Soil Properties and Weed Dynamics in Wheat as Affected by Rice Residue Management in the Rice–Wheat Cropping System in South Asia: A Review
Abstract
:1. Introduction
1.1. Rice–Wheat Cropping System in Indo-Gangetic Plains of South Asia
1.2. Ill Effects of Burning
2. Materials and Methods
3. Impact of Crop Residues on Soil Health
3.1. Crop Residue vs. Soil Physical Properties
3.2. Crop Residue vs. Soil Chemical Properties
3.3. Crop Residue vs. Soil Biological Properties
4. Impact of Crop Residues on Agricultural Pests
4.1. Weeds
4.2. Other Agricultural Pests
4.2.1. Rodents
4.2.2. Insect Pests
4.2.3. Diseases
5. Use of Rice Residue for Weed Management
5.1. Burning
5.2. Incorporation
5.3. Surface Mulching
5.4. Allelopathic Potential of Rice Residue
5.5. Effect of Crop Residues on Herbicide Efficacy
6. Impact of Crop Residue Retention on Crop Growth and Yield
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Government of India. Annual Report 2016; Ministry of New and Renewable Energy: New Delhi, India, 2016. Available online: https://mnre.gov.in/knowledge-center/publication (accessed on 31 March 2021).
- Singh, A.K.; Dutta, S.K.; Datt, R.; Srinivasaraghavan, A.; Patil, S. Implications of crop residue burning: Opportunities for its management through technological and strategic interventions. In Proceedings of the International Conference on Crop Residue Management, Patna, India, 14–15 October 2019; pp. 1–12. [Google Scholar]
- Jain, N.; Bhatia, A.; Pathak, H. Emission of air pollutants from crop residue burning in India. Aerosol Air Qual. Res. 2014, 14, 422–430. [Google Scholar] [CrossRef] [Green Version]
- Singh, Y.; Singh, M.; Sidhu, H.S.; Khanna, P.K.; Kapoor, S.; Jain, A.K.; Singh, A.K.; Sidhu, G.K.; Singh, A.; Chaudhary, D.P.; et al. Options for Effective Utilization of Crop Residues Directorate of Research; Punjab Agricultural University: Ludhiana, India, 2010; p. 32. [Google Scholar]
- Goswami, S.B.; Mondal, R.; Mandi, S.K. Crop residue management options in rice-rice system: A review. Arch. Agron. Soil Sci. 2020, 66, 1218–1234. [Google Scholar] [CrossRef]
- Singh, R.; Yadav, D.B.; Ravisankar, N.; Yadav, A.; Singh, H. Crop residue management in rice-wheat cropping system for resource conservation and environmental protection in north-western India. Environ. Dev. Sustain. 2020, 22, 3871–3896. [Google Scholar] [CrossRef]
- Singh, P.; Singh, G.; Sodhi, G.P.S. Energy and carbon footprints of wheat establishment following different rice residue management strategies vis-á-vis conventional tillage coupled with rice residue burning in north-western India. Energy 2020, 200, 117554. [Google Scholar] [CrossRef]
- Caruso, G.; Gomez, L.D.; Ferriello, F.; Andolfi, A.; Borgonuovo, C.; Evidence, A.; Simister, R.; McQueen-Mason, S.J.; Carputo, D.; Frusciante, L.; et al. Exploring tomato Solanum pennellii introgression lines for residual biomass and enzymatic digestibility traits. BMC Genet. 2016, 17, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez, L.D.; Amalfitano, C.; Andolfi, A.; Simister, R.; Somma, S.; Ercolano, M.R.; Borrelli, C.; McQueen-Mason, S.J.; Frusciante, L.; Cuciniello, A.; et al. Valorising faba bean residual biomass: Effect of farming system and planting time on the potential for biofuel production. Biomass Bioenergy 2017, 107, 227–232. [Google Scholar] [CrossRef] [Green Version]
- Bhuvaneshwari, S.; Hettiarachchi, H.; Meegoda, J.N. Crop residue burning in India: Policy challenges and potential solutions. Int. J. Environ. Res. Public Health 2019, 16, 832. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, B.S.; Abugho, S.B. Interaction of rice residue and pre herbicides on emergence and biomass of four weed species. Weed Technol. 2012, 26, 627–632. [Google Scholar] [CrossRef]
- Mahajan, A.; Gupta, R.D. Integrated Nutrient Management (Inm) in a Sustainable Rice-Wheat Cropping System. Spinger Science + Business Media: Heidelberg, Germany, 2009; pp. 109–117. [Google Scholar]
- Indiastat. Area and Production of Rice and Wheat in India. Available online: https://www.indiastat.com (accessed on 20 March 2021).
