Influence of Silver Nanoparticles on the Biological Indicators of Haplic Chernozem
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Details
2.3. Measurement Procedures
2.3.1. Measurement of Soil Organic Matter and pH
2.3.2. Measurement of the Total Number of Bacteria
2.3.3. Measurement of Bacteria of the Genus Azotobacter
2.3.4. Measurement of the Activity of Catalase and Dehydrogenases
2.3.5. Measurement of Germination Rate and Length of Roots of Radish
2.4. Data Analysis
2.5. Statistical Analyses
3. Results
3.1. Influence of AgNPs on Microbiological Conditions of Soil
3.2. Influence of AgNPs on the Activity of Enzymes of Soil
3.3. Influence of AgNPs on Germination Rate and Root Length of Radish
3.4. Integrated Index of the Biological State of Soil Contaminated by AgNPs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jo, Y.-K.; Kim, B.H.; Jung, G. Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis. 2009, 93, 1037–1043. [Google Scholar] [CrossRef] [Green Version]
- Franci, G.; Falanga, A.; Galdiero, S.; Palomba, L.; Rai, M.; Morelli, G.; Galdiero, M. Silver Nanoparticles as Potential Antibacterial Agents. Molecules 2015, 20, 8856–8874. [Google Scholar] [CrossRef] [Green Version]
- Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramırez, J.T.; Yacaman, M.J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, 2346–2353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eidelshtein, G.; Fardian-Melamed, N.; Gutkin, V.; Basmanov, D.; Klinov, D.; Rotem, D.; Levi-Kalisman, Y.; Porath, D.; Kotlyar, A. Synthesis and Properties of Novel Silver-Containing DNA Molecules. Adv. Mater. 2016, 28, 4839–4844. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.; Kwak, J.I.; An, Y.J. The effects of silver nanomaterial shape and size on toxicity to Caenorhabditis elegans in soil media. Chemosphere 2019, 215, 50–56. [Google Scholar] [CrossRef]
- Blaser, S.A.; Scheringer, M.; Macleod, M.; Hungerbühler, K. Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano-functionalized plastics and textiles. Sci. Total Environ. 2008, 390, 396–409. [Google Scholar] [CrossRef]
- Lombi, E.; Donner, E.; Scheckel, K.G.; Sekine, R.; Lorenz, C.; Goetz, N.V.; Nowack, B. Silver speciation and release in commercial antimicrobial textiles as influenced by washing. Chemosphere 2014, 111, 352–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Praveena, S.M.; Karuppiah, K.; Than, L.T.L. Potential of cellulose paper coated with silver nanoparticles: A benign option for emergency drinking water filter. Cellulose 2018, 25, 2647–2658. [Google Scholar] [CrossRef]
- Ovais, M.; Ahmad, I.; Khalil, A.T.; Mukherjee, S.; Javed, R.; Ayaz, M.; Raza, A.; Shinwari, Z.K. Wound healing applications of biogenic colloidal silver and gold nanoparticles: Recent trends and future prospects. Appl. Microbiol. Biotechnol. 2018, 102, 4305–4318. [Google Scholar] [CrossRef]
- Pulit-Prociak, J.; Banach, M. Silver nanoparticles—A material of the future…? Open Chem. 2016, 14, 76–91. [Google Scholar] [CrossRef]
- Gottschalk, F.; Nowack, B. The release of engineered nanomaterials to the environment. J. Environ. Monit. 2011, 13, 1145–1155. [Google Scholar] [CrossRef] [PubMed]
