Solvent Retention Capacity and Gluten Protein Composition of Durum Wheat Flour as Influenced by Drought and Heat Stress
Abstract
:1. Introduction
2. Results
Correlations
3. Discussion
4. Materials and Methods
4.1. Trial Designs and Treatments
4.2. Flour Protein Content and SDS Sedimentation
4.3. Solvent Retention Capacity (AM56-11 Modified Method)
4.4. Swelling Index of Glutenin
4.5. Size Exclusion—High Performance Liquid Chromatography
4.6. Statistical Analysis
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sissons, M.; Joȅl, A.; Marchylo, B.; Cubbada, R. Methods used to assess and predict quality of durum wheat semolina and pasta. In Durum Wheat Chemistry and Technology; Sissons, M., Joȅl, A., Marchylo, B., Carcea, M., Eds.; American Association of Cereal Chemists: St. Paul, MN, USA, 2012; pp. 213–229. [Google Scholar]
- De Santis, M.A.; Giuliani, M.M.; Giuzio, L.; De Vita, P.; Lovegrove, A.; Shewry, P.R.; Flagella, Z. Differences in gluten protein composition between old and modern durum wheat genotypes in relation to 20th century breeding in Italy. Eur. J. Agron. 2017, 87, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Barak, S.; Mudgil, D.; Khatkar, B.S. Biochemical and functional properties of wheat gliadins: A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Jorgensen, A.D.; Li, H.; Sondergaard, I.; Finnie, C.; Svensson, B.; Jiang, D.; Wollenweber, B.; Jacobsen, S. Implications of high-temperature events and water deficits on protein profiles in wheat (Triticum aestivum L. cv. Vinjett) grain. Proteomics 2011, 11, 1684–1695. [Google Scholar] [CrossRef] [PubMed]
- Goyon, A.; Beck, A.; Colas, O.; Sandra, K.; Guillarme, D.; Fekete, S. Evaluation of size exclusion chromatography columns packed with sub-3 μm particles for the analysis of biopharmaceutical proteins. J. Chrom. A 2017, 1498, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Larroque, O.R.; Békés, F. Rapid size exclusion chromatography, analysis of molecular size distribution for wheat endosperm proteins. Cereal Chem. 2000, 77, 451–453. [Google Scholar] [CrossRef]
- Hailu, F.; Labuschagne, M.; van Biljon, A.; Hovmalm, P.H.; Johansson, E. Quality assessment with HPLC in released varieties of tetraploid (Triticum durum Desf) wheat from Ethiopia and Spain. Cereal Res. Commun. 2016, 44, 617–627. [Google Scholar] [CrossRef] [Green Version]
- Lindon, F.C.; Almeida, A.S.; Leitao, A.L.; Silva, M.M.; Pinheiro, N.; Macas, B.; Costa, R. A synoptic overview of durum wheat production in the Mediterranean region and processing following the European Union requirements. Emir. J. Food Agric. 2014, 26, 693–705. [Google Scholar] [CrossRef] [Green Version]