- Singh, S. Role of herbicides and cropping systems on weed flora shift in India during the last quarter century. In Proceedings of the 7th International Weed Science Congress, Prague, Czech Republic, 19–25 June 2016; p. 383. [Google Scholar]
- Dhillion, B.S.; Kataria, P.; Dhillion, P.K. National food security vis-à-vis sustainability of agriculture in high crop productivity regions. Curr. Sci. 2010, 98, 33–36. [Google Scholar]
- Prasad, R.; Gangaiah, B.; Aipe, K.C. Effect of crop residue management in a rice wheat cropping system on growth and yield of crop and on soil fertility. Exp. Agric. 1999, 35, 427–435. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, D.K.; Singh, D.R.; Biswas, H.; Praveen, K.V.; Sharma, V. Estimating loss of ecosystem services due to paddy straw burning in North-West India. Int. J. Agric. Sustain. 2019, 17, 146–157. [Google Scholar] [CrossRef]
- Punjab Pollution Control Board. Air Pollution Due to Burning of Crop Residue in Agriculture Fields of Punjab. Available online: http://www.ppcb.gov.in/Attachments/Reports%20and%20Documents/ActionPlanstubble (accessed on 31 March 2021).
- Singh, Y.; Sidhu, H.S. Management of cereal crop residues for sustainable rice-wheat production systems in indo-gangetic plains of India. Proc. Indian Natl. Sci. Acad. 2014, 80, 95–114. [Google Scholar] [CrossRef]
- Mandal, K.G.; Misra, A.K.; Hati, K.M.; Bandyopadhyay, K.K.; Ghosh, P.K.; Mohanty, M. Rice residue-management options and effects on soil properties and crop productivity. Food Agric. Environ. 2004, 2, 224–231. [Google Scholar]
- Gadde, B.; Bonnet, S.; Menke, C.; Garivait, S. Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. Environ. Pollut. 2009, 157, 1554–1558. [Google Scholar] [CrossRef] [PubMed]
- Badrinath, K.V.S.; Chand Kiran, T.R. Agriculture crop residue burning in the Indo-ganetic plains-a study using IRSP6 WiFS satellite data. Curr. Sci. 2006, 91, 1085–1089. [Google Scholar]
- Gupta, P.K.; Sahai, S.; Singh, N.; Dixit, C.K.; Singh, D.P.; Sharma, C. Residue burning in rice-wheat cropping system: Causes and implications. Curr. Sci. 2004, 87, 1713–1715. [Google Scholar]
- Agarwal, S.; Trivedi, R.C.; Sengupta, B. Air pollution due to burning of agricultural residue. Indian J. Air Pollut. Control. 2008, 8, 51–59. [Google Scholar]
- Gupta, P.K.; Sahai, S. Residues Open Burning in Rice-Wheat Cropping System in India: An Agenda for Conservation of Environment and Agricultural Conservation; Abrol, I.P., Gupta, R.K., Malik, R.K., Eds.; Conservation Agriculture—Status and Prospects, New Delhi; Centre for Advancement of Sustainable Agriculture, National Agriculture Science Centre: New Delhi, India, 2005; pp. 50–54. [Google Scholar]
- Lal, M.M. An overview to agricultural waste burning. Indian. J. Air Pollut Control 2008, 8, 48–50. [Google Scholar]
- Canadian Lung Association. Pollution and Air Quality. 2007. Available online: http://www.lung.ca/protect-protegez/pollution-pollution_e.php (accessed on 20 March 2021).