- Rajput, V.D.; Minkina, T.; Sushkova, S.; Chokheli, V.; Soldatov, M. Toxicity assessment of metal oxide nanoparticles on terrestrial plants. Compr. Anal. Chem. 2019, 87, 189–207. [Google Scholar] [CrossRef]
- Kaegi, R.; Sinnet, B.; Zuleeg, S.; Hagendorfer, H.; Mueller, E.; Vonbank, R.; Boller, M.; Burkhardt, M. Release of silver nanoparticles from outdoor facades. Environ. Pollut. 2010, 158, 2900–2905. [Google Scholar] [CrossRef] [PubMed]
- Seifsahandi, M.; Sorooshzadeh, A.; Rezazadeh, S.; Naghdibadi, H. Effect of nano silver and silver nitrate on seed yield of borage. J. Med. Plant Res. 2011, 5, 171–175. [Google Scholar]
- Vinković, T.; Novák, O.; Strnad, M.; Goessler, W.; Jurašin, D.D.; Parađiković, N.; Vrček, I.V. Cytokinin response in pepper plants (Capsicum annuum L.) exposed to silver nanoparticles. Environ. Res. 2017, 156, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Colman, B.P.; McGill, B.M.; Wright, J.P.; Bernhardt, E.S. Effects of Silver Nanoparticle Exposure on Germination and Early Growth of Eleven Wetland Plants. PLoS ONE 2012, 7, 47674. [Google Scholar] [CrossRef] [Green Version]
- Rajput, V.D.; Minkina, T.; Sushkova, S.; Mandzhieva, S.; Fedorenko, A.; Lysenko, V.; Bederska-Błaszczyk, M.; Olchowik, J.; Tsitsuashvili, V.; Chaplygin, V. Structural and Ultrastructural Changes in Nanoparticle Exposed Plants. In Nanoscience for Sustainable Agriculture; Pudake, R.N., Chauhan, N., Kole, C., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 281–295. [Google Scholar]
- Carbone, M.; Donia, D.T.; Sabbatella, G.; Antiochia, R. Silver nanoparticles in polymeric matrices for fresh food packaging. J. King Saud Univ. Sci. 2016, 28, 273–279. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Cao, C.; Li, R.; Guan, W. Effects of Silver Nanoparticles on Soil Ammonia-Oxidizing Microorganisms Under Temperatures of 25 and 5 °C. Pedosphere 2018, 28, 607–616. [Google Scholar] [CrossRef]
- Samarajeewa, A.D.; Velicogna, J.R.; Schwertfeger, D.M.; Jesmer, A.H.; Princz, J.I.; Subasinghe, R.M.; Scroggins, R.P.; Beaudette, L.A. Effect of silver nanoparticle contaminated biosolids on the soil microbial community. NanoImpact 2019, 14, 100157. [Google Scholar] [CrossRef]
- Cao, C.; Huang, J.; Cai, W.-S.; Yan, C.-N.; Liu, J.-L.; Jiang, Y.-D. Effects of Silver Nanoparticles on Soil Enzyme Activity of Different Wetland Plant Soil Systems. Soil Sediment Contam. Int. J. 2017, 26, 558–567. [Google Scholar] [CrossRef]
- Eivazi, F.; Afrasiabi, Z.; Jose, E. Effects of Silver Nanoparticles on the Activities of Soil Enzymes Involved in Carbon and Nutrient Cycling. Pedosphere 2018, 28, 209–214. [Google Scholar] [CrossRef]
- Rahmatpour, S.; Shirvani, M.; Mosaddeghi, M.R.; Nourbakhsh, F.; Bazarganipour, M. Dose–response effects of silver nanoparticles and silver nitrate on microbial and enzyme activities in calcareous soils. Geoderma 2017, 285, 313–322. [Google Scholar] [CrossRef]
- Yan, C.; Huang, J.; Cao, C.; Li, R.; Ma, Y.; Wang, Y. Effects of PVP-coated silver nanoparticles on enzyme activity, bacterial and archaeal community structure and function in a yellow-brown loam soil. Environ. Sci. Pollut. Res. Int. 2020, 27, 8058–8070. [Google Scholar] [CrossRef]
- Schlich, K.; Hoppe, M.; Kraas, M.; Schubert, J.; Chanana, M.; Hund-Rinke, K. Long-term effects of three different silver sulfide nanomaterials, silver nitrate and bulk silver sulfide on soil microorganisms and plants. Environ. Pollut. 2018, 242, 1850–1859. [Google Scholar] [CrossRef] [PubMed]
- Almutairi, Z.; Alharbi, A. Effect of Silver Nanoparticles on Seed Germination of Crop Plants. J. Adv. Agric. 2015, 4, 280–285. [Google Scholar] [CrossRef]
- Biba, R.; Matić, D.; Lyons, D.M.; Štefanić, P.P.; Cvjetko, P.; Tkalec, M.; Pavoković, D.; Letofsky-Papst, I.; Balen, B. Coating-Dependent Effects of Silver Nanoparticles on Tobacco Seed Germination and Early Growth. Int. J. Mol. Sci. 2020, 21, 3441. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.D.; Agarwal, A.; Pradhan, S. Phytostimulatory effect of silver nanoparticles (AgNPs) on rice seedling growth: An insight from antioxidative enzyme activities and gene expression patterns. Ecotoxicol. Environ. Saf. 2018, 161. [Google Scholar] [CrossRef] [PubMed]
- Iram, F.; Iqbal, M.S.; Athar, M.M.; Saeed, M.Z.; Yasmeen, A.; Ahmad, R. Glucoxylan-mediated green synthesis of gold and silver nanoparticles and their phyto-toxicity study. Carbohydr. Polym. 2014, 104, 29–33. [Google Scholar] [CrossRef]
- Mehrian, S.K.; Heidari, R.; Rahmani, F.; Najafi, S. Effect of Chemical Synthesis Silver Nanoparticles on Germination Indices and Seedlings Growth in Seven Varieties of Lycopersicon esculentum Mill (tomato) plants. J. Clust. Sci. 2016, 27, 327–340. [Google Scholar] [CrossRef]
- Salama, H.M.H. Effects of silver nanoparticles in some crop plants, Common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int. Res. J. Biotechnol. 2012, 3, 190–197. [Google Scholar]
- Kolesnikov, S.I.; Tsepina, N.I.; Sudina, L.V.; Minnikova, T.V.; Kazeev, K.S.; Akimenko, Y.V. Silver Ecotoxicity Estimation by the Soil State Biological Indicators. Appl. Environ. Soil Sci. 2020, 2020, 1207210. [Google Scholar] [CrossRef]
- Kolesnikov, S.I.; Timoshenko, A.N.; Kazeev, K.S.; Akimenko, Y.V.; Myasnikova, M.A. Ecotoxicity of Copper, Nickel, and Zinc Nanoparticles Assessment on the Basis of Biological Indicators of Chernozems. Eurasian Soil Sci. 2019, 52, 982–987. [Google Scholar] [CrossRef]
- Kolesnikov, S.I.; Varduny, T.V.; Lysenko, V.; Kapralova, O.A.; Chokheli, V.; Sereda, M.; Dmitriev, P.; Varduny, V.M. Effect of nano- And crystalline metal oxides on growth, gene- And cytotoxicity of plants in vitro and ex vitro. Turczaninowia 2018, 21, 207–214. [Google Scholar] [CrossRef]
- Liu, Y.; Zeng, G.; Zhong, H.; Wang, Z.; Liu, Z.; Cheng, M.; Liu, G.; Yang, X.; Liu, S. Effect of rhamnolipid solubilization on hexadecane bioavailability: Enhancement or reduction? J. Hazard. Mater. 2017, 322, 394–401. [Google Scholar] [CrossRef]
- Kaczynski, P.; Lozowicka, B.; Hrynko, I.; Wolejko, E. Behaviour of mesotrione inmaize and soil system and its influence on soil dehydrogenase activity. Sci. Total Environ. 2016, 571, 1079–1088. [Google Scholar] [CrossRef] [PubMed]
