana Kuș & Göktürk | aerial parts | Sarikahya et al., 2019 [56] | |
2. Astragalin | C. anatolica C. aristata C. balansae C. davisiana C. elazigensis var. purpurea C. elmaliensis C. lycica C. paphlagonica C. procera C. speciosa C. stellipilis C. sumbuliana C. taurica | aerial parts | Sarikahya et al., 2019 [56] |
3. Nicotiflorin | C. anatolica C. balansae C. paphlagonica C. speciosa C. stellipilis C. taurica | aerial parts | Sarikahya et al., 2019 [56] |
4. Tiliroside | C. elmaliensis | aerial parts | Sarıkahya and Kırmızıgül, 2012a [57] |
5. Quercetin | C. gigantea | flowers | Movsumov et al., 2006 [53] |
C. procera | inflorescences | Movsumov et al., 2013 [55] | |
C. anatolica C. aristata C. balansae C. davisiana C. elazigensis var. purpurea C. isaurica C. lycica C. scoparia C. speciosa C. stellipilis C. taurica C. tchihatchewii C. tuteliana | aerial parts | Sarikahya et al., 2019 [56] | |
6. Quercimeritrin | C. balkharica | aerial parts | Zemtsova and Bandyukova, 1968 [50] |
C. kotschyi | flowers | Aliev and Movsumov, 1981 [52] | |
C. gigantea | flowers | Zemtsova and Bandyukova, 1968 [50] Movsumov et al., 2006 [53] | |
C. grossheimii | flowers | Movsumov et al., 2009 [54] | |
C. procera | inflorescences | Movsumov et al., 2013 [55] | |
7. Rutin | C. gazipashensis | aerial parts | Sarıkahya and Kırmızıgül, 2012 [31] |
C. scoparia | aerial parts | Sarikahya et al., 2015 [58] | |
C. anatolica C. aristata C. davisiana C. elmaliensis C. lycica | aerial parts | Sarikahya et al., 2019 [56] | |
8. Gigantoside A | C. gigantea | flowers | Movsumov et al., 2006 [53] |
C. procera | inflorescences | Movsumov et al., 2013 [55] | |
9. Hyperoside | C. kotschyi | flowers | Aliev and Movsumov, 1981 [52] |
C. grossheimii | flowers | Movsumov et al., 2009 [54] | |
C. anatolica C. aristata C. aytachii C. balansae C. davisiana C. elazigensis var. purpurea C. elazigensis var. elazigensis C. elmaliensis C. isaurica C. lycica C. paphlagonica C. procera C. scoparia C. speciosa C. stellipilis C. sumbuliana C. taurica C. tchihatchewii C. tuteliana | aerial parts | Sarikahya et al., 2019 [56] | |
C. uralensis | aerial parts | Chrząszcz et al., 2020 [29] | |
10. Guiaverin | C. lycica C. paphlagonica C. sumbuliana | aerial parts | Sarikahya et al., 2019 [56] |
11. Quercitrin | C. gigantea | roots | Tabatadze et al., 2017 [42] Tabatadze et al., 2020 [59] |
12. Apigenin | C. procera | inflorescences | Movsumov et al., 2013 [55] |
C. grossheimii | flowers | Movsumov et al., 2009 [54] | |
C. aristata C. davisiana C. scoparia C. tchihatchewii | aerial parts | Sarikahya et al., 2019 [56] | |
13. Luteolin | C. gigantea | flowers | Movsumov et al., 2006 [53] |
C. procera | inflorescences | Movsumov et al., 2013 [55] | |
C. anatolica C. aristata C. aytachii C. davisiana C. elazigensis var. elazigensis C. elmaliensis C. lycica C. scoparia C. sumbuliana C. taurica C. tchihatchewii C. tuteliana | aerial parts | Sarikahya et al., 2019 [56] | |
14. Cynaroside | C. balkharica | aerial parts | Zemtsova and Bandyukova, 1968 [50] |
C. gigantea | aerial parts | Zemtsova and Bandyukova, 1968 [50] | |
C. kotschyi | flowers | Aliev and Movsumov, 1981 [52] | |
C. pastricensis | flowers | Godjevac et al., 2004 [36] | |
C. gigantea | flowers | Movsumov et al., 2006 [53] | |
C. grossheimii | flowers | Movsumov et al., 2009 [54] | |