- Singh, Y.; Singh, B.; Ladha, J.K.; Khind, C.S.; Khera, T.S.; Bueno, C.S. Management effects on residue decomposition, crop production and soil fertility in a rice-wheat rotation in India. Soil Sci. Soc. Am. J. 2004, 68, 320–326. [Google Scholar]
- Kasirajan, S.; Ngouajio, M. Polyethylene and biodegradable mulches for agricultural applications: A review. Agron. Sustain. Dev. 2012, 32, 501–529. [Google Scholar] [CrossRef]
- Tormena, C.A.; Karlen, D.L.; Logsdon, S.; Cherubin, M.R. Visual soil structure effects of tillage and corn stover harvest in Iowa. Soil Sci. Soc. Am. J. 2016, 80, 720–726. [Google Scholar] [CrossRef] [Green Version]
- Brookes, P.C.; Cayulea, M.L.; Contin, M.; De, N.M.; Kemmitt, S.J.; Mondini, C. The mineralization of fresh and humified soil organic matter by the soil microbial biomass. Waste Manag. 2008, 28, 716–722. [Google Scholar] [CrossRef]
- Choudhury, S.G.; Srivastava, S.; Singh, R.; Chaudhari, S.K.; Sharma, D.K.; Singh, S.K.; Sarkar, D. Tillage and residue management effects on soil aggregation, organic carbon dynamics and yield attribute in rice–wheat cropping system under reclaimed sodic soil. Soil Tillage Res. 2014, 136, 76–83. [Google Scholar] [CrossRef]
- Singh, G.; Jalota, S.K.; Sidhu, B.S. Soil physical and hydraulic properties in a rice-whear cropping system in India: Effects of rice-straw management. Soil Use Manag. 2005, 21, 17–21. [Google Scholar] [CrossRef]
- Singh, R.K.; Sharma, G.K.; Kumar, P.; Singh, S.K.; Singh, R. Effects of crop residues management on soil properties and crop productivity of rice-wheat system in inceptisols of seemanchal region of Bihar. Curr. J. Appl. Sci. Technol. 2019, 37, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Singh, Y.; Singh, B.; Ladha, J.K.; Khind, C.S.; Khera, T.S.; Bieno, C.S. Effects of residue decomposition on productivity and soil fertility in rice-wheat rotation. Soil Sci. Soc. Am. J. 2004, 68, 854–864. [Google Scholar] [CrossRef]
- Sidhu, B.R.; Beri, V. Experience with managing rice residue in intensive rice-wheat cropping system in Punjab. In Conservation Agriculture-Status and Prospects; Abrol, I.P., Malik, R.K., Eds.; Center for Advancement of Sustainable Agriculture (CASA): New Delhi, India, 2005; pp. 55–63. [Google Scholar]
- Shaver, T. Crop residue and soil physical properties. In Proceedings of the 22th Annual Central Plains Irrigation Conference, Kearney, NE, USA, 23–24 February 2010. [Google Scholar]
- Stegarescu, G.; Escuer-Gatius, J.; Soosaar, K.; Kauer, K.; Tonutare, T.; Astover, A.; Reintam, E. Effect of crop residue decomposition on soil aggregate stability. Agriculture 2020, 10, 527. [Google Scholar] [CrossRef]
- Gosh, T.; Maity, P.P.; Das, T.K.; Krishnan, P.; Bhatia, A.; Bhattacharya, P.; Sharma, D.K. Variation of porosity, pore size distribution and soil physical properties under conservation agriculture. Indian J. Agric. Sci. 2020, 90, 2051–2058. [Google Scholar]
- Karami, A.; Homaee, M.; Afzalinia, S.; Ruhipour, H.; Basirat, S. Organic resource manage-ment: Impacts on soil aggregate stability and other soil physico-chemical properties. Agric. Eco Syst. Environ. 2012, 148, 22–28. [Google Scholar] [CrossRef]
- Tan, Z.; Liu, S. Corn belt soil carbon and macronutrient budgets with projected sustainable stover harvest. Agric. Ecosyst. Environ. 2015, 212, 119–216. [Google Scholar] [CrossRef] [Green Version]
- Ogbodo, E.N. Effect of crop residue on soil chemical properties and rice yield on an Ultisol at Abakaliki, Southeastern Nigeria. Am. Eurasian J. Sustain. Agric. 2009, 7, 13–18. [Google Scholar]
- Kaschuk, G.; Alberton, O.; Hungria, M. Quantifying effects of different agricultural land uses on soil microbial biomass and activity in Brazilian biomes: Inferences to improve soil quality. Plant. Soil 2011, 338, 467–481. [Google Scholar] [CrossRef]
- Yadav, D.S.; Shukla, R.P.; Sushant; Kumar, B. Effect of zero tillage and nitrogen level on wheat after rice. Indian J. Agron. 2005, 50, 52–53. [Google Scholar]
- Saharawat, Y.S.; Singh, B.; Malik, R.K.; Ladha, J.K.; Gathala, M.; Jat, M.L.; Kumar, V. Evaluation of alternative tillage and crop establishment methods in a rice-wheat rotation in north western IGP. Field Crop. Res. 2010, 116, 260–267. [Google Scholar] [CrossRef]
- Saikia, R.; Sharma, S.; Thind, H.S.; Singh, Y. Tillage and residue management practices affect soil biological indicators in a rice–wheat cropping system in north-western India. Soil Use Manag. 2019, 36, 157–172. [Google Scholar] [CrossRef]
- Karlen, D.L.; Wollenhaupt, N.C.; Erbach, D.C. Crop residue effects on soil quality following 10-years of no-till corn. Soil Tillage Res. 1994, 31, 149–167. [Google Scholar] [CrossRef]
- Quinn, N.F.; Brainard, D.C.; Szendrei, Z. The effect of conservation tillage and cover crop residue on beneficial arthropods and weed seed predation in acorn squash. Environ. Entomol. 2016, 45, 1543–1551. [Google Scholar] [CrossRef]
- Hendriksen, N.B. Leaf litter selection by detritivore and geophagous earthworms. Biol. Fertile Soils 1990, 10, 17–21. [Google Scholar]
- Tian, G.; Brussaard, L.; Kang, B.T. Biological effects of plant residues with contrasting chemical compositions under humid tropical conditions: Effects on soil fauna. Soil Biol. Biochem. 1993, 25, 731–737. [Google Scholar] [CrossRef] [Green Version]
- Wei, T.; Zhang, P.; Wang, K.; Ding, R.; Yang, B.; Nie, J.Z.; Jia, Z.; Han, Q. Effects of wheat straw incorporation on the availability of soil nutrients and enzyme activities in semiarid areas. PLoS ONE 2015, 10, e0120994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loveland, P.; Webb, J. Is there a critical level of organic matter in the agricultural soils of temperate regions: A review. Soil Tillage Res. 2003, 70, 1–18. [Google Scholar] [CrossRef]
- Bera, T.; Sharma, S.; Thind, H.S.; Singh, Y.; Sidhu, H.S.; Jat, M.L. Changes in soil biochemical indicators at different wheat growth stages under conservation-based sustainable intensification of rice-wheat system. J. Integr. Agric. 2018, 17, 1871–1880. [Google Scholar] [CrossRef]
- Rao, A.N.; Wani, S.P.; Ladha, J.K. Weed, management research in India—An analysis of the past and outlook for future. In Souvenir; DWR Publication No. 18; Directorate of Weed Research: Jabalpur, India, 2014; pp. 1–26. [Google Scholar]
- Kaur, S.; Barua, I.C.; Kaur, T.; Kaur, N.; Kaul, A.; Bhullar, M.S. Appearance of new weeds in Punjab. Indian J. Weed Sci. 2018, 50, 59–63. [Google Scholar] [CrossRef]
- Naidu, V.S.G.R. Handbook on Weed Identification; Directorate of Weed Science Research: Jabalpur, India, 2012; p. 354. [Google Scholar]
- Kumar, S.; Agarwal, A.; Kumar, P. Effect of culture methods on weed population and grain yield of wheat (Triticum aestivum L.). Vegetos 2008, 21, 61–63. [Google Scholar]
- Sharma, R. Consolidating the productivity the productivity grain in wheat—An outlook. In Integrated Weed Management Technologies in Wheat; Sharma, R.K., Aggarwal, S., Singh, A.M., Sharma, J.B., Eds.; Indian Agricultural Research Institute: New Delhi, India, 2005; pp. 52–56. [Google Scholar]
- Pandey, J.; Verma, A.K. Effect of isoproturon tank mix with metsulfron and 2,4- D on weeds and yield of wheat (Triticum aestivum L.). Indian J. Agron. 2004, 49, 114–116. [Google Scholar]
- Brar, A.S.; Walia, U.S. Effect of tillage and weed management on seed bank of Phalaris minor in wheat under rice-wheat sequence. Indian J. Weed Sci. 2007, 39, 9–13. [Google Scholar]