- Flagella, Z.; Giuliani, M.M.; Giuzio, L.; Volpi, C.; Masci, S. Influence of water deficit on durum wheat storage protein composition and technological quality. Eur. J. Agron. 2010, 33, 197–207. [Google Scholar] [CrossRef]
- Naeem, H.A.; Paulon, D.; Irmak, S.; MacRitchie, F. Developmental and environmental effects on the assembly of glutenin polymers and the impact on grain quality of wheat. J. Cereal Sci. 2012, 56, 51–57. [Google Scholar] [CrossRef]
- Kweon, M.; Slade, L.; Levine, H. Solvent Retention Capacity (SRC) testing of wheat flour: Principles and value in predicting flour functionality in different wheat-based food processes and in wheat breeding—A review. Cereal Chem. 2011, 88, 537–552. [Google Scholar] [CrossRef]
- Guzmán, C.; Mondal, S.; Govindan, V.; Autrique, J.E.; Posadas-Romano, G.; Cervantes, F.; Crossa, J.; Vargas, M.; Singh, R.V.; Peña, R.J. Use of rapid tests to predict quality traits of CIMMYT bread wheat genotypes grown under different environments. LWT Food Sci. Technol. 2016, 69, 327–333. [Google Scholar] [CrossRef]
- Colombo, A.; Pérez, G.T.; Ribotta, P.D.; León, A.E. A comparative study of physicochemical tests for quality prediction of Argentine wheat flours used as corrector flours and for cookie production. J. Cereal Sci. 2008, 48, 775–780. [Google Scholar] [CrossRef]
- Gaines, C.S. Collaborative study of methods for solvent retention capacity profiles (AACC Method 56-11). Cereal Foods World 2000, 45, 303–306. [Google Scholar]
- Guttieri, M.J.; Brown, D.; Gannon, D.; O’Brien, K.; Souza, E. Solvent retention capacities of irrigated soft white spring flours. Crop Sci. 2001, 41, 1054–1061. [Google Scholar] [CrossRef]
- Barrera, G.N.; Perez, G.T.; Ribotta, P.D.; Leon, A.E. Influence of damaged starch on cookie and bread making quality. Eur. Food Res. Technol. 2007, 225, 1–7. [Google Scholar] [CrossRef]
- Kweon, M.; Slade, L.; Levine, H.; Gannon, D. Cookie vs. cracker baking—What’s the difference? Flour functionality requirements explored by SRC alveography. Crit. Rev. Food Sci. Nutr. 2014, 54, 115–138. [Google Scholar] [CrossRef]
- Guzmán, C.; Autrique, J.E.; Mondal, S.; Singh, R.P.; Govindan, V.; Morales-Dorantes, A.; Posadas-Romano, G.; Crossa, J.; Ammar, K.; Peña, R.J. Response to drought and heat stress on wheat quality, with special emphasis on bread-making quality, in durum wheat. Field Crops Res. 2016, 186, 157–165. [Google Scholar] [CrossRef]
- Wang, C.; Kovacs, M.I.P. Swelling index of glutenin test. I. Method and comparison with sedimentation, gel-protein, and insoluble glutenin tests. Cereal Chem. 2002, 79, 183–189. [Google Scholar] [CrossRef]