C. procera | inflorescences | Movsumov et al., 2013 [55] | |
C. elmaliensis | aerial parts | Sarikahya et al., 2012a [57] Sarikahya et al., 2015 [58] | |
C. anatolica C. aristata C. aytachii C. balansae C. davisiana C. elazigensis var. purpurea C. elmaliensis C. isaurica C. lycica C. paphlagonica C. procera C. scoparia C. speciosa C. stellipilis C. sumbuliana C. taurica C. tchihatchewii C. tuteliana | aerial parts | Sarikahya et al., 2019 [56] | |
15. Swertiajaponin | C. uralensis | flowers aerial parts | Chrząszcz et al., 2020 [27] Zemtsova and Bandyukova, 1977 [51] |
C. isaurica | aerial parts | Kayce and Kırmızıgül, 2010 [37] | |
C. elmaliensis | aerial parts | Sarikahya et al., 2015 [58] | |
C. scoparia | aerial parts | Sarikahya et al., 2015 [58] | |
C. gigantea | aerial parts | Chrząszcz et al., 2020 [27] | |
16. Luteolin-7-O-rutinoside | C. anatolica C. aristata C. elmaliensis C. isaurica C. lycica C. paphlagonica C. scoparia C. speciosa C. stellipilis C. sumbuliana C. taurica C. tchihatchewii C. tuteliana | aerial parts | Sarikahya et al., 2019 [56] |
17.Luteolin 7-O-arabino(1→6)glucoside | C. pastricensis | flowers | Godjevac et al., 2004 [36] |
18. Diosmetin | C. davisiana C. scoparia C. taurica C. tchihatchewii | aerial parts | Sarikahya et al., 2019 [56] |
19. Nepetin | C. anatolica C. aristata C. aytachii C. balansae C. davisiana C. elazigensis var. purpurea C. elmaliensis C. isaurica C. lycica C. scoparia C. taurica C. tchihatchewii C. tuteliana | aerial parts | Sarikahya et al., 2019 [56] |
20. Isoorientin | C. isaurica | aerial parts | Kayce and Kırmızıgül, 2010 [37] |
C. scoparia C. stellipilis | aerial parts | Sarikahya et al., 2011 [43] | |
C. gigantea C. uralensis | aerial parts aerial parts flowers | Chrząszcz et al., 2020 [27] | |
21. Isovitexin | C. uralensis | aerial parts flowers | Chrząszcz et al., 2020 [27] |
22. Isovitexin O-hexoside | C. gigantea | aerial parts | Chrząszcz et al., 2020 [27] |
23. Swertisin | C. coriaceae | flowers leaves | Zemtsova and Bandyukova, 1977 [51] |
C. gigantea | flowers leaves | Zemtsova and Bandyukova, 1977 [51] | |
24. Acacetin | C. taurica | aerial parts | Sarikahya et al., 2019 [56] |
25. Hesperidin | C. anatolica C. aristata C. aytachii C. davisiana C. lycica C. scoparia C. speciosa C. sumbuliana C. taurica C. tchihatchewii C. tuteliana | aerial parts | Sarikahya et al., 2019 [56] |
26. Genistein | C. davisiana | aerial parts | Sarikahya et al., 2019 [56] |
27. Penduletin | C. scoparia C. tuteliana | aerial parts | Sarikahya et al., 2019 [56] |
28. Cyanidin-3-O-glucoside | C. anatolica C. aristata C. balansae C. davisiana C. elazigensis var. purpurea C. elazigensis var. elazigensis C. elmaliensis C. lycica C. paphlagonica C. procera C. scoparia C. speciosa C. stellipilis C. sumbuliana C. tchihatchewii | aerial parts | Sarikahya et al., 2019 [56] |
29. Pelargonidin chloride | C. aristata C. davisiana C. speciosa | aerial parts | Sarikahya et al., 2019 [56] |
30. Chlorogenic acid | C. syriaca | shoot | Ali et al., 2012 [17] |
C. ambrosioides | roots | Pasi et al., 2002 [60] | |
C. gigantea | roots | Tabatadze et al., 2017 [42] Tabatadze et al., 2020 [59] | |
C. uralensis | aerial parts flowers | Chrząszcz et al., 2020 [27] | |
31. Cryptochlorogenic acid | C. gigantea | aerial parts | Chrząszcz et al., 2020 [27] |