- Singh, A.P.; Bhullar, M.S.; Yadav, R.; Chowdary, T. Weed management in zero-till wheat. Indian J. Weed Sci. 2015, 47, 233–239. [Google Scholar]
- Rahaman, S.; Mukherjee, P.K. Effect of herbicides on weed-crop association in wheat. J. Crop. Weed 2005, 5, 113–116. [Google Scholar]
- Jat, R.S.; Nepalia, V.; Chaudhary, P.D. Influence of herbicide and methods of sowing on weed dynamics in wheat (Triticum aestivum). Indian J. Weed Sci. 2003, 35, 18–20. [Google Scholar]
- Chhokar, R.S.; Malik, R.K. Isoproturon resistant Phalaris minor and its response to alternate herbicides. Weed Technol. 2002, 16, 116–123. [Google Scholar] [CrossRef]
- Chhokar, R.S.; Sharma, R.K.; Chauhan, D.S.; Mongia, A.D. Evaluation of herbicides against Phalaris minor in wheat in north-western Indian plains. Weed Res. 2006, 46, 40–49. [Google Scholar] [CrossRef]
- Yadav, D.B.; Punia, S.S.; Yadav, A.; Balyan, R.S. Evaluation of tank-mix combinations of different herbicides for control of Phalaris minor in wheat. Indian J. Weed Sci. 2010, 42, 193–197. [Google Scholar]
- Jack, O.; Menegat, A.; Gerhards, R. Winter wheat yield loss in response to Avena fatua competition and effect of reduced herbicide dose rates on seed production of this species. J. Plant. Dis. Prot. 2017, 124, 371–382. [Google Scholar] [CrossRef] [Green Version]
- Malik, R.K.; Singh, S. Littleseed canarygrass (Phalaris minor Retz.) resistance to isoproturon in India. Weed Technol. 1995, 9, 419–425. [Google Scholar] [CrossRef]
- Singh, M.; Singh, M.K.; Rakshit, A.; Prasad, S.K.; Kumar, K. Herbicides, nitrogen-scheduling and rates effects on economics of wheat (Triticum aestivum L.). Econ. Aff. 2014, 59, 663–667. [Google Scholar] [CrossRef]
- Gill, H.S.; Walia, U.S.; Brar, L.S. Control of Phalaris minor Retz. and wild oat in wheat with new herbicides. Pesticides 1978, 12, 53–56. [Google Scholar]
- Babbar, B.K.; Singla, N.; Singh, R. Impact of village level education and training on adoption of control strategies, their sustainability and reduction in crop losses. Int. J. Adv. Res. 2014, 2, 672–683. [Google Scholar]
- Sharma, A.; Singh, R. Effect of abiotic factors on burrow density of Indian gerbil, Tatera indica (Hardwicke) (Rodentia: Muridae) in Punjab. J. Entomol. Zool. Stud. 2018, 6, 1508–1513. [Google Scholar]
- Singh, J.M.; Singh, J.; Kumar, H.; Singh, S.; Sachdeva, J.; Kaur, B.; Chopra, S.; Chand, P. Management of paddy straw in Punjab: An economic analysis of different techniques. Indian J. Agric. Econ. 2019, 74, 301–310. [Google Scholar]
- Dhillon, G.S. Comparative evaluation of happy seeder technology versus normal sowing in wheat (Triticum aestivum) in adopted village killi nihal singh of Bathinda district of Punjab. J. Appl. Nat. Sci. 2016, 8, 2278–2282. [Google Scholar] [CrossRef]
- Singh, B. Incidence of the pink noctuid stem borer, Sesamia inferens (walker), on wheat under two tillage conditions and three sowing dates in north-western plains of India. J. Entomol. 2012, 9, 368–376. [Google Scholar] [CrossRef] [Green Version]
- Sandhu, B.S.; Dhaliwal, N.S.; Sandhu, G.S. Production potential and economics of wheat, Triticum awstivum as influenced by different planting methods in Punjab, India. J. Appl. Nat. Sci. 2016, 8, 777–781. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Sarao, P.S. Efficacy of biopesticides and insecticides against army worm Mythimna separate (walker). Indian J. Entomol. 2020, 82, 369–373. [Google Scholar] [CrossRef]
- Takeuchi, S. Importance and problems of disposal of crop residues containing pathogens of plant diseases. JARQ 1987, 21, 102–108. [Google Scholar]
- Dill-Macky, R. The effect of previous crop residues and tillage on Fusarium head blight of wheat. Plant. Dis. 2000, 84, 71–75. [Google Scholar] [CrossRef] [Green Version]
