Water Extract of Rubus coreanus Prevents Inflammatory Skin Diseases In Vitro Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of RCW
2.2. Determination of Total Phenolic Compounds and Flavonoid Contents
2.3. Cell Culture and Treatment
2.4. Cytotoxicity
2.5. Inducion of Inflammation Using TNF-α/IFN-γ Mixture
2.6. Assessment of Intracellular ROS Formation
2.7. Evaluation of Antioxidant Enzyme Activity
2.8. Total RNA Isolation and Real-Time Polymerase Chain Reaction (PCR)
2.9. Western Blotting
2.10. Statistical Analysis
3. Results
3.1. Total Phenolic Compounds and Flavonoid Content of RCW
3.2. Cytotoxicity of RCW in HaCaT Cells
3.3. Effect of RCW on Intracellular ROS Level in TNF-α/IFN-γ-Stimulated HaCaT Cells
3.4. Effects of RCW on Antioxidant Enzyme Activity in TNF-α/IFN-γ-Stimulated HaCaT Cells
3.5. Effects of RCW on Proinflammatory Cytokines in TNF-α/IFN-γ-Stimulated HaCaT Cells
3.6. Effects of RCW on Chemokines and Adhesion Molecule in TNF-α/IFN-γ-Stimulated HaCaT Cells
3.7. Effects of RCW on Expression of Genes Related to Skin Formation in TNF-α/IFN-γ-Stimulated HaCaT Cells
3.8. Effects of RCW on the NF-κB Pathway in TNF-α/IFN-γ-Stimulated HaCaT Cells
3.9. Effects of RCW on the NF-κB Pathway in TNF-α/IFN-γ-Stimulated HaCaT Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Wallach, D.; Taïeb, A. Atopic dermatitis/atopic eczema. Chem. Immunol. Allergy 2014, 100, 81–96. [Google Scholar]
- Suárez-Fariñas, M.; Tintle, S.J.; Shemer, A.; Chiricozzi, A.; Nograles, K.; Cardinale, L.; Duan, S.; Bowcock, A.M.; Krueger, J.G.; Guttman-Yassky, E. Nonlesional atopic dermatitis skin is characterized by broad terminal differentiation defects and variable immune abnormalities. J. Allergy Clin. Immunol. 2011, 127, 954–964.e4. [Google Scholar] [CrossRef] [Green Version]
- Wollenberg, A.; Kraft, S.; Oppel, T.; Bieber, T. Atopic dermatitis: Pathogenetic mechanisms. Clin. Exp. Dermatol. 2000, 25, 530–534. [Google Scholar] [CrossRef] [PubMed]
- McGrath, J.A. Filaggrin and the great epidermal barrier grief. Australas. J. Dermatol. 2008, 49, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Ong, P.Y.; Leung, D.Y.M. Immune dysregulation in atopic dermatitis. Curr. Allergy Asthma Rep. 2006, 6, 384–389. [Google Scholar] [CrossRef] [PubMed]
- Giustizieri, M.L.; Mascia, F.; Frezzolini, A.; De Pità, O.; Chinni, L.M.; Giannetti, A.; Girolomomi, G.; Pastore, S. Keratinocytes from patients with atopic dermatitis and psoriasis show a distinct chemokine production profile in response to T cell-derived cytokines. J. Allergy Clin. Immunol. 2001, 107, 871–877. [Google Scholar] [CrossRef]
- Jahnz-Rozyk, K.; Targowski, T.; Paluchowska, E.; Owczarek, W.; Kucharczyk, A. Serum thymus and activation-regulated chemokine, macrophage-derived chemokine and eotaxin as markers of severity of atopic dermatitis. Allergy Eur. J. Allergy Clin. Immunol. 2005, 60, 685–688. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.S.; Chun, S.Y.; Lee, M.G.; Kim, S.; Jang, T.J.; Nam, K.S. The prevention of TNF-α/IFN-γ mixture-induced inflammation in human keratinocyte and atopic dermatitis-like skin lesions in Nc/Nga mice by mineral-balanced deep sea water. Biomed. Pharmacother. 2018, 97, 1331–1340. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.R.; Choi, J.; Kim, J.; Kim, H.; Kang, H.; Kim, E.H.; Chang, J.H.; Kim, Y.E.; Choi, Y.J.; Lee, K.W.; et al. 20-O-β-d-glucopyranosyl-20(S)-protopanaxadiol-fortified ginseng extract attenuates the development of atopic dermatitis-like symptoms in NC/Nga mice. J. Ethnopharmacol. 2014, 151, 365–371. [Google Scholar] [CrossRef]
- Jung, K.; Linse, F.; Heller, R.; Moths, C.; Goebel, R.; Neumann, C. Adhesion molecules in atopic dermatitis: VCAM-1 and ICAM-1 expression is increased in healthy-appearing skin. Allergy Eur. J. Allergy Clin. Immunol. 1996, 51, 452–460. [Google Scholar] [CrossRef]
- Katzka, D.A.; Tadi, R.; Symyrk, T.C.; Katarya, E.; Sharma, A.; Geno, D.M.; Camilleri, M.; Lyer, P.G.; Alexander, J.A.; Buttar, N.S. Effects of topical steroids on tight junction proteins and spongiosis in esophageal epithelia of patients with eosinophilic esophagitis. Clin. Gastroenterol. Hepatol. 2014, 12, 1824–1829. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Choi, E.J.; Choi, H.; Lee, K.S.; Kim, H.R.; Na, B.R.; Kwon, M.S.; Jeong, G.S.; Choi, H.G.; Choi, E.Y.; et al. Oral administration of 4-hydroxy-3-methoxycinnamaldehyde attenuates atopic dermatitis by inhibiting T cell and keratinocyte activation. PