Phytochemical Characterization of By-Products of Habanero Pepper Grown in Two Different Types of Soils from Yucatán, Mexico
Abstract
:1. Introduction
2. Results and Discussion
2.1. Polyphenol Content
2.2. Carotenoid Content
2.3. Vitamin Content
2.4. Capsaicinoid Content
3. Materials and Methods
3.1. Chemical Reagents
3.2. Samples and Sample Preparation
3.2.1. Plant Material
3.2.2. Drying of Habanero Pepper By-Products
3.2.3. Extraction of Polyphenols
3.2.4. Extraction of Carotenoids
3.2.5. Extraction of Vitamins and Capsaicinoids
3.3. Phytochemical Determination by UPLC-DAD
3.3.1. Determination of Polyphenol Content
3.3.2. Determination of Carotenoid Content
3.3.3. Determination of Vitamin Content (A, C and E)
3.3.4. Determination of Capsaicinoid Content
3.4. Validation of the Analytical Methods
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Data Availability Statement
Funding
Conflicts of Interest
Appendix A
Polyphenols | LOD (µg/mL) | LOQ (µg/mL) | Linearity (r2) | Repeatability Intraday (RSD%) | Repeatability Interday (RSD%) |
---|---|---|---|---|---|
Gallic acid | 0.05 | 0.18 | 0.9996 | 1.16 | 23.64 |
Protocatechuic acid | 0.02 | 0.88 | 0.9996 | 1.49 | 6.43 |
Chlorogenic acid | 0.06 | 0.95 | 0.9990 | 1.17 | 2.11 |
Coumaric acid | 0.07 | 0.82 | 0.9995 | 0.11 | 17.47 |
p-Coumaric acid | 0.01 | 0.84 | 0.9993 | 0.15 | 3.96 |
Cinnamic acid | 0.11 | 0.73 | 0.9997 | 0.08 | 9.82 |
Vanilim | 0.03 | 0.94 | 0.9992 | 0.23 | 2.83 |
Catechin | 0.02 | 0.46 | 0.9997 | 3.10 | 19.59 |
Myricetin | 0.04 | 0.55 | 0.9950 | 1.00 | 14.12 |
Apigenin | 0.44 | 0.67 | 0.9997 | 0.90 | 3.27 |
Diosmetin | 0.25 | 0.84 | 0.9996 | 0.73 | 2.43 |
Rutin | 0.03 | 0.77 | 0.9991 | 0.58 | 4.42 |
Kaempferol | 0.02 | 0.25 | 0.9999 | 0.54 | 7.84 |
Quercetin + Luteolin | 0.06 | 0.97 | 0.9993 | 0.60 | 13.10 |
Hesperidin + Diosmin | 0.01 | 0.25 | 0.9992 | 0.71 | 0.96 |
Neohesperidin | 0.03 | 0.58 | 0.9986 | 0.86 | 1.28 |
Naringenin | 0.15 | 0.51 | 0.9997 | 0.67 | 1.04 |
LOD (µg/mL) | LOQ (µg/mL) | Linearity (r2) | Repeatability Intraday (RSD%) | Repeatability Interday (RSD%) | |
---|---|---|---|---|---|
Beta-Carotene | 0.02 | 0.31 | 0.9940 | 1.09 | 3.89 |
Vitamin A | 0.49 | 0.56 | 0.9998 | 0.41 | 2.39 |
Vitamin C | 0.49 | 0.79 | 0.9918 | 4.40 | 3.59 |
Vitamin E | 0.08 | 0.26 | 0.9993 | 0.18 | 2.18 |
Appendix B
References
- Essential Medicines and Health Products. Available online: https://www.who.int/medicines/services/essmedicines_def/en/ (accessed on 5 April 2021).
- The State of Food Security and Nutrition in the World. Available online: http://www.fao.org/3/ca9692en/ca9692en.pdf (accessed on 3 April 2021).
- World Population Prospects 2019. Highlights (ST/ESA/SER.A/423). 2019. Available online: https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf (accessed on 23 June 2020).