- Wang, C.; Kovacs, M.I.P. Swelling index of glutenin test. II. Application in prediction of dough properties and end-use quality. Cereal Chem. 2002, 79, 190–196. [Google Scholar] [CrossRef]
- Wang, C.; Kovacs, M.I.P. Swelling index of glutenin test for prediction of durum wheat quality. Cereal Chem. 2002, 79, 197–202. [Google Scholar] [CrossRef]
- Edwards, N.M.; Gianibelli, M.C.; McCaig, T.N.; Clarke, J.M.; Ames, N.P.; Larroque, O.R.; Dexter, J.E. Relationships between dough strength, polymeric protein quantity and composition for diverse durum wheat genotypes. J. Cereal Sci. 2007, 45, 140–149. [Google Scholar] [CrossRef]
- DuPont, F.M.; Hurkman, W.J.; Vensel, W.H.; Chan, R.; Lopez, R.; Tanaka, C.K.; Altenbach, S.B. Differential accumulation of sulfur-rich and sulfur-poor wheat flour proteins is affected by temperature and mineral nutrition during grain development. J. Cereal Sci. 2006, 44, 101–112. [Google Scholar] [CrossRef]
- Hammed, A.M.; Ozsisli, B.; Ohm, J.B.; Simsek, S. Relationship between solvent retention capacity and protein molecular weight distribution, quality characteristics, and breadmaking functionality of hard red spring wheat flour. Cereal Chem. 2015, 92, 466–474. [Google Scholar] [CrossRef]
- Cubadda, R.E.; Carcea, M.; Marconi, E.; Trivisonno, M.C. Influence of protein content on durum wheat gluten strength determined by the SDS sedimentation test and by other methods. Cereal Foods World 2007, 52, 273–277. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Ram, S.; Gupta, R. Relationship of high and low molecular weight glutenins with chemical and rheological properties of wheat flour. J. Wheat Res. 2012, 4, 74–78. [Google Scholar]
- Duyvejonck, A.E.; Lagrain, B.; Dornez, E.; Delcour, J.A.; Courtin, C.M. Suitability of Solvent Retention Capacity tests to assess the cookie and bread making quality of European wheat flours. Food Sci. Technol. 2012, 47, 56–63. [Google Scholar] [CrossRef]
- Grahmann, K.; Govaerts, B.; Fonteyne, S.; Guzman, C.; Soto, A.P.G.; Buerkert, A.; Verhulst, N. Nitrogen fertilizer placement and timing affects bread wheat (Triticum aestivum) quality and yield in an irrigated bed planting system. Nutr. Cycl. Agroecosyst. 2016, 106, 185–199. [Google Scholar] [CrossRef]
- Verhulst, N.; Deckers, J.; Govaerts, B. Classification of the Soil at CIMMYT’s Experimental Station in the Yaqui Valley near Ciudad Obregón, Sonora, Mexico; CIMMYT Report, 2009; CIMMYT: Ciudad de México, Mexico, 2009. [Google Scholar]
- American Association of Cereal Chemists (AACC). Approved methods of the American Association of Cereal Chemists, 10th ed.; American Association of Cereal Chemists, Incorporated: St. Paul, MN, USA, 2010. [Google Scholar]