C. uralensis | aerial parts flowers | Chrząszcz et al., 2020 [27] | |
32. Neochlorogenic acid | C. gigantea | aerial parts | Chrząszcz et al., 2020 [27] |
C. uralensis | aerial parts flowers | Chrząszcz et al., 2020 [27] | |
33. 3,5-O-dicaffeoylquinic acid | C. ambrosioides | roots | Pasi et al., 2002 [60] |
C. gigantea | aerial parts | Chrząszcz et al., 2020 [27] | |
C. uralensis | aerial parts flowers | Chrząszcz et al., 2020 [27] | |
34. 4,5-O-dicaffeoylquinic acid | C. gigantea | aerial parts | Chrząszcz et al., 2020 [27] |
C. uralensis | aerial parts flowers | Chrząszcz et al., 2020 [27] | |
35. 3,4-di-O-caffeoylquinic acid | C. ambrosioides | roots | Pasi et al., 2002 [60] |
36. Caffeic acid | C. gigantea | roots | Tabatadze et al., 2017 [42] Tabatadze et al., 2020 [59] |
C. gigantea | aerial parts | Chrząszcz et al., 2020 [27] | |
C. uralensis | aerial parts flowers | Chrząszcz et al., 2020 [27] | |
C. anatolica C. aristata C. aytachii C. balansae C. davisiana C. elazigensis var. purpurea C. elazigensis var. elazigensis C. elmaliensis C. isaurica C. lycica C. paphlagonica C. scoparia C. speciosa C. stellipilis C. sumbuliana C. taurica C. tchihatchewii C. tuteliana | aerial parts | Sarikahya et al., 2019 [56] | |
37. Ferulic acid | C. uralensis | aerial parts | Chrząszcz et al., 2020 [27] |
38. Gallic acid | C. syriaca | seeds | Ali et al., 2012 [17] |
39. p-Hydroxybenzoic acid | C. syriaca | roots seeds | Ali et al., 2012 [17] |
40. trans-4-OH-Cinnamic acid | C. aristata C. davisiana | aerial parts | Sarikahya et al., 2019 [56] |
41. Sinapic acid | C. syriaca | seeds | Ali et al., 2012 [17] |
42. Syringic acid | C. syriaca | seeds shoots | Ali et al., 2012 [17] |
43. Vanillic acid | C. syriaca | seeds shoots | Ali et al., 2012 [17] |
3.2. Phenolic Acids
3.3. Antioxidant Activity
3.4. Conclusions and Research Gaps/Future Investigations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bravo, L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 1998, 56, 317–333. [Google Scholar] [CrossRef]
- Heima, K.E.; Tagliaferroa, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002, 13, 572–584. [Google Scholar] [CrossRef]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Perrino, E.V.; Valerio, F.; Gannouchi, A.; Trani, A.; Mezzapesa, G. Ecological and plant community implication on essential oils composition in useful wild officinal species: A pilot case study in Apulia (Italy). Plants 2021, 10, 574. [Google Scholar] [CrossRef]
- Katalinic, V.; Milos, M.; Kulisic, T.; Jukic, M. Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem. 2006, 94, 550–557. [Google Scholar] [CrossRef]
- Perron, N.R.; Brumaghim, J.L. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem. Biophys. 2009, 53, 75–100. [Google Scholar] [CrossRef] [PubMed]
- Soto, M.L.; Falqué, E.; Domínguez, H. Relevance of natural phenolics from grape and derivative products in the formulation of cosmetics. Cosmetics 2015, 2, 259–276. [Google Scholar] [CrossRef] [Green Version]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The role of polyphenols in human health and food systems: A mini-review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef] [Green Version]
- De Lima Cherubim, D.J.; Buzanello Martins, C.V.; Oliveira Fariña, L.; da Silva de Lucca, R.A. Polyphenols as natural antioxidants in cosmetics applications. J. Cosmet. Dermatol. 2020, 19, 33–37. [Google Scholar] [CrossRef]