- Obi, F.O.; Ugwuishiwu, B.O.; Nwakaire, J.N. Agricultural waste concept, generation, utilization and management. Niger. J. Technol. 2016, 35, 957–964. [Google Scholar] [CrossRef]
- Sanchez-Zapata, E.; Fuentes-Zaragoza, E.; Fernandez-Lopez, J.; Sendra, E.; Sayas, E.; Navarro, C.; Perez-Alvarez, J.A. Preparation of dietary fiber powder from tiger nut (Cyperus esculentus) milk (“horchata”) byproducts and its physicochemical properties. J. Agric. Food Chem. 2009, 57, 7719–7725. [Google Scholar] [CrossRef]
- Goñi, I.; Hervert, D. By-products from plant foods are sources of dietary fibre and antioxidants. In Phytochemicals. Bioactivities and Impact on Health, 1st ed.; Rasooli, I., Ed.; InTechOpen: London, UK, 2011; pp. 95–115. [Google Scholar] [CrossRef] [Green Version]
- De Camargo, A.C.; Schwember, A.R.; Parada, R.; García, S.; Maróstica-Júnior, M.R.; Franchin, M.; Regitano-d’Arce, M.A.B.; Shahidi, F. Opinion on the hurdles and potential health benefits in value-added use of plant food processing by-products as sources of phenolic compounds. Int. J. Mol. Sci. 2018, 19, 3498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandoval-Castro, C.J.; Valdez-Morales, M.; Oomah, B.D.; Gutiérrez-Dorado, R.; Medina-Godoy, S.; Espinosa-Alonso, L.G. Bioactive compounds and antioxidant activity in scalded Jalapeño pepper industrial by-product (Capsicum annuum). J. Food Sci. Technol. 2017, 54, 1999–2010. [Google Scholar] [CrossRef] [PubMed]
- Tumbas-Šaponjac, V.; Ćetković, G.; Čanadanović-Brunet, J.; Pajin, B.; Djilas, S.; Petrović, J.; Lončarević, I.; Stajčić, S.; Vulić, J. Sour cherry pomace extract encapsulated in whey and soy proteins: Incorporation in cookies. Food Chem. 2016, 207, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Carrullo, G.; Spizzirri, U.G.; Loizzo, M.R.; Leporini, M.; Sicari, V.; Aiello, F.; Restuccia, D. Valorization of red grape (Vitis vinifera cv. Sangiovese) pomace as functional food ingredient. Ital. J. Food Sci. 2020, 32, 367–385. [Google Scholar]
- Serrano, J.C.E.; Jove, M.; Gonzalo, H.; Pamplona, R.; Portero-Otin, M. Nutridynamics: Mechanism(s) of ac-tion of bioactive compounds and their effects. Int. J. Food Sci. Nutr. 2015, 66, 22–30. [Google Scholar] [CrossRef]
- Mapes, C.; Basurto, F. Biodiversity and edible plants of Mexico. In Ethnobotany of Mexico, 1st ed.; Lira, R., Casas, A., Blancas, J., Eds.; Springer: New York, NY, USA, 2016; pp. 83–131. [Google Scholar]
- Anuario Estadístico de la Producción Agrícola. Available online: https://nube.siap.gob.mx/cierreagricola/ (accessed on 31 July 2020).
- Rodríguez-Buenfil, I.M.; Ramírez-Sucre, M.O.; Echevarría-Machado, I. Soils of Yucatan: Effect on the growth of the habanero chili plant (Capsicum chinense). Agric. Res. Technol. Open Access J. 2017, 8, 20–21. [Google Scholar] [CrossRef]
- Oney-Montalvo, J.; Uc-Varguez, A.; Ramírez-Rivera, E.; Ramírez-Sucre, M.; Rodríguez-Buenfil, I. Influence of soil composition on the profile and content of polyphenols in habanero peppers (Capsicum chinense Jacq.). Agronomy 2020, 10, 1234. [Google Scholar] [CrossRef]
- Kumar-Basu, S.; Krishna-De, A. Capsicum: The genus Capsicum, 1st ed.; CRC Press: London, UK, 2003; pp. 2–3. ISBN 9780415299916. [Google Scholar]
- Ramírez-Meraz, M.; Arcos-Cavazos, G.; Méndez-Aguilar, R. Jaguar: Cultivate habanero pepper for Mexico. Remexca 2018, 9, 487–492. [Google Scholar] [CrossRef] [Green Version]
- Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. Chile habanero. In Agenda Técnica Agrícola Yucatán, 2nd ed.; SAGARPA, Ed.; SAGARPA: Ciudad de México, México, 2015; pp. 21–32. [Google Scholar]