- Gangwar, K.S.; Singh, K.K.; Sharma, S.K.; Tomar, O.K. Alternative tillage and crop residue management in wheat after rice in sandy loam soils of Indo-Gangetic plains. Soil Tillage Res. 2006, 88, 242–252. [Google Scholar] [CrossRef]
- Khankhane, P.J.; Barman, K.K.; Varshney, J.G. Effect of rice residue management practices on weed density, wheat productivity and soil fertility in a swell-shrink soil. Indian J. Weed Sci. 2009, 41, 41–45. [Google Scholar]
- Chhokar, R.S.; Singh, S.; Sharma, R.K.; Singh, M. Influence of straw management on Phalaris minor Retz Control. Indian J. Weed Sci. 2009, 41, 150–156. [Google Scholar]
- Brar, A.S.; Walia, U.S. Weed dynamics and wheat (Triticum arstivum L.) productivity as influenced by planting techniques and weed control practices. Indian J. Weed Sci. 2009, 41, 161–166. [Google Scholar]
- Walsh, M.; Newman, P. Burning narrow windrows for weed seed destruction. Field Crop. Res. 2007, 104, 24–30. [Google Scholar] [CrossRef]
- Norsworthy, J.K.; Green, J.K.; Barber, T.; Roberts, T.L.; Walsh, M.J. Seed destruction of weeds in southern US crops using heat and narrow-windrow burning. Weed Technol. 2020, 34, 589–596. [Google Scholar] [CrossRef]
- Beri, V.; Gupta, A.P. Recycling of Rural and Urban Wastes—A Review; Department of Soils, Punjab Agricultural University: Ludhiana, India, 1995; p. 145. [Google Scholar]
- Meena, B.L.; Singh, R.K. Response of wheat (Triticum aestivum) to rice (Oryza sativa) residue and weed management practices. Indian J. Agron. 2013, 58, 521–524. [Google Scholar]
- Singh, A.; Kang, J.S.; Kaur, M.; Goel, A. Root parameters, weeds, economics and productivity of wheat (Triticum aestivum) as affected by methods of planting in-situ paddy straw. Int. J. Curr. Microbiol. Appl. Sci. 2013, 2, 396–405. [Google Scholar]
- Teasdale, J.R.; Mohler, C. Light transmittance, soil temperature and soil moisture under residue of hairy vetch and rye. Agron. J. 1993, 85, 673–680. [Google Scholar] [CrossRef]
- Malik, R.K.; Yadav, A.; Singh, A.; Malik, R.S.; Balyan, R.S.; Banga, R.S.; Sardana, P.K.; Jaipal, S.; Hobbs, P.R.; Gill, G.; et al. Herbicide Resistance Management and Evolution of Zero-Tillage-A Success Story; Research Bulletin; CCS HAU: Haryana, India, 2002; p. 43. [Google Scholar]
- Chhokar, R.S.; Sharma, R.K.; Jat, G.R.; Pundir, A.K.; Gathala, M.K. Effect of tillage and herbicides on weeds and productivity of wheat under rice-wheat growing system. Crop. Prot. 2007, 26, 1689–1696. [Google Scholar] [CrossRef]
- Franke, A.C.; Singh, S.; Mcroberts, N.; Nehra, A.S.; Godara, S.; Malik, R.K.; Marshall, G. Phalaris minor seedbank studies: Longevity, seedling emergence and seed production as affected by tillage regime. Weed Res. 2007, 47, 73–83. [Google Scholar] [CrossRef]
- Gupta, R.; Seth, A. A review of resource conserving technologies for sustainable management of the rice–wheat cropping systems of the Indo-Gangetic Plains. Crop. Prot. 2007, 26, 436–447. [Google Scholar] [CrossRef]
- Mobil, A.; Rinwa, A.; Sahil; Chauhan, B.S. Effects of sorghum residue in presence of pre-emergence herbicides on emergence and biomass of Echinochloa colna and Chloris virgata. PLoS ONE 2020, e0229817. [Google Scholar] [CrossRef]
- Chaudhary, S.; Iqbal, J. Weed control and nutrient promotion in zero-tillage wheat through rice straw mulch. Pak. J. Weed Sci. Res. 2013, 19, 465–474. [Google Scholar]
- Brar, A.S.; Walia, U.S. Effect of rice residue management techniques and herbicides on nutrient uptake by Phalaris minor Retz and wheat (Triticum aestivum L.). Indian J. Weed Sci. 2008, 40, 121–127. [Google Scholar]