- Agrobase. Generation II User Manual; Revised Edition, 2019; Agronomix Software Inc.: Winnipeg, MB, Canada, 2019; Available online: www.agronomix.com (accessed on 26 February 2021).
- Gupta, R.B.; Khan, K.; MacRitchie, F. Biochemical basis of flour properties in bread wheat’s. I. Effects of variation in the quantity and size distribution of polymeric protein. J. Cereal Sci. 1993, 18, 23–41. [Google Scholar] [CrossRef]
Cultivar | Treatment | Distilled Water SRC % | Sodium Carbonate SRC % | Sucrose SRC % | Lactic Acid SRC % | SIG % | SDSS mL | FPC % |
---|---|---|---|---|---|---|---|---|
Mexicali | Control | 79.84 | 91.88 | 106.62 | 109.31 | 5.18 | 12.00 | 10.74 |
C75 | Mod drought | 80.85 * | 96.72 * | 101.94 * | 112.59 * | 5.15 | 9.75 * | 11.46 * |
Sev drought | 76.19 * | 83.31 * | 96.92 * | 105.41 * | 5.68 * | 11.72 | 13.73 * | |
Mod heat | 77.51 * | 83.30 * | 96.55 * | 106.80 * | 5.46 * | 10.54 * | 11.14 * | |
Sev heat | 78.25 * | 86.60 * | 101.80 * | 119.12 * | 6.04 * | 12.41 | 14.14 * | |
Mean | 78.53 | 88.36 | 100.77 | 110.65 | 5.50 | 11.28 | 12.24 | |
Yavaros | Control | 81.36 | 96.44 | 106.14 | 103.39 | 5.02 | 9.13 | 11.00 |
C79 | Mod drought | 82.91 * | 99.27 * | 102.38 * | 105.06 * | 4.70 * | 8.25 | 12.30 * |
Sev drought | 81.50 | 87.02 * | 102.70 * | 102.92 | 5.16 * | 8.60 | 15.71 * | |
Mod heat | 79.27 * | 83.28 * | 100.12 * | 103.81 | 5.03 | 9.25 | 11.55 * | |
Sev heat | 81.23 | 89.31 * | 104.63 * | 109.64 * | 5.34 * | 9.41 | 14.15 * | |
Mean | 81.25 | 91.06 | 103.19 | 104.96 | 5.05 | 8.93 | 12.94 | |
Altar | Control | 79.24 | 92.97 | 104.98 | 102.60 | 5.36 | 9.88 | 10.68 |
C84 | Mod drought | 81.64 * | 96.69 * | 103.12 * | 108.94 * | 5.14 * | 9.38 | 11.80 * |
Sev drought | 79.92 * | 84.96 * | 100.31 * | 103.65 | 5.66 * | 9.38 | 14.40 * | |
Mod heat | 78.38 * | 82.94 * | 98.39 * | 104.23 * | 5.25 * | 9.41 | 11.38 * | |
Sev heat | 80.32 * | 88.13 * | 103.30 * | 112.27 * | 5.90 * | 10.25 | 13.56 * | |
Mean | 79.90 | 89.14 | 102.02 | 106.34 | 5.46 | 9.66 | 12.36 | |
Atil | Control | 76.06 | 85.99 | 98.91 | 108.97 | 5.71 | 14.38 | 11.78 |
C2000 | Mod drought | 75.86 | 87.05 * | 99.40 | 113.12 * | 5.50 * | 12.88 * | 13.42 * |
Sev drought | 74.23 * | 81.23 * | 96.18 * | 106.38 * | 5.86 * | 13.29 * | 16.44 * | |
Mod heat | 73.05 * | 78.79 * | 94.18 * | 108.58 | 5.67 | 14.03 | 12.52 * | |
Sev heat | 76.83 | 87.37 * | 102.29 * | 115.43 * | 6.20 * | 12.19 * | 15.25 * | |
Mean | 75.21 | 84.09 | 98.19 | 110.50 | 5.79 | 13.35 | 13.88 | |
Jupare | Control | 77.93 | 89.13 | 99.44 | 105.36 | 5.47 | 10.75 | 10.98 |
C2001 | Mod drought | 81.53 * | 92.21 * | 103.76 * | 110.13 * | 5.57 * | 10.00 | 12.32 * |