- Munin, A.; Edwards-Lévy, F. Encapsulation of Natural Polyphenolic Compounds; A Review. Pharmaceutics 2011, 3, 793–829. [Google Scholar] [CrossRef] [Green Version]
- Reveal, J.L. An outline of a classification scheme for extant flowering plants. Phytoneuron 2012, 37, 1–221. [Google Scholar]
- Takhtajan, A. Flowering Plants, 2nd ed.; Springer: Cham, Switzerland, 2009; pp. 462–463. [Google Scholar] [CrossRef]
- Tsymbalyuk, Z.M.; Celenk, S.; Mosyakin, S.L.; Nitsenko, L.M. Pollen morphology of some species of the genus Cephalaria Schrad. (Caprifoliaceae) and its significance for taxonomy. Microsc. Res. Tech. 2021, 84, 682–694. [Google Scholar] [CrossRef] [PubMed]
- THE ANGIOSPERM PHYLOGENY GROUP—APG III. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 2009, 161, 105–121. [Google Scholar] [CrossRef] [Green Version]
- THE ANGIOSPERM PHYLOGENY GROUP—APG IV. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 2016, 181, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Çapanlar, S.; Krmzgül, S. Structural elucidations and spectral assigments of two novel triterpene glycosides from Cephalaria paphlagonica. Nat. Prod. Res. 2010, 24, 1337–1346. [Google Scholar] [CrossRef] [PubMed]
- Ali, K.A.; Sakri, F.Q.; Li, Q.X. Isolation and purification of allelochemicals from Cephalaria syriaca plant. Int. J. Biosci. 2012, 2, 90–103. [Google Scholar]
- Kayce, P.; Sarikahya, N.B.; Pekmez, M.; Arda, N.; Kirmizigül, S. The structure and cytotoxic activity of a new saponin: Cephoside A from Cephalaria elazigensis var. purpurea. Turk. J. Chem. 2017, 41, 345–353. [Google Scholar] [CrossRef]
- Wagensommer, R.P.; Medagli, P.; Turco, A.; Perrino, E.V. IUCN Red List Evaluation of the Orchidaceae endemic to Apulia Region (Italy) and considerations on the application of the IUCN protocol to rare species. Nat. Conserv. Res. 2020, 5, 90–101. [Google Scholar] [CrossRef]
- Perrino, E.V.; Tomaselli, V.; Costa, R.; Pavone, P. Conservation status of habitats (Directive 92/43 EEC) of coastal and low hill belts in a mediterranean biodiversity hot spot (Gargano—Italy). Biosystems 2013, 147, 1006–1028. [Google Scholar] [CrossRef]
- Cowling, R.M.; Rundel, P.W.; Lamont, B.B.; Arroyo, M.K.; Arianoutsou, M. Plant diversity in mediterraenan climate regions. Trends Ecol. Evolut. 1996, 11, 352–360. [Google Scholar] [CrossRef]
- Verlaque, R. Etude biosystématique et phylogénétique des Dipsacaceae. II. Caractères généraux des Dipsacaceae. Revue Cytologie Biologie Végétales Botaniste 1985, 8, 117–168. [Google Scholar]
- Backlund, A.; Donoghue, M.J. Morphology and phylogeny of the order Dipsacales. Phylogeny Dipsacales 1996, 4, 1–55. [Google Scholar]
- Tutin, T.G.; Heywood, V.H.; Burges, N.A.; Valentine, D.H. Flora Europea: Plantaginaceae to Compositae (and Rubiaceae); Cambridge University Press: Cambridge, UK, 1976; Volume 4, pp. 57–58. [Google Scholar]
- Manning, J.C.; Goldblatt, P.; Johns, A. A taxonomic review of Cephalaria (Dipsacaceae) in the Cape Floristic Region. S. Afr. J. Bot. 2014, 94, 195–203. [Google Scholar] [CrossRef] [Green Version]
- The Plants of the World Online. The Royal Botanic Gardens, Kew. Available online: http://www.plantsoftheworldonline.org/taxon/urn:lsid:ipni.org:names:331477-2 (accessed on 10 April 2021).
- Chrząszcz, M.; Miazga-Karska, M.; Klimek, K.; Granica, S.; Tchórzewska, D.; Ginalska, G.; Szewczyk, K. Extracts from Cephalaria uralensis (Murray) Roem. & Schult. and Cephalaria gigantea (Ledeb.) Bobrov as potential agents for treatment of acne vulgaris: Chemical characterization and in vitro biological evaluation. Antioxidants 2020, 9, 796. [Google Scholar] [CrossRef]
- Mbhele, N.; Balogun, F.O.; Kazeem, M.I.; Ashafa, T. In vitro studies on the antimicrobial, antioxidant and antidiabetic potential of Cephalaria gigantea. Bangladesh J. Pharmacol. 2015, 10, 214–221. [Google Scholar] [CrossRef] [Green Version]
- Mustafayeva, K.; Di Giorgio, C.; Elias, R.; Kerimov, Y.; Ollivier, E.; De Méo, M. DNA-damaging, mutagenic, and clastogenic activities of gentiopicroside isolated from Cephalaria kotschyi roots. J. Nat. Prod. 2010, 73, 99–103. [Google Scholar] [CrossRef]
- Pasi, S.; Aligiannis, N.; Pratsinis, H.; Skaltsounis, A.L.; Chinou, I.B. Biologically active triterpenoids from Cephalaria ambrosioides. Planta Med. 2009, 75, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Sarıkahya, N.B.; Kırmızıgül, S. Novel biologically active glycosides from the aerial parts of Cephalaria gazipashensis. Turk. J. Chem. 2012, 36, 323–334. [Google Scholar] [CrossRef]
- Başar, Ş.; Karaoğlu, M.M.; Boz, H. The effects of Cephalaria syriaca flour on the quality of sunn pest (Eurygaster integriceps)-damaged wheat. J. Food Qual. 2016, 39, 13–24. [Google Scholar] [CrossRef]
- Gunes, F.; Ozhatay, N. An ethnobotanical study from Kars (Eastern) Turkey. Biol. Divers. Conserv. 2011, 4, 30–41. [Google Scholar]
- Kavak, C.; Baştürk, A. Antioxidant activity, volatile compounds and fatty acid compositions of Cephalaria syriaca seeds obtained from different regions in Turkey. Grasas Aceites 2020, 71, 1–17. [Google Scholar] [CrossRef]
- Sumer, G.; Sarıkahya, N.B.; Kırmızıgül, S. Phytochemical and biological investigations on Cephalaria anatolica. Rec. Nat. Prod. 2017, 11, 497–507. [Google Scholar] [CrossRef]
- Godjevac, D.; Vajs, V.; Menković, N.; Tešević, V.; Janaćković, P.; Milosavljević, S. Flavonoids from flowers of Cephalaria pastricensis and their antiradical activity. J. Serb. Chem. Soc. 2004, 69, 883–886. [Google Scholar] [CrossRef]
- Kayce, P.; Kırmızıgül, S. Chemical constituents of two endemic Cephalaria species. Rec. Nat. Prod. 2010, 4, 141–148. [Google Scholar]
- Azab, A. Total phenolic content, antioxidant capacity and antifungal activity of extracts of Carthamus tenuis and Cephalaria joppensis. Eur. Chem. Bull. 2018, 7, 156–161. [Google Scholar] [CrossRef] [Green Version]
- Kayce, P.; Sarikahya, N.B.; Kirmizigul, S. Two novel saponins from Cephalaria davisiana (Dipsacaceae). Phytochem. Lett. 2014, 10, 324–329. [Google Scholar] [CrossRef]
- Ozer, O.; Sarıkahya, N.B.; Nalbantsoy, A.; Kirmizigul, S. Increased cytotoxic potential of infrequent triterpenoid saponins of Cephalaria taurica obtained through alkaline hydrolysis. Phytochemistry 2018, 152, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Kayce, P.; Kırmızıgül, S. Isolation and identification of a new saponin from Cephalaria aytachii. Nat. Prod. Res. 2017, 31, 50–57. [Google Scholar] [CrossRef]
- Tabatadze, N.; Tabidze, B.; Getia, M.; Mshvildadze, V.; Pichette, A.; Dekanosidze, G.; Kemertelidze, E. HPLC analysis of an anticonvulsant fraction from the roots of Cephalaria gigantea. Bull. Georg. Natl. Acad. Sci. 2017, 11, 118–122. [Google Scholar]
- Sarıkahya, N.B.; Pekmez, M.; Arda, N.; Kayce, P.; Yavaolu, N.Ü.K.; Kirmizigül, S. Isolation and characterization of biologically active glycosides from endemic Cephalaria species in Anatolia. Phytochem. Lett. 2011, 4, 415–420. [Google Scholar] [CrossRef]
- Yazıcıoglu, T.; Karaali, A.; Gökçen, J. Cephalaria syriaca seed oil. J. Am. Oil Chem. Soc. 1978, 55, 412–415. [Google Scholar] [CrossRef] [PubMed]
- Sarıkahya, N.B.; Ucar, E.O.; Kayce, P.; Suleyman Gokturk, R.; Sumbul, H.; Arda, N.; Kirmizigul, S. Fatty acid composition and antioxidant potential of ten Cephalaria species. Rec. Nat. Prod. 2015, 9, 116–123. [Google Scholar]
- IPNI. International Plant Names Index. The Royal Botanic Gardens, Kew, Harvard University Herbaria & Libraries and Australian National Botanic Gardens. 2021. Available online: http://www.ipni.org (accessed on 9 October 2020).