- Roy, A. Bhut Jolokia (Capsicum chinense Jaqc): A review. Int. J. Pharm. Sci. Res. 2016, 7, 882–889. [Google Scholar] [CrossRef]
- Rodríguez-Buenfil, I.M.; Ramírez-Sucre, M.O.; Ramírez-Rivera, E. Metabolómica y Cultivo del Chile Habanero (Capsicum Chinense Jacq) de la Península de Yucatán, 1st ed.; CIATEJ: Jalisco, México, 2020; Chapters 6–9, 11; pp. 95–169, 185–216. ISBN 978-607-8734-09-2. [Google Scholar]
- Morozova, K.; Rodríguez-Buenfil, I.; López-Domínguez, C.; Ramírez-Sucre, M.; Ballabio, D.; Scampicchio, M. Capsaicinoids in chili habanero by flow injection with coulometric array detection. Electroanalysis 2019, 31, 844–850. [Google Scholar] [CrossRef]
- Gayathri, N.; Gopalakrishnan, M.; Sekar, T. Phytochemical screening and antimicrobial activity of Capsicum chinense Jacq. Int. J. Adv. Pharm. Sci. 2016, 5, 12–20. [Google Scholar] [CrossRef]
- Herrera-Pool, E.; Patrón-Vázquez, J.; Ramos-Díaz, A.; Ayora-Talavera, T.; Pacheco, N. Extraction and identification of phenolic compounds in roots and leaves of Capsicum chinense by UPLC–PDA/MS. JBBR 2019, 3, 17–27. [Google Scholar]
- Ukwuani, A.N.; Hassan, I.B. In vitro anti-inflammatory activity of hydromethanolic seed, fruit and leave extracts of Capsicum chinense (red pepper). Eur. J. Biomed. Pharm. Sci. 2015, 2, 57–65. [Google Scholar]
- Ahmed, S.I.; Hayat, M.Q.; Tahir, M.; Mansoor, Q.; Ismail, M.; Keck, K.; Bates, R.B. Pharmacologically active flavonoids from the anticancer, antioxidant and antimicrobial extracts of Cassia angustifolia Vahl. BMC Complement Altern. Med. 2016, 16, 460. [Google Scholar] [CrossRef] [Green Version]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef] [PubMed]
- Sinkovic, L.; Demšar, L.; Žnidarcic, D.; Vidrih, R.; Hribar, J.; Treutter, D. Phenolic profiles in leaves of chicory cultivars (Cichorium intybus L.) as influenced by organic and mineral fertilizers. Food Chem. 2015, 166, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Rezayian, M.; Ebrahimzadeh, H.; Niknam, V. Nitric Oxide Stimulates Antioxidant System and Osmotic Adjustment in Soybean Under Drought Stress. J. Soil Sci. Plant Nutr. 2020, 20, 1–11. [Google Scholar] [CrossRef]
- Antonio, A.S.; Wiedemanna, L.S.M.; Veiga-Junior, V.F. The genus Capsicum: A phytochemical review of bioactive secondary metabolites. RSC Adv. 2018, 8, 25767–25784. [Google Scholar] [CrossRef] [Green Version]
- Nagy, Z.; Daood, H.; Ambrózy, Z.; Helyes, L. Determination of polyphenols, capsaicinoids, and vitamin C in new hybrids of chili peppers. J. Anal. Methods Chem. 2015, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medina-Lara, F.; Souza-Perera, R.M.; Martínez-Estévez, M.; Ramírez-Sucre, M.; Rodríguez-Buenfil, I.; Echevarría-Machado, I. Red and brown soils increase the development and content of nutrients in habanero pepper subjected to irrigation water with high electrical conductivity. HortScience 2019, 54, 2039–2049. [Google Scholar] [CrossRef] [Green Version]
- Feduraev, P.; Chupakhina, G.; Maslennikov, P.; Tacenko, N.; Skrypnik, L. Variation in phenolic compounds content and antioxidant activity of different plant organs from Rumex crispus l. and Rumex obtusifolius l. at different growth stages. Antioxidants 2019, 8, 237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thanh-Diep, T.; Pook, C.; Rush, E.C.; Yeon-Yoo, M.J. Quantification of carotenoids, α-tocopherol, and ascorbic acid in amber, mulligan, and laird’s large cultivars of New Zealand tamarillos (Solanum betaceum cav.). Foods 2020, 9, 769. [Google Scholar] [CrossRef] [PubMed]