- Kolesnikov, S.I.; Yaroslavtsev, M.V.; Spivakova, N.A.; Kazeev, K.S. Comparative assessment of the biological tolerance of chernozems in the south of Russia towards contamination with Cr, Cu, Ni, and Pb in a model experiment. Eurasian Soil Sci. 2013, 46, 176–181. [Google Scholar] [CrossRef]
- Minnikova, T.; Kolesnikov, S.; Minkina, T.; Mandzhieva, S. Assessment of ecological condition of haplic chernozem calcic contaminated with petroleum hydrocarbons during application of bioremediation agents of various natures. Land 2021, 10, 169. [Google Scholar] [CrossRef]
- Stepniewska, Z.; Woli´nska, A.; Ziomek, J. Response of soil catalase activity to chromium contamination. J. Environ. Sci. 2009, 21, 1142–1147. [Google Scholar] [CrossRef]
- WRB, I.W.G. World Reference Base for Soil Resources International soil classification system for naming soils and creating legends for soil maps. World Soil Resour. Rep. 2015, 106. [Google Scholar]
- Azarenko, M.A.; Kazeev, K.S.; Yermolayeva, O.Y.; Kolesnikov, S.I. Change of vegetation cover and biological propertiesof chernozems in the postagrogenic period. Eurasian Soil Sci. 2020, 53, 1645–1654. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2010; p. 548. [Google Scholar]
- Kolesnikov, S.I.; Kazeev, K.S.; Akimenko, Y.V. Development of regional standards for pollutants in the soil using biological parameters. Environ. Monit. Assess. 2019, 191, 544. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, D.; Sasmaz, A. Phytoremediation of As, Ag, and Pb in contaminated soils using terrestrial plants grown on Gumuskoy mining area (Kutahya, Turkey). J. Geochem. Explor. 2017, 182, 228–234. [Google Scholar] [CrossRef]
- Druzhinin, A.V.; Karelina, E.V. The main types of industrial silver deposits. RUDN Bull. Eng. Res. Ser. 2008, 1, 35–41. [Google Scholar]
- Kolesnikov, S.I.; Varduni, V.M.; Timoshenko, A.N.; Denisova, T.V.; Kazeev, K.S.; Akimenko, Y.V. Estimation of the ecotoxicity of nanoparticles of cobalt, copper, nickel and zinc oxides on biological indicators of the state of ordinary chernozem. South Russ. Ecol. Dev. 2020, 15, 130–136. [Google Scholar] [CrossRef]
- Kolesnikov, S.I.; Kazeev, K.Sh.; Val’kov, V.F. The effect of heavy metal contamination on the microbial system in chernozem. Eurasian Soil Sci. 1999, 32, 459–465. [Google Scholar]
- Wylie, E.M.; Colletti, L.M.; Walker, L.F.; Lujan, E.J.; Garduno, K.; Mathew, K.J. Comparison of the Davies and Gray titrimetric method with potassium dichromate and ceric titrants. J. Radioanal. Nucl. Chem. 2018, 318, 227–233. [Google Scholar] [CrossRef]
- McFeters, G.A.; Yu, F.P.; Pyle, B.H.; Stewart, P.S. Physiological assessment of bacteria using fluorochromes. J. Microbiol. Methods 1995, 21, 1–13. [Google Scholar] [CrossRef]
- Val’kov, V.F.; Kolesnikov, S.I.; Kazeev, K.Sh.; Tashchiev, S.S. Influence of heavy metal pollution on microscopic fungi and Azotobacter of common chernozem. Russ. J. Ecol. 1997, 28, 345–346. [Google Scholar]
- Kolesnikov, S.I.; Kazeev, K.S.; Val’kov, V.F. Effects of heavy metal pollution on the ecological and biological characteristics of common chernozem. Russ. J. Ecol. 2000, 31, 174–181. [Google Scholar] [CrossRef]