- Sharma, S.N.; Singh, R.K. Weed management in rice-wheat cropping system under conservation tillage. Indian J. Weed Sci. 2010, 42, 23–29. [Google Scholar]
- Mohler, C.L. A model of the effects of tillage on emergence of weed seedlings. Ecol. Appl. 1993, 3, 53–73. [Google Scholar] [CrossRef] [Green Version]
- Dick, R.P. A review: Long-term effects of agricultural systems on soil biochemical and microbial parameters. Agric. Ecosyst. Environ. 1992, 40, 25–36. [Google Scholar] [CrossRef]
- Mahmoodzadeh, H.; Abbasi, F.; Ghotbzadeh, Y. Allelopathic effects of root exudate and leaching of rice seedlings on hedge mustard (Sisybrium officinale). Res. J. Environ. Sci. 2011, 5, 486–492. [Google Scholar]
- Bhandari, K.; Guru, S.K. Inhibitory effects of rice straw on the germination and seedling growth of some major weeds of wheat. Indian J. Weed Sci. 2017, 49, 194–197. [Google Scholar] [CrossRef]
- Kaur, H.; Kaur, N.; Sethi, R. Allelopathic potential of rice varieties against major weeds of rice and wheat. Indian J. Weed Sci. 2017, 49, 179–181. [Google Scholar] [CrossRef] [Green Version]
- Chung, I.M.; Hahn, S.J.; Ahmad, A. Confirmation of potential herbicidal agents in hulls of rice, Oryza sativa. J.Chem. Ecol. 2005, 31, 1339–1352. [Google Scholar] [CrossRef] [PubMed]
- Marble, C.S. Herbicide and mulch interactions: A review of the literature and implications for the landscape maintenance industry. Weed Technol. 2015, 29, 341–349. [Google Scholar] [CrossRef]
- Chaudhary, A.; Chhokar, R.S.; Yadav, D.B.; Kumar, V.; Ram, H.; Rawal, S.; Khedwal, R.S.; Sharma, R.K.; Gill, S.C. In-situ paddy straw management practices for higher resource use efficiency and crop productivity in Indo-gangetic plains (IGP) of India. J. Cereal Res. 2019, 11, 172–198. [Google Scholar] [CrossRef] [Green Version]
- Guenzi, W.D.; McCalla, T.M. Inhibition of germination and seedling development by crop residues. Soil Sci. Soc. Am. J. 1962, 26, 456–458. [Google Scholar] [CrossRef]
- Khalil, Y.; Flower, K.; Siddique, K.H.M.; Ward, P. Rainfall affects leaching of pre-emergent herbicide from wheat residue into the soil. PLoS ONE 2019, 14, e01210219. [Google Scholar] [CrossRef] [Green Version]
- Behmer, D.E.; Mccalla, T.M. The inhibition of seedling growth by crop residue in soil inoculated with Penicillium urticae bainer. Plant. Soil 1963, 18, 199–206. [Google Scholar] [CrossRef]
- Patrick, Z.A.; Toussoun, T.A. Plant. residues and organic amendments in relation to biological control. In Ecology of Soil-Borne Pathogens; Baker, K.F., Synder, C.W., Eds.; UC Press: Berkeley, CA, USA, 1965; pp. 440–459. [Google Scholar]
- Wuest, S.B.; Albrecht, S.L.; Skirvin, K.W. Crop residue position and interference with wheat seedling development. Soil Tillage Res. 2000, 55, 175–182. [Google Scholar] [CrossRef]
- Ladha, J.K.; Gathala, M.K.; Saharawat, Y.S.; Kumar, V.; Sharma, P.K. Effect of tillage and crop establishment methods on physical properties of a medium textured soil under a seven-year rice-wheat rotation. Soil Sci. Soc. Am. J. 2011, 75, 1851–1862. [Google Scholar]
- Singh, S.; Chhokar, R.S. Integrated weed management strategies for sustainable wheat production. In Wheat-Productivity Enhancement Under Changing Climate; Singh, S.S., Hanchinal, R.R., Singh, G.N., Sharma, R.K., Tyagi, B.S., Saharan, M.S., Sharma, I., Eds.; Narosa Publishing House: New Delhi, India, 2012; pp. 197–205. [Google Scholar]
- Mahal, J.S.; Manes, G.S.; Singh, A.; Kaur, S.; Singh, M. Complementing solutions and strategies for managing rice straw and their impact in the state of Punjab. Agric. Res. J. 2019, 56, 588–593. [Google Scholar] [CrossRef]
- Singh, R.; Mahajan, G.; Kaur, S.; Chauhan, B.S. Issues and strategies for rice residue management to unravel winter smog in north India. Curr. Sci. 2018, 114, 2419. [Google Scholar]