Sev drought | 77.30 | 82.55 * | 97.85 * | 105.58 | 5.77 * | 11.10 | 15.67 * | |
Mod heat | 76.12 * | 80.27 * | 95.24 * | 108.20 * | 5.68 * | 12.16 * | 11.96 * | |
Sev heat | 77.86 | 88.05 * | 102.97 * | 113.79 * | 6.22 * | 10.78 | 13.52 * | |
Mean | 78.15 | 86.44 | 99.85 | 108.61 | 5.74 | 10.96 | 12.89 | |
Cirno | Control | 73.10 | 82.73 | 93.10 | 94.69 | 4.92 | 11.00 | 10.88 |
C2008 | Mod drought | 75.88 * | 86.73 * | 96.27 * | 110.81 * | 5.41 * | 12.75 * | 12.43 * |
Sev drought | 75.32 * | 80.23 * | 95.87 * | 101.85 * | 5.43 * | 11.16 | 15.85 * | |
Mod heat | 72.85 | 74.56 * | 91.31 * | 102.00 * | 5.42 * | 12.47 * | 11.95 * | |
Sev heat | 76.31 * | 83.11 | 99.51 * | 114.15 * | 5.85 * | 12.63 * | 15.55 * | |
Mean | 74.69 | 81.47 | 95.21 | 104.70 | 5.41 | 12.00 | 13.33 | |
LSD treatments (p ≤ 0.05) | 0.61 | 0.63 | 0.78 | 1.14 | 0.06 | 1.03 | 0.15 |
SDS Extractable Proteins | SDS Unextractable Proteins | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cultivar | Treatment | HMW | LMW | Gliadin | AG | HMW | LMW | Gliadin | AG | LUPP | UPP |
Mexicali | Control | 3.63 | 19.37 | 33.05 | 8.19 | 6.51 | 19.88 | 4.33 | 1.01 | 42.94 | 61.96 |
C75 | Mod drought | 4.96 * | 17.02 * | 29.05 * | 7.55 * | 6.04 * | 17.35 * | 4.94 * | 1.01 | 56.49 * | 55.60 * |
Sev drought | 4.38 * | 16.11 * | 43.71 * | 6.51 * | 4.23 * | 23.04 * | 3.48 * | 0.73 * | 51.56 * | 49.58 * | |
Mod heat | 4.78 * | 17.14 * | 40.93 * | 7.45 * | 5.36 * | 18.88 * | 3.41 * | 0.62 * | 56.33 * | 54.69 * | |
Sev heat | 6.42 * | 16.78 * | 38.68 * | 7.68 * | 5.31 * | 17.58 * | 3.16 * | 0.83 * | 48.04 * | 51.91 * | |
Mean | 4.83 | 17.28 | 37.08 | 7.48 | 5.49 | 19.35 | 3.86 | 0.84 | 51.07 | 54.75 | |
Yavaros | Control | 6.73 | 19.02 | 36.97 | 8.80 | 6.39 | 25.30 | 3.99 | 0.88 | 67.60 | 56.73 |
C79 | Mod drought | 5.50 * | 19.66 | 39.52 * | 7.78 * | 5.94 * | 21.39 * | 3.04 * | 0.84 | 41.98 * | 47.90 * |
Sev drought | 5.24 * | 20.44 * | 39.32 * | 6.03 * | 6.35 | 15.99 * | 3.03 * | 0.62 * | 50.24 * | 46.29 * | |
Mod heat | 5.83 * | 21.58 * | 42.29 * | 7.59 * | 5.25 * | 15.63 * | 2.70 * | 0.65 * | 46.19 * | 42.04 * | |
Sev heat | 5.08 * | 20.03 * | 45.23 * | 7.42 * | 4.82 * | 15.75 * | 2.78 * | 0.65 * | 53.71 * | 45.12 * | |
Mean | 5.68 | 20.15 | 40.67 | 7.52 | 5.75 | 18.81 | 3.11 | 0.73 | 51.94 | 47.62 | |
Altar | Control | 4.81 | 20.84 | 37.90 | 6.47 | 5.79 | 21.63 | 3.11 | 1.14 | 54.50 | 46.49 |
C84 | Mod drought | 5.98 * | 17.02 * | 38.02 | 7.12 * | 5.90 | 21.11 | 3.16 | 0.86 * | 45.57 * | 45.68 |
Sev drought | 5.15 | 18.36 * | 39.17 | 6.36 | 5.31 * | 16.52 * | 2.92 | 0.60 * | 54.93 | 49.34 * | |
Mod heat | 6.29 * | 19.40 * | 41.84 * | 7.47 * | 5.24 * | 13.22 * | 2.66 * | 0.52 * | 43.67 * | 42.90 * | |