- The Plant List (2013). Version 1.1. Available online: http://www.theplantlist.org/ (accessed on 8 October 2020).
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zemtsova, G.N.; Bandyukova, V.A. Quercimeritin and luteolin 7-glucoside in some species of Dipsacaceae. Chem. Nat. Compd. 1968, 4, 211. [Google Scholar] [CrossRef] [Green Version]
- Zemtsova, G.N.; Bandyukova, V.A. C-glycosides of species of Dipsacaceae. Chem. Nat. Compd. 1977, 13, 589. [Google Scholar] [CrossRef]
- Aliev, A.M.; Movsumov, I.S. The chemical composition and pharmacological properties of Dipsacaceae species. Rastit. Resur. 1981, 17, 602. [Google Scholar]
- Movsumov, I.S.; Garaev, E.A.; Isaev, M.I. Flavonoids from Cephalaria gigantea flowers. Chem. Nat. Compd. 2006, 42, 677–680. [Google Scholar] [CrossRef]
- Movsumov, I.S.; Garaev, E.A.; Isaev, M.I. Flavonoids from Cephalaria grossheimii. Chem. Nat. Compd. 2009, 45, 422–423. [Google Scholar] [CrossRef]
- Movsumov, I.S.; Yusifov, J.Y.; Garayev, E.A. The flavonoids of inflorescences in Cephalaria procera growing in Azerbaijan. Rastit. Resur. 2013, 49, 103–107. [Google Scholar]
- Sarıkahya, N.B.; Goren, A.C.; Kirmizigul, S. Simultaneous determination of several flavonoids and phenolic compounds in nineteen different Cephalaria species by HPLC-MS/MS. J. Pharm. Biomed. Anal. 2019, 173, 120–125. [Google Scholar] [CrossRef]
- Sarıkahya, N.B.; Kırmızıgül, S. Antimicrobially active hederagenin glycosides from Cephalaria elmaliensis. Planta Med. 2012, 78, 828–833. [Google Scholar] [CrossRef]
- Sarikahya, N.B.; Kayce, P.; Tabanca, N.; Estep, A.S.; Becnel, J.J.; Khan, I.A.; Kirmizigula, S. Toxicity of Cephalaria species and their individual constituents against Aedes aegypti. Nat. Prod. Commun. 2015, 7, 1195–1198. [Google Scholar] [CrossRef] [Green Version]
- Tabatadze, N.; Tsomaia, I.; Chikovani, A.; Gigoshvili, T. Biologically active substances of Cephalaria gigantea growing in Georgia. Austrian J. Tech. Nat. Sci. 2020, 22–25. [Google Scholar] [CrossRef]
- Szewczyk, K.; Grzywa-Celińska, A. Antioxidant and cytotoxic activities of phenolic ac-ids and their role in the anticancer therapies. In Phenolic Acids: Properties, Food Sources and Health Effects, 1st ed.; Flores, A., Ed.; Nova Publishers: New York, NY, USA, 2016; pp. 61–104. [Google Scholar]
- Pasi, S.; Aligiannis, N.; Skaltsounis, A.L.; Chinou, I.B. A new lignan glycoside and other constituents from Cephalaria ambrosioides. Nat. Prod. Lett. 2002, 16, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Valentine, I.K.; Maria, V.K.; Bruno, B. Phenolic cycle in plants and environment. J. Mol. Cell. Biol. 2003, 2, 13–18. [Google Scholar]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure–antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Sánchez-Maldonado, A.F.; Schieber, A.; Gänzle, M.G. Structure–function relationships of the antibacterial activity of phenolic acids and their metabolism by lactic acid bacteria. J. Appl. Microbiol. 2011, 111, 1176–1184. [Google Scholar] [CrossRef]
