Effect of Different Climate Change Variables on the Ecology and Management of Sesbania cannabina through Glyphosate
Abstract
:1. Introduction
- To evaluate whether different atmospheric [CO2] and soil moisture levels can affect the growth of S. cannabina through changes in its morphological and physiological parameters
- To determine the interactive impact of elevated [CO2] and moisture stress conditions on the efficacy of glyphosate
2. Results
2.1. Impact of Atmospheric [CO2] and Soil Moisture Levels on Growth
2.2. Impact of Different [CO2] and Soil Moisture Levels on Glyphosate Efficacy
3. Discussion
3.1. Effect of Different [CO2]
3.2. Effect of Different Soil Moisture Levels
3.3. Efficacy of Glyphosate in Climate Change
4. Materials and Methods
4.1. Seed Collection, Storage, and Planting
4.2. Experimental Setup
4.3. Glyphosate Application
4.4. Data Collection
4.5. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allmendinger, T. The real cause of global warming and its consequences on climate policy. SF J Glob. Warm. 2018, 2, 1–11. [Google Scholar]
- Rodrigues, W.P.; Martins, M.Q.; Fortunato, A.S.; Rodrigues, A.P.; Semedo, J.N.; Simões-Costa, M.C.; Pais, I.P.; Leitão, A.E.; Colwell, F.; Goulao, L.; et al. Long-term elevated air [CO2] strengthens photosynthetic functioning and mitigates the impact of supra-optimal temperatures in tropical Coffea arabica and C. canephora species. Glob. Chang. Biol. 2016, 22, 415–431. [Google Scholar] [CrossRef]
- Ziska, L.H. The role of climate change and increasing atmospheric carbon dioxide on weed management: Herbicide efficacy. Agric. Ecosyst. Environ. 2016, 231, 304–309. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Hess, F.D. Herbicide absorption and translocation and their relationship to plant tolerances and susceptibly. In Weed Physiology, 2nd ed.; Duke, S.O., Ed.; CRC Press: Boca Raton, FL, USA, 2017; pp. 201–2014. [Google Scholar]
- Ainsworth, E.A.; Long, S.P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 2005, 165, 351–372. [Google Scholar] [CrossRef] [PubMed]
- de Ruiter, H.; Meinen, E. Influence of water stress and surfactant on the efficacy, absorption, and translocation of glyphosate. Weed Sci. 1998, 46, 289–296. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Rogers, A. The response of photosynthesis and stomatal conductance to rising [CO2]: Mechanisms and environmental interactions. Plant Cell Environ. 2007, 30, 258–270. [Google Scholar] [CrossRef]
- Shrestha, A.; Budhathoki, S.; Steinhauer, K. Temperature effects on glyphosate resistance in California populations of Junglerice. Agron. J. 2018, 110, 1624–1626. [Google Scholar] [CrossRef]
- Mpelasoka, F.; Hennessy, K.; Jones, R.; Bates, B. Comparison of suitable drought indices for climate change impacts assessment over Australia towards resource management. Int. J. Climatol. 2008, 28, 1283–1292. [Google Scholar] [CrossRef]
- Ziska, L.H.; Faulkner, S.; Lydon, J. Changes in biomass and root: Shoot ratio of field-grown Canada thistle (Cirsium arvense), a noxious, invasive weed, with elevated CO2: Implications for control with glyphosate. Weed Sci. 2004, 52, 584–588. [Google Scholar] [CrossRef]
- Patterson, D.T.; Flint, E.P. Implications of increasing carbon dioxide and climate change for plant communities and competition in natural and managed ecosystems . In Impact of Carbon Dioxide, Trace Gases, and Climate Change on Global Agriculture, 1st ed.; Kimball, B.A., Ed.; American Society of Agronomy: Madison, WI, USA, 1990; pp. 83–110. [Google Scholar]
- Jabran, K.; Doğan, M.N. High carbon dioxide concentration and elevated temperature impact the growth of weeds but do not change the efficacy of glyphosate. Pest Manag. Sci. 2018, 74, 766–771. [Google Scholar] [CrossRef] [PubMed]
- Heap, I.; Duke, S.O. Overview of glyphosate-resistant weeds worldwide. Pest Manag. Sci. 2018, 74, 1040–1049. [Google Scholar] [CrossRef]
- Matzrafi, M.; Brunharo, C.; Tehranchian, P.; Hanson, B.D.; Jasieniuk, M. Increased temperatures and elevated CO2 levels reduce the sensitivity of Conyza canadensis and Chenopodium album to glyphosate. Sci. Rep. 2019, 9, 2228. [Google Scholar] [CrossRef]
- Heap, I. Herbicide resistant weeds. In Integrated Pest Management, 1st ed.; Pimentel, D., Peshin, R., Eds.; Springer: Dordrecht, The Netherland, 2014; pp. 281–301. [Google Scholar]
- Duke, S.O. Glyphosate: The world’s most successful herbicide under intense scientific scrutiny. Pest Manag. Sci. 2018, 74, 1025–1026. [Google Scholar] [CrossRef] [PubMed]
- Skelton, J.J.; Ma, R.; Riechers, D.E. Waterhemp (Amaranthus tuberculatus) control under drought stress with 2, 4-dichlorophenoxyacetic acid and glyphosate. Weed Biol. Manag. 2016, 16, 34–41. [Google Scholar] [CrossRef]
- Ziska, L.H.; Teasdale, J.R.; Bunce, J.A. Future atmospheric carbon dioxide may increase tolerance to glyphosate. Weed Sci. 1999, 47, 608–615. [Google Scholar] [CrossRef]
- Ziska, L.H.; Teasdale, J.R. Sustained growth and increased tolerance to glyphosate observed in a C3 perennial weed, quackgrass (Elytrigia repens), grown at elevated carbon dioxide. Funct. Plant Biol. 2000, 27, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Downey, P.O.; Lenz, T.I.; Sea, W.B.; Higgisson, W.; Lavier, G.; Waryszak, P.; Lieshman, M.R. Does the tolerance of weeds to herbicide change with elevated levels of CO2. In Proceedings of the 18th Australasian Weeds Conference, Melbourne, Australia, 8–11 October 2012; pp. 273–274. [Google Scholar]
- Sesbania Cannabina, Some Magnetic Island Plants. Available online: https://www.somemagneticislandplants.com.au/index.php/plants/488-sesbania-cannabina (accessed on 21 February 2019).
- Iqbal, N.; Manalil, S.; Chauhan, B.S.; Adkins, S.W. Germination Biology of Sesbania (Sesbania cannabina): An Emerging Weed in the Australian Cotton Agro environment. Weed Sci. 2019, 67, 68–76. [Google Scholar] [CrossRef]
- Manalil, S.; Werth, J.; Jackson, R.; Chauhan, B.S.; Preston, C. An assessment of weed flora 14 years after the introduction of glyphosate-tolerant cotton in Australia. Crop Pasture Sci. 2017, 68, 773–780. [Google Scholar] [CrossRef]
- Johnson, S.; Hazelwood, S. Plants of western New South Wales, In Plants of Western New South Wales, 1st ed.; Cunningham, G.M., Ed.; CSIRO Publishing: Collingwood, Australia, 2011; pp. 411–412. [Google Scholar]
- Navie, S.C.; McFadyen, R.E.; Panetta, F.D.; Adkins, S.W. The effect of CO2 enrichment on the growth of a C3 weed (Parthenium hysterophorus L.) and its competitive interaction with a C4 grass (Cenchrus ciliaris L.). Plant Prot. Q. 2005, 20, 61–66. [Google Scholar]
- Ziska, L.H. Changes in competitive ability between a C4 crop and a C3 weed with elevated carbon dioxide. Weed Sci. 2001, 49, 622–627. [Google Scholar] [CrossRef]
- Ziska, L.H. Influence of rising atmospheric CO2 since 1900 on early growth and photosynthetic response of a noxious invasive weed, Canada thistle (Cirsium arvense). Funct. Plant Biol. 2002, 29, 1387–1392. [Google Scholar] [CrossRef]
- Shabbir, A.; Dhileepan, K.; Khan, N.; Adkins, S.W. Weed–pathogen interactions and elevated CO2: Growth changes in favour of the biological control agent. Weed Res. 2014, 54, 217–222. [Google Scholar] [CrossRef]
- Bowes, G.; Vu, J.C.; Hussain, M.W.; Pennanen, A.H.; Allen, L.H., Jr. An overview of how rubisco and carbohydrate metabolism may be regulated at elevated atmospheric [CO2] and temperature. Agric. Food Sci. 1996, 5, 261–270. [Google Scholar] [CrossRef]
- Drake, B.G.; Gonza‘lez-Meler, M.A.; Long, S.P. More efficient plants: A consequence of rising atmospheric CO2? Annu. Rev. Plant Biol. 1997, 48, 609–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajwa, A.A.; Chauhan, B.S.; Adkins, S. Morphological, physiological and biochemical responses of two Australian biotypes of Parthenium hysterophorus to different soil moisture regimes. Environ. Sci. Pollut. Res. 2017, 24, 16186–16194. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Aulakh, J.; Jhala, A.J. Growth and seed production of glyphosate-resistant giant ragweed (Ambrosia trifida L.) in response to water stress. Can. J. Plant Sci. 2016, 96, 828–836. [Google Scholar] [CrossRef] [Green Version]
- Sarangi, D.; Irmak, S.; Lindquist, J.L.; Knezevic, S.Z.; Jhala, A.J. Effect of water stress on the growth and fecundity of common waterhemp (Amaranthus rudis). Weed Sci. 2015, 64, 42–52. [Google Scholar] [CrossRef] [Green Version]
- Sharp, R.E.; Davies, W.J. Solute regulation and growth by roots and shoots of water-stressed maize plants. Planta 1979, 147, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Varga, B.; Bencze, S.; Balla, K.; Veisz, O. Effects of the elevated atmospheric CO2 concentration on the water use efficiency of winter wheat. Procedia Environ. Sci. 2015, 29, 180–181. [Google Scholar] [CrossRef] [Green Version]
- Ziska, L.H. Elevated carbon dioxide alters chemical management of Canada thistle in no-till soybean. Field Crop. Res. 2010, 119, 299–303. [Google Scholar] [CrossRef]
- Varanasi, A.; Prasad, P.V.; Jugulam, M. Impact of climate change factors on weeds and herbicide efficacy. Adv. Agron. 2016, 135, 107–146. [Google Scholar]
- Matzrafi, M.; Seiwert, B.; Reemtsma, T.; Rubin, B.; Peleg, Z. Climate change increases the risk of herbicide-resistant weeds due to enhanced detoxification. Planta 2016, 244, 1217–1227. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Weaver, S.E.; Hamill, A.S. Risks and reliability of using herbicides at below-labeled rates. Weed Technol. 2000, 14, 106–115. [Google Scholar] [CrossRef]
- Manalil, S.; Busi, R.; Renton, M.; Powles, S.B. Rapid evolution of herbicide resistance by low herbicide dosages. Weed Sci. 2011, 59, 210–217. [Google Scholar] [CrossRef]
- Adkins, S.W.; Tanpipat, S.; Swarbrick, J.T.; Boersma, M. Influence of environmental factors on glyphosate efficacy when applied to Avena fatua or Urochloa panicoides. Weed Res. 1998, 38, 129–138. [Google Scholar] [CrossRef]
- Nguyen, T.L.T. The Invasive Potential of Parthenium Weed (Parthenium hysterophorus L.) in Australia. Ph.D. Thesis, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia, 2011. [Google Scholar]
- Nufarm, Weedmaster DST. Available online: https://www2.nufarm.com/au/product/weedmaster-dst/ (accessed on 10 October 2018).
- Vanhala, P.; Kurstjens, D.; Ascard, J.; Bertram, A.; Cloutier, D.C.; Mead, A.; Raffaelli, M.; Rasmussen, J. Guidelines for physical weed control research: Flame weeding, weed harrowing and intra-row cultivation. In Proceedings of the 6th EWRS Workshop on Physical and Cultural Weed Control, Lillehammer, Norway, 8–10 March 2004; pp. 194–225. [Google Scholar]
Glyphosate Rate (g ae ha−1) | Percentage Control (Biomass Reduction) | |||
---|---|---|---|---|
400 ppm | 700 ppm | |||
100% FC | 50% FC | 100% FC | 50% FC | |
517 | 100 a | 94 a | 100 a | 63 b |
1034 (recommended rate) | 100 a | 100 a | 100 a | 100 a |
LSD (p ≤ 0.00) = 7.5 |
Glyphosate Rate (g ae ha−1) | Percentage Injury Score | |||
---|---|---|---|---|
400 ppm | 700 ppm | |||
100% FC | 50% FC | 100% FC | 50% FC | |
517 | 100 a | 87 b | 100 a | 46 c |
1034 | 100 a | 100 a | 100 a | 100 a |
LSD (p ≤ 0.00) =11.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iqbal, N.; Manalil, S.; Chauhan, B.S.; Adkins, S. Effect of Different Climate Change Variables on the Ecology and Management of Sesbania cannabina through Glyphosate. Plants 2021, 10, 910. https://doi.org/10.3390/plants10050910
Iqbal N, Manalil S, Chauhan BS, Adkins S. Effect of Different Climate Change Variables on the Ecology and Management of Sesbania cannabina through Glyphosate. Plants. 2021; 10(5):910. https://doi.org/10.3390/plants10050910
Chicago/Turabian StyleIqbal, Nadeem, Sudheesh Manalil, Bhagirath Singh Chauhan, and Steve Adkins. 2021. "Effect of Different Climate Change Variables on the Ecology and Management of Sesbania cannabina through Glyphosate" Plants 10, no. 5: 910. https://doi.org/10.3390/plants10050910
APA StyleIqbal, N., Manalil, S., Chauhan, B. S., & Adkins, S. (2021). Effect of Different Climate Change Variables on the Ecology and Management of Sesbania cannabina through Glyphosate. Plants, 10(5), 910. https://doi.org/10.3390/plants10050910