Sev heat | 5.64 * | 17.38 * | 42.85 * | 6.15 | 4.85 * | 18.24 * | 3.66 * | 0.74 * | 44.70 * | 45.55 | |
Mean | 5.57 | 18.60 | 39.96 | 6.71 | 5.42 | 18.14 | 3.10 | 0.77 | 48.67 | 45.99 | |
Atil | Control | 4.79 | 18.53 | 46.09 | 7.17 | 5.24 | 15.01 | 2.98 | 0.63 | 50.71 | 45.94 |
C2000 | Mod drought | 5.38 * | 16.48 * | 46.68 | 6.71 * | 4.92 | 23.30 * | 3.38 * | 1.37 * | 47.52 * | 50.94 * |
Sev drought | 5.29 * | 17.25 * | 50.52 * | 6.32 * | 7.10 * | 16.33 * | 4.02 * | 0.68 | 55.97 * | 53.08 * | |
Mod heat | 7.72 * | 17.48 * | 50.27 * | 7.99 * | 7.70 * | 20.01 * | 2.00 * | 0.69 | 40.87 * | 58.59 * | |
Sev heat | 5.05 | 17.37 * | 55.51 * | 6.84 | 4.38 * | 16.01 * | 4.00 * | 0.55 | 40.65 * | 44.31 | |
Mean | 5.65 * | 17.42 * | 49.81 * | 7.01 | 5.87 * | 18.13 | 3.28 | 0.78 | 47.14 * | 50.57 * | |
Jupare | Control | 4.86 | 18.26 | 40.09 | 6.92 | 4.10 | 20.84 | 2.58 | 1.63 | 50.45 | 51.12 |
C2001 | Mod drought | 6.80 * | 17.05 * | 41.58 | 6.57 | 5.32 | 19.78 * | 3.28 * | 0.70 * | 56.93 * | 55.70 * |
Sev drought | 5.21 | 17.10 * | 45.35 * | 6.98 | 5.54 | 15.26 * | 2.30 | 0.81 * | 59.97 * | 43.27 * | |
Mod heat | 4.70 | 21.13 * | 32.91 * | 6.98 | 4.96 | 18.33 * | 2.55 | 0.53 * | 66.04 * | 45.72 * | |
Sev heat | 7.01 * | 17.55 | 44.25 * | 5.82 * | 4.25 | 16.31 * | 2.32 | 0.67 * | 43.69 * | 43.68 * | |
Mean | 5.72 | 18.22 | 40.84 | 6.65 | 4.83 | 18.10 | 2.61 | 0.87 | 55.42 | 47.90 | |
Cirno | Control | 3.35 | 17.79 | 41.87 | 6.30 | 5.78 | 20.93 | 3.15 | 0.72 | 46.22 | 52.52 |
C2008 | Mod drought | 6.12 * | 19.27 * | 42.73 | 6.34 | 4.64 | 16.17 * | 2.65 * | 0.88 | 42.99 * | 44.83 * |
Sev drought | 5.25 * | 17.79 | 42.74 | 7.91 * | 6.46 | 14.62 * | 3.04 | 0.58 | 52.16 * | 56.53 * | |
Mod heat | 5.31 * | 15.87 * | 43.92 * | 8.08 * | 5.31 | 16.43 * | 3.28 | 0.57 | 50.32 * | 45.51 * | |
Sev heat | 7.43 * | 15.67 * | 41.59 | 5.52 * | 6.04 | 18.79 * | 2.35 * | 0.65 | 47.69 | 42.54 * | |
Mean | 5.49 | 17.28 | 42.57 | 6.83 | 5.65 | 17.39 | 2.89 | 0.68 | 47.88 | 48.39 | |
LSD treatment (p ≤ 0.05) | 0.38 | 0.90 | 1.59 | 0.37 | 0.37 | 1.00 | 0.33 | 0.18 | 2.49 | 2.40 |
Treatment | Distilled Water SRC % | Sodium Carbonate SRC % | Sucrose SRC % | Lactic Acid SRC % | SIG % | SDSS mL | FPC % |
---|---|---|---|---|---|---|---|
Control | 77.92 (3) | 89.86 (2) | 6.8 (1) | 104.05 (5) | 5.33 (3) | 11.19 (3) | 11.01 (5) |
Mod drought | 79.78 * (1) | 93.11 * (1) | 4.0 * (3) | 110.11 * (2) | 5.24 * (5) | 10.50 * (5) | 12.29 * (3) |
Sev drought | 77.41 (4) | 83.21 * (4) | 4.6 * (2) | 104.30 (4) | 5.59 * (2) | 10.87 * (4) | 15.30 * (1) |
Mod heat | 76.20 * (5) | 80.52 * (5) | 3.5 * (5) | 105.60 * (3) | 5.25 * (4) | 11.31 (1) | 11.75 * (4) |