- Martinez, M.; Gutiérrez-Romero, V.; Jannsens, M.; Ortega-Blu, R. Biological soil quality indicators: A review. Curr. Res. Technol. Educ. Top. Appl. Microbiol. Microb. Biotechnol. 2010, 319–328. [Google Scholar]
- Galstyan, A.S. Unification of methods for studying the activity of soil enzymes. Eurasian Soil Sci. 1978, 2, 107–114. [Google Scholar]
- Bab’eva, M.A.; Zenova, N.K. Soil Biology; Moscow State University Publishing House: Moscow, Russia, 1989; p. 336. [Google Scholar]
- Pandey, S.N. Accumulation heavy metals (cadmium, cromium, copper, nickel and zinc) in Raphanus salivus L. and Spinacia olerac L. Plants Irrigated with Industrial Effluents. J. Environ. Biol. 2006, 27, 381–384. [Google Scholar] [PubMed]
- Kolesnikov, S.I.; Zharkova, M.G.; Kazeev, K.S.; Kutuzova, I.V.; Samokhvalova, L.S.; Naleta, E.V.; Zubkov, D.A. Ecotoxicity assessment of heavy metals and crude oil based on biological characteristics of chernozem. Russ. J. Ecol. 2014, 45, 157–166. [Google Scholar] [CrossRef]
- Plekhanova, I.O.; Zolotareva, O.A.; Tarasenko, I.D.; Yakovlev, A.S. Assessment of ecotoxicity of soils contaminated by heavy metals. Eurasian Soil Sci. 2019, 52, 1274–1288. [Google Scholar] [CrossRef]
- Nikolaeva, O.V.; Terekhova, V.A. Improvement of laboratory phytotest for the ecological evaluation of soils. Eurasian Soil Sci. 2017, 50, 1105–1114. [Google Scholar] [CrossRef]
- Choi, O.; Hu, Z. Size Dependent and Reactive Oxygen Species Related Nanosilver Toxicity to Nitrifying Bacteria. Environ. Sci. Technol. 2008, 42, 4583–4588. [Google Scholar] [CrossRef]
- Grün, A.-L.; Straskraba, S.; Schulz, S.; Schloter, M.; Emmerling, C. Long-term effects of environmentally relevant concentrations of silver nanoparticles on microbial biomass, enzyme activity, and functional genes involved in the nitrogen cycle of loamy soil. J. Environ. Sci. 2018, 69, 12–22. [Google Scholar] [CrossRef]
- Ottoni, C.A.; Lima Neto, M.C.; Leo, P.; Ortolan, B.D.; Barbieri, E.; De Souza, A.O. Environmental impact of biogenic silver nanoparticles in soil and aquatic organisms. Chemosphere 2020, 239, 124698. [Google Scholar] [CrossRef]
- Mishra, P.; Xue, Y.; Eivazi, F.; Afrasiabi, Z. Size, concentration, coating, and exposure time effects of silver nanoparticles on the activities of selected soil enzymes. Geoderma 2021, 381, 114682. [Google Scholar] [CrossRef]
- Thuesombat, P.; Hannongbua, S.; Akasit, S.; Chadchawan, S. Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol. Environ. Saf. 2014, 104, 302–309. [Google Scholar] [CrossRef]
- Montes de Oca-Vásquez, G.; Solano-Campos, F.; Vega-Baudrit, J.R.; López-Mondéjar, R.; Vera, A.; Morenof, J.L.; Bastidaf, F. Organic amendments exacerbate the effects of silver nanoparticles on microbial biomass and community composition of a semiarid soil. Sci. Total Environ. 2020, 744, 140919. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, J.P.; Mucha, A.P.; Francisco, T.; Gomes, C.R.; Almeida, C.M.R. Silver nanoparticles uptake by salt marsh plants—Implications for phytoremediation processes and effects in microbial community dynamics. Mar. Pollut. Bull. 2017, 119, 176–183. [Google Scholar] [CrossRef] [PubMed]
No | Biological Indicators | Measure Unit | Methods |
---|---|---|---|