- Keyhaninejad, N.; Richins, R.D.; O’Connell, M.A. Carotenoid content in field grown versus green house grown peppers: Different response in leaf and fruit. Hortscience 2012, 47, 852–855. [Google Scholar] [CrossRef] [Green Version]
- Steiner-Asiedu, M.; Agbemafle, I.; Setorglo, J.; Danquah, A.O.; Anderson, A.K. Carotenoids content of Corchorus olitorius and Solanum macrocarpon commonly used Ghanaian vegetables. Int. Food Res. J. 2014, 21, 2063–2067. [Google Scholar]
- Kumar-Saini, R.; Young-Soo, K. Significance of genetic, environmental, and pre- and postharvest factors affecting carotenoid contents in crops: A review. J. Agric. Food Chem. 2018, 66, 5310–5324. [Google Scholar] [CrossRef]
- Abdallah, S.B.; Aung, B.; Amyot, L.; Lalin, I.; Lachaal, M.; Karray-Bouraoui, N.; Hannoufa, A. Salt stress (NaCl) affects plant growth and branch pathways of carotenoid and flavonoid biosyntheses in Solanum nigrum. Acta Physiol. Plant. 2016, 38, 72. [Google Scholar] [CrossRef]
- Young, A.; Barry, P.; Britton, G. The occurrence of β-carotene-5,6-epoxide in the photosynthetic apparatus of higher plants. Z. Nat. C 1989, 44, 959–965. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, W.; Yan, J.; Liu, M.; Zhou, Y.; Shen, X.; Ma, Y.; Feng, X.; Yang, J.; Li, G. A review of the extraction and determination methods of thirteen essential vitamins to the human body: An update from 2010. Molecules 2018, 23, 1484. [Google Scholar] [CrossRef] [Green Version]
- Glavinic, U.; Stankovic, B.; Draskovic, V.; Stevanovic, J.; Petrovic, T.; Lakic, N.; Stanimirovic, Z. Dietary amino acid and vitamin complex protects honey bee from immunosuppression caused by Nosema ceranae. PLoS ONE 2017, 12, e0187726. [Google Scholar] [CrossRef]
- Fotiric-Akšic, M.; Tosti, T.; Sredojevic, M.; Milivojevic, J.; Meland, M.; Natic, M. Comparison of sugar profile between leaves and fruits of blueberry and strawberry cultivars grown in organic and integrated production system. Plants 2019, 8, 205. [Google Scholar] [CrossRef] [Green Version]
- Chiaiese, P.; Corrado, G.; Minutolo, M.; Barone, A.; Errico, A. Transcriptional regulation of ascorbic acid during fruit ripening in pepper (Capsicum annuum) varieties with low and high antioxidants content. Plants 2019, 8, 206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lushchak, V.I.; Semchuk, N.M. Tocopherol biosynthesis: Chemistry, regulation and effects of environmental factors. Acta Physiol. Plant. 2012, 34, 1607–1628. [Google Scholar] [CrossRef]
- Ching, L.S.; Mohamed, S. Alpha-tocopherol content in 62 edible tropical plants. J. Agric. Food Chem. 2001, 49, 3101–3105. [Google Scholar] [CrossRef] [PubMed]
- Meghvansi, M.K.; Siddiqui, S.; Khan, M.H.; Gupta, V.K.; Vairale, M.G.; Gogoi, H.K.; Singh, L. Naga chilli: A potential source of capsaicinoids with broad-spectrum ethnopharmacological applications. J. Ethnopharmacol. 2010, 132, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Lau, N.; Medina-Lara, F.; Minero-García, Y.; Torres-Tapia, L.W.; Peraza-Sánchez, S.R.; Martínez-Estévez, M. Capsaicinoids are absent in habanero pepper vegetative organs (Capsicum chinense Jacq.). Hortscience 2010, 45, 323–326. [Google Scholar] [CrossRef] [Green Version]
- Shrivastava, A.; Gupta, V. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2011, 2, 21. [Google Scholar] [CrossRef]
- Magnusson, B.; Örnemark, U. (Eds.) Eurachem Guide: The Fitness for Purpose of Analytical Methods—A Laboratory Guide to Method Validation and Related Topics, 2nd ed. 2014. Available online: www.eurachem.org (accessed on 5 April 2021).