Sev heat | 78.47 (2) | 87.09 * (3) | 3.8 * (4) | 114.07 * (1) | 5.92 * (1) | 11.28 (2) | 14.36 * (2) |
LSD (0.05) | 0.61 | 0.63 | 0.78 | 1.14 | 0.06 | 0.23 | 0.15 |
SDS Extractable Proteins | SDS Unextractable Proteins | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
HMW | LMW | Gliadin | AG | HMW | LMW | Gliadin | AG | LUPP | UPP | |
Control | 4.70 (5) | 18.97 (1) | 39.33 (5) | 7.31 (2) | 5.63 (2) | 20.6 (1) | 3.35 (3) | 1.00 (1) | 52.07 (2) | 52.46 (1) |
Mod heat | 5.77 * (3) | 18.77 (2) | 43.47 * (2) | 7.59 * (1) | 5.63 (3) | 17.08 * (4) | 2.76 (5) | 0.60 * (5) | 50.57 (3) | 48.24 * (4) |
Sev heat | 6.10 * (1) | 17.46 * (5) | 44.68 * (1) | 6.57 * (5) | 4.94 * (5) | 17.11 * (3) | 3.04 (4) | 0.68 (3) | 46.41 * (5) | 45.52 * (5) |
Mod drought | 5.79 * (2) | 17.75 * (4) | 39.60 (4) | 7.01 (3) | 5.46 (4) | 19.85 (2) | 3.41 (1) | 0.94 (2) | 48.58 * (4) | 50.11 (2) |
Sev drought | 5.09 *(4) | 17.84 * (3) | 42.03 * (3) | 6.69 * (4) | 5.83 (1) | 16.96 * (5) | 3.13 (2) | 0.67 * (4) | 54.14 (1) | 49.68 * (3) |
LSD (treat) | 0.38 | 0.90 | 1.59 | 0.37 | 0.37 | 1.00 | 0.83 | 0.33 | 2.49 | 2.40 |
Optimal | Moderate Drought | Severe Drought | ||||||
---|---|---|---|---|---|---|---|---|
Distilled water SRC | LUPP | 0.54 ** | Sodium carobonate SRC | ExGli | −0.62 ** | Distilled water SRC | ExHMW | −0.71 ** |
Distilled water SRC | UPP | 0.49 * | Sodium carobonate SRC | ExAG | 0.52 * | Distilled water SRC | SDSS | −0.56 ** |
Lactic acid SRC | FPC | 0.76 ** | Sodium carobonate SRC | UnHMW | 0.51 * | Sodium carobonate SRC | ExHMW | −0.76 ** |
Sodium carobonate SRC | FPC | 0.48 * | Sodium carobonate SRC | FPC | −0.56 ** | Sodium carobonate SRC | SDSS | −0.49 * |
SIG | UnLMW | −0.58 ** | Sodium carobonate SRC | SDSS | −0.79 ** | Sucrose SRC | SDSS | −0.64 ** |
SIG | SDSS | 0.67 ** | Sucrose SRC | ExGli | −0.44 * | Sucrose SRC | ExHMW | −0.66 ** |
SIG | FPC | 0.51 * | Sucrose SRC | SDSS | −0.60 ** | Lactic acid SRC | ExHMW | −0.78 ** |
Lactic acid SRC | SDSS | 0.69 ** | SIG | SDSS | 0.70 ** | |||
Lactic acid SRC | LUPP | 0.44 * | SIG | ExLMW | −0.50 * | |||
Distilled water SRC | SDSS | −0.68 ** | ||||||
SIG | SDSS | 0.60 ** | ||||||
SIG | ExLMW | −0.46 * | ||||||
Moderate Heat | Severe Heat | |||||||
Lactic acid SRC | FPC | 0.46 * | Sucrose SRC | ExLMW | 0.65 ** | |||
Distilled water SRC | FPC | −0.49 * | Sucrose SRC | UnLMW | −0.71 ** | |||
Distilled water SRC | ExGli | −0.45 * | SIG | ExAG | −0.53 * | |||
Distilled water SRC | ExLMW | 0.47 * | Distilled water SRC | ExLMW | 0.60 ** | |||
Sucrose SRC | SDSS | −0.56 ** | Distilled water SRC | UnLMW | −0.53 * | |||
Distilled water SRC | SDSS | −0.67 ** | Lactic acid SRC | SDSS | 0.68 ** | |||