- Singh, S. Role of management practices on control of isoproturon-resistant littleseed canary grass (Phalaris minor) in India. Weed Technol. 2007, 21, 339–346. [Google Scholar] [CrossRef]
Crop | Residue Generated (Mt·Year−1) | Composition |
---|---|---|
Rice | 122–231.9 | Straw, husk |
Wheat | 110–130 | Straw |
Maize | 71 | Stover, husk |
Millets | 26 | Straw |
Sugarcane | 107.5–141.0 | Trash, bagasse, pressmud |
Fibre (jute, mesta (Hibiscus spp), cotton) | 80.0–122.4 | Trash, sticks |
Pulses | 28 | Stover |
End Use | Rice (% of Total Stubble Production) | Wheat (% of Total Stubble Production) |
---|---|---|
Fodder | 7 | 45 |
Soil incorporation | 1 | <1 |
Burnt | 81 | 48 |
Rope making | 4 | 0 |
Miscellaneous | 7 | 7 |
Pollutants (Gg) | References | |||
---|---|---|---|---|
Methane | Carbon Monoxide | Nitrous Oxide | Nitrogen Dioxide | |
110 | 2306 | 2 | 84 | [19] |
1.33 | 113 | - | 8.6 | [20] |
680 | 2300 | - | 960 | [21] |
102 | 2138 | 2.2 | 78 | [22] |
Soil Properties | Impact of Crop Residue Retention | Reference |
---|---|---|
Physical properties | ||
Infiltration | (+) 20.6% | [33] |
Bulk density | (−) 6.0% | [34] |
Porosity | (+) 18.7% | [33] |
Chemical properties | ||
Organic matter | (+) 18.0% | [35] |
Organic carbon | (+) 43.9–66.7% | [32,34] |
N, P, K | Increases | [34] |
EC | Increases | [34] |
Biological properties | ||
Microbial biomass | (+) 90–95% | [34] |
Microbial activity bacteria Fungi | (+) 5–10 times (+) 1.5 to 11 times | [36] [36] |
Region | Yield Loss (%) | Species | Reference |
---|---|---|---|
Punjab | 18–34 | Phalaris minor, Polygonum monospeliensis, Poa annua, Medicago denticulata, Anagallis arvensis, cress garden (Lepidium sativum L.), Malva neglecta | [60] |
60–70 | Phalaris minor, Polygonum monospeliensis, Poa annua, Medicago denticulata, Anagallis arvensis, Malva neglecta | [61] | |
West Bengal | 24–32 | Polygonum orientale, P. pensylvanicum, P. persicaria, chickweed (Stellaria media (L.)) Vill., diamond flower (Oldenlandia diffusa L.), pennywort (Hydrocotyl ranunculoides L.f.), groundcherry (Physalis minima) | [62] |
Karnal | 25–60 | Coronopus didymus, A. arvensis, Melilotus indicus (L.) All, Medicago denticulata, Rumex dentatus, peavine (Lathyrus aphaca L.) | [64] |
Haryana | 15–50 | Phalaris minor, Polygonum monospeliensis, Coronopus didymus, A. arvensis, Melilotus indica, Medicago denticulata, Rumex dentatus, Lathyrus aphaca | [63] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaur, R.; Kaur, S.; Deol, J.S.; Sharma, R.; Kaur, T.; Brar, A.S.; Choudhary, O.P. Soil Properties and Weed Dynamics in Wheat as Affected by Rice Residue Management in the Rice–Wheat Cropping System in South Asia: A Review. Plants 2021, 10, 953. https://doi.org/10.3390/plants10050953
Kaur R, Kaur S, Deol JS, Sharma R, Kaur T, Brar AS, Choudhary OP. Soil Properties and Weed Dynamics in Wheat as Affected by Rice Residue Management in the Rice–Wheat Cropping System in South Asia: A Review. Plants. 2021; 10(5):953. https://doi.org/10.3390/plants10050953
Chicago/Turabian StyleKaur, Ramanpreet, Simerjeet Kaur, Jasdev Singh Deol, Rajni Sharma, Tarundeep Kaur, Ajmer Singh Brar, and Om Parkash Choudhary. 2021. "Soil Properties and Weed Dynamics in Wheat as Affected by Rice Residue Management in the Rice–Wheat Cropping System in South Asia: A Review" Plants 10, no. 5: 953. https://doi.org/10.3390/plants10050953
APA StyleKaur, R., Kaur, S., Deol, J. S., Sharma, R., Kaur, T., Brar, A. S., & Choudhary, O. P. (2021). Soil Properties and Weed Dynamics in Wheat as Affected by Rice Residue Management in the Rice–Wheat Cropping System in South Asia: A Review. Plants, 10(5), 953. https://doi.org/10.3390/plants10050953