Polyphenol A | Black Soil | Red Soil | ||||
---|---|---|---|---|---|---|
Leaves (LBS) | Peduncles (PBS) | Stems (SBS) | Leaves (LRS) | Peduncles (PRS) | Stems (SRS) | |
Gallic Acid | 0.57 ± 0.01 a | ― | ― | ― | ― | ― |
Protocatechuic Acid | 0.00 ± 0.00 d* | 0.00 ± 0.00 d | 19.20 ± 0.18 a | 1.58 ± 0.08 b | 0.00 ± 0.00 d | 0.85 ± 0.03 c* |
Chlorogenic Acid | 16.79 ± 0.21 b | 14.24 ± 0.80 c | 4.12 ± 0.02 e* | 2.92 ± 0.03 f* | 8.56 ± 0.24 d | 35.63 ± 0.20 a* |
Coumaric Acid | 7.46 ± 0.06 b | 3.28 ± 0.05 c | 3.26 ± 0.02 c | 7.92 ± 0.54 a | 2.24 ± 0.02 d* | 0.79 ± 0.04 e* |
ρ-coumaric Acid | 5.29 ± 0.03 a* | 1.93 ± 0.87 b* | 2.30 ± 0.01 b | 1.95 ± 0.04 b | 0.87 ± 0.00 c* | 0.65 ± 0.02 c |
Cinnamic Acid | 1.67 ± 0.04 c | 4.01 ± 0.12 a | 1.88 ± 0.22 c | 1.76 ± 0.55 c | 2.77 ± 0.03 b | 2.65 ± 0.05 b* |
Vanillin | 9.29 ± 0.01 a* | 9.53 ± 0.95 a | 3.74 ± 0.02 d | 7.06 ± 0.10 b | 5.30 ± 0.02 c* | 0.16 ± 0.00 e |
Catechin | 3.36 ±0.20 c | 47.11 ± 0.33 a | 2.03 ± 0.09 d* | 2.96 ± 0.22 c* | 26.13 ± 0.16 b | 2.44 ± 0.18 d* |
Myricetin | 29.76 ± 0.68 b | 6.11 ± 0.17 c | 1.12 ± 0.03 f | 32.04 ± 0.61 a | 3.31 ± 0.03 e | 4.97 ± 0.01 d* |
Apigenin | 6.62 ± 0.52 a* | 1.33 ± 0.05 c | 1.19 ± 0.08 c | 1.72 ± 0.16 b | 0.64 ± 0.03 d* | 0.77 ± 0.08 d* |
Diosmetin | 7.83 ± 0.65 a | 2.81 ± 0.16 c | 0.73 ± 0.02 d | 4.45 ± 0.38 b | 0.80 ± 0.07 d | 2.41 ± 0.12 c* |
Rutin | 10.84 ± 0.27 c | 31.88 ± 3.90 a | 7.88 ± 1.85 c | 9.63 ± 1.43 c | 18.65 ± 0.09 b | 3.95 ± 0.03 d* |
Kaempferol | 7.61 ± 0.13 a | 1.11 ± 0.01 c* | 1.07 ± 0.01 cd | 1.91 ± 0.04 b | 0.95 ± 0.01 d | 1.94 ± 0.14 b* |
Quercetin + Luteolin ** | 13.19 ± 0.12 a | 3.54 ± 0.16 b | 1.23 ± 0.01 d | 13.43 ± 0.46 a | 2.36 ± 0.01 c | 3.79 ± 0.85 b |
Hesperidin + Diosmin ** | 19.69 ± 0.42 b | 4.98 ± 0.06 c | 1.33 ± 0.04 e | 21.27 ± 0.26 a | 2.90 ± 0.02 d | 0.71 ± 0.09 f* |
Neohesperidin | 11.79 ± 0.31 a | 7.46 ± 0.12 c | 5.38 ± 0.06 d | 11.25 ± 0.35 b | 4.36 ± 0.04 e | 1.88 ± 0.00 f* |
Naringenin | 2.28 ± 0.18 a | 0.94 ± 0.05 c | 0.48 ± 0.10 d | 2.07 ± 0.15 b | 0.51 ± 0.02 d | 0.36 ± 0.03 d |
Total polyphenols quantifiedB | 154.04 ± 0.23 a | 140.26 ± 0.46 b | 56.94 ± 0.16 e | 123.92 ± 0.32 c | 80.35 ± 0.05 d | 63.95 ± 0.11 e |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chel-Guerrero, L.D.; Oney-Montalvo, J.E.; Rodríguez-Buenfil, I.M. Phytochemical Characterization of By-Products of Habanero Pepper Grown in Two Different Types of Soils from Yucatán, Mexico. Plants 2021, 10, 779. https://doi.org/10.3390/plants10040779
Chel-Guerrero LD, Oney-Montalvo JE, Rodríguez-Buenfil IM. Phytochemical Characterization of By-Products of Habanero Pepper Grown in Two Different Types of Soils from Yucatán, Mexico. Plants. 2021; 10(4):779. https://doi.org/10.3390/plants10040779
Chicago/Turabian StyleChel-Guerrero, Lilian Dolores, Julio Enrique Oney-Montalvo, and Ingrid Mayanín Rodríguez-Buenfil. 2021. "Phytochemical Characterization of By-Products of Habanero Pepper Grown in Two Different Types of Soils from Yucatán, Mexico" Plants 10, no. 4: 779. https://doi.org/10.3390/plants10040779
APA StyleChel-Guerrero, L. D., Oney-Montalvo, J. E., & Rodríguez-Buenfil, I. M. (2021). Phytochemical Characterization of By-Products of Habanero Pepper Grown in Two Different Types of Soils from Yucatán, Mexico. Plants, 10(4), 779. https://doi.org/10.3390/plants10040779