- García-Lafuente, A.; Moro, C.; Manchón, N.; Gonzalo-Ruiz, A.; Villares, A.; Guillamón, E.; Mateo-Vivaracho, L. In vitro anti-inflammatory activity of phenolic rich extracts from white and red common beans. Food Chem. 2014, 161, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Gawlik—Dziki, U. Effect of hydrothermal treatment on the antioxidant properties of broccoli (Brassica oleracea var. botrytisitalica) florets. Food Chem. 2008, 109, 393–401. [Google Scholar] [CrossRef]
- Szewczyk, K.; Zidorn, C. Ethnobotany, phytochemistry, andbioactivity of the genus Turnera (Passifloraceae) with a focus on damiana—Turnera diffusa. J. Ethnopharmacol. 2014, 152, 424–443. [Google Scholar] [CrossRef]
- Cheel, J.; Theoduloz, C.; Rodriguez, J.; Schmeda-Hirschmann, G. Free radical scavengers and antioxidants from lemongrass (Cymbopogon citratus (DC.) Stapf.). J. Agric. Food Chem. 2005, 53, 2511–2517. [Google Scholar] [CrossRef] [PubMed]
- Kirmizigül, S.; Sarikahya, N.B.; Sümbül, H.; Göktürk, R.S.; Yavasoglu, N.Ü.K.; Pekmez, M.; Arda, N. Fatty acid profile and biological data of four endemic Cephalaria species grown in Turkey. Rec. Nat. Prod. 2012, 6, 151–155. [Google Scholar]
- Rahimi, A.; Moghaddam, S.S.; Ghiyasi, M.; Heydarzadeh, S.; Ghazizadeh, K.; Popović-Djordjević, J. The influence of chemical, organic and biological fertilizers on agrobiological and antioxidant properties of Syrian Cephalaria (Cephalaria syriaca L.). Agriculture 2019, 9, 122. [Google Scholar] [CrossRef] [Green Version]
- Atalan, E.; Bulbul, A.S.; Ceylan, Y. Cephalaria syriaca (L.): Investigation of antimicrobial, antibiofilm, antioxidant potential and seed morphology. Fresenius Environ. Bull. 2020, 29, 3641–3649. [Google Scholar]
- Campos, J.; Schmeda-Hirschmann, G.; Leiva, E.; Guzmán, L.; Orrego, R.; Fernández, P.; González, M.; Radojkovic, C.; Zuñiga, F.A.; Lamperti, L.; et al. Lemon grass (Cymbopogon citratus (D.C.) Stapf) polyphenols protect human umbilical vein endothelial cell (HUVECs) from oxidative damage induced by high glucose, hydrogen peroxide and oxidized low-density lipoprotein. Food Chem. 2014, 151, 175–181. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chrząszcz, M.; Krzemińska, B.; Celiński, R.; Szewczyk, K. Phenolic Composition and Antioxidant Activity of Plants Belonging to the Cephalaria (Caprifoliaceae) Genus. Plants 2021, 10, 952. https://doi.org/10.3390/plants10050952
Chrząszcz M, Krzemińska B, Celiński R, Szewczyk K. Phenolic Composition and Antioxidant Activity of Plants Belonging to the Cephalaria (Caprifoliaceae) Genus. Plants. 2021; 10(5):952. https://doi.org/10.3390/plants10050952
Chicago/Turabian StyleChrząszcz, Małgorzata, Barbara Krzemińska, Rafał Celiński, and Katarzyna Szewczyk. 2021. "Phenolic Composition and Antioxidant Activity of Plants Belonging to the Cephalaria (Caprifoliaceae) Genus" Plants 10, no. 5: 952. https://doi.org/10.3390/plants10050952
APA StyleChrząszcz, M., Krzemińska, B., Celiński, R., & Szewczyk, K. (2021). Phenolic Composition and Antioxidant Activity of Plants Belonging to the Cephalaria (Caprifoliaceae) Genus. Plants, 10(5), 952. https://doi.org/10.3390/plants10050952