1 | total number of bacteria | 109 bacteria in gram of soil dry weight | luminescent microscopy with solution of acridine orange, 40X |
2 | Azotobacter sp. abundance | % of the mud balls surrounded by Azotobacter mucus | the method of fouling lumps on the Ashby medium |
3 | catalase activity | ml O2 per gram of soil dry weight in 1 min. | by the rate of decomposition of hydrogen peroxide |
4 | dehydrogenases activity | mg of triphenylformazane (TPF) per gram of soil dry weight for hour | according to the rate of conversion of triphenyltetrazolium chloride (TPC) to TPF |
5 | the germination rate of radish seeds | % of germination seeds of control | germination of radish (Raphanus sativus L.) after 7 days of the experiment |
6 | the length of the radish roots | millimeters | of length of the roots in radish (Raphanus sativus L.) after 7 days of the experiment |
Biological Indicator | Concentration of AgNPs, mg/kg | ||||||
---|---|---|---|---|---|---|---|
Control | 0.5 | 1 | 5 | 10 | 50 | 100 | |
total number of bacteria, 109 in gram of soil dry weight | 5.1 ± 0.3 | 4.9 ± 0.2 | 4.5 ± 0.4 | 4.0 ± 0.3 | 3.2 ± 0.2 | 3.0 ± 0.2 | 2.5 ± 0.2 |
Azotobacter sp. abundance, % fouling lumps of soil dry weight | 100.0 ± 2.0 | 100.0 ± 2.0 | 100.0 ± 2.0 | 100.0 ± 2.0 | 98.0 ± 2.0 | 97.0 ± 2.0 | 95.0 ± 2.0 |
catalase activity, ml O2 per gram of soil dry weight in 1 min | 11.2 ± 1.3 | 9.2 ± 2.2 | 8.9 ± 1.7 | 8.6 ± 2.0 | 8.1 ± 1.3 | 7.7 ± 1.4 | 6.7 ± 1.0 |
dehydrogenases activity, mg of triphenylformazane (TPF) per gram of soil dry weight for hour | 28.8 ± 1.5 | 17.8 ± 1.3 | 17.0 ± 1.2 | 13.4 ± 1.2 | 11.3 ± 1.0 | 9.0 ± 1.3 | 5.8 ± 1.0 |
the length of the radish roots, millimeters | 68.0 ± 2.2 | 65.2 ± 2.6 | 54.0 ± 2.0 | 50.0 ± 2.0 | 40.0 ± 2.5 | 35.0 ± 2.0 | 24.0 ± 1.2 |
the germination rate of radish seeds, % of germination of control seeds | 100.0 ± 1.4 | 96.0 ± 2.5 | 88.0 ± 3.2 | 80.0 ± 2.2 | 78.0 ± 1.8 | 71.0 ± 1.7 | 60.0 ± 3.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolesnikov, S.; Tsepina, N.; Minnikova, T.; Kazeev, K.; Mandzhieva, S.; Sushkova, S.; Minkina, T.; Mazarji, M.; Singh, R.K.; Rajput, V.D. Influence of Silver Nanoparticles on the Biological Indicators of Haplic Chernozem. Plants 2021, 10, 1022. https://doi.org/10.3390/plants10051022
Kolesnikov S, Tsepina N, Minnikova T, Kazeev K, Mandzhieva S, Sushkova S, Minkina T, Mazarji M, Singh RK, Rajput VD. Influence of Silver Nanoparticles on the Biological Indicators of Haplic Chernozem. Plants. 2021; 10(5):1022. https://doi.org/10.3390/plants10051022
Chicago/Turabian StyleKolesnikov, Sergey, Natalia Tsepina, Tatiana Minnikova, Kamil Kazeev, Saglara Mandzhieva, Svetlana Sushkova, Tatiana Minkina, Mahmoud Mazarji, Rupesh Kumar Singh, and Vishnu D. Rajput. 2021. "Influence of Silver Nanoparticles on the Biological Indicators of Haplic Chernozem" Plants 10, no. 5: 1022. https://doi.org/10.3390/plants10051022
APA StyleKolesnikov, S., Tsepina, N., Minnikova, T., Kazeev, K., Mandzhieva, S., Sushkova, S., Minkina, T., Mazarji, M., Singh, R. K., & Rajput, V. D. (2021). Influence of Silver Nanoparticles on the Biological Indicators of Haplic Chernozem. Plants, 10(5), 1022. https://doi.org/10.3390/plants10051022