Sodium SRC | SDSS | −0.52 * | Distilled water SRC | SDSS | −0.64 ** | |||
SIG | SDSS | 0.86 *** | Sodium SRC | SDSS | −0.46 * | |||
SIG | FPC | 0.62 ** |
Genotypes | HMW-GS | LWM-GS | ||
---|---|---|---|---|
Glu-B1 | Glu-A3 | Glu-B2 | Glu-B3 | |
MexicaliC75 | 7 + 8 | 6 | 12 | 2 + 4 + 15 + 19 |
YavarosC79 | 7 + 8 | 6 | 12 | 2 + 4 + 15 + 19 |
AltarC84 | 7 + 8 | 6 | 12 | 2 + 4 + 15 + 19 |
AtilC2000 | 7 + 8 | 6 | 12 | 2 + 4 + 15 + 19 |
JupareC2001 | 7 + 8 | 6 | 12 | 2 + 4 + 15 + 19 |
CirnoC2008 | 7 + 8 | 6 | 12 | 2 + 4 + 15 + 19 |
Maximum Temp Season 1 | Average Temp Season 1 | Minimum Temp Season 1 | Month | Maximum Temp Season 2 | Average Temp Season 2 | Minimum Temp Season 2 |
---|---|---|---|---|---|---|
28.5 | 19.8 | 13.8 | Nov. | 27.8 | 20.5 | 14.7 |
25.6 | 16.7 | 9.9 | Dec. | 25.4 | 16.6 | 9.8 |
23.6 | 14.1 | 6.6 | Jan. | 26.9 | 16.5 | 8.5 |
23.8 | 14.1 | 6.0 | Feb. | 27.0 | 17.0 | 9.5 |
29.1 | 18.5 | 9.5 | Mar. | 28.6 | 18.9 | 11.0 |
31.1 | 20.6 | 11.0 | Apr. | 32.2 | 21.5 | 11.8 |
35.3 | 25.3 | 15.0 | May | 36.5 | 25.9 | 15.1 |
36.7 | 28.9 | 21.5 | Jun. | 38.7 | 31.4 | 24.8 |
Depth (cm) | OM (%) | Total N (%) | pH | P Olsen (ppm) | CEC (Meq/100 g) | Particle Size Fraction (%) | BD g/cm3 | ||
---|---|---|---|---|---|---|---|---|---|
Sand | Silt | Clay | |||||||
0–15 | 1.2 | 0.04 | 8.9 | 17 | 33.9 | 32 | 18 | 50 | 1.27 |
15–40 | 0.9 | 0.06 | 8.9 | 6 | 30.5 | 34 | 18 | 48 | 1.20 |
40–70 | 0.7 | 0.03 | 8.4 | 3 | 32.4 | 32 | 16 | 52 | 1.38 |
70–120 | 0.3 | 0.01 | 5.9 | 3 | 18.7 | 24 | 16 | 60 | 1.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Labuschagne, M.; Guzmán, C.; Phakela, K.; Wentzel, B.; van Biljon, A. Solvent Retention Capacity and Gluten Protein Composition of Durum Wheat Flour as Influenced by Drought and Heat Stress. Plants 2021, 10, 1000. https://doi.org/10.3390/plants10051000
Labuschagne M, Guzmán C, Phakela K, Wentzel B, van Biljon A. Solvent Retention Capacity and Gluten Protein Composition of Durum Wheat Flour as Influenced by Drought and Heat Stress. Plants. 2021; 10(5):1000. https://doi.org/10.3390/plants10051000
Chicago/Turabian StyleLabuschagne, Maryke, Carlos Guzmán, Keneuoe Phakela, Barend Wentzel, and Angeline van Biljon. 2021. "Solvent Retention Capacity and Gluten Protein Composition of Durum Wheat Flour as Influenced by Drought and Heat Stress" Plants 10, no. 5: 1000. https://doi.org/10.3390/plants10051000
APA StyleLabuschagne, M., Guzmán, C., Phakela, K., Wentzel, B., & van Biljon, A. (2021). Solvent Retention Capacity and Gluten Protein Composition of Durum Wheat Flour as Influenced by Drought and Heat Stress. Plants, 10(5), 1000. https://doi.org/10.3390/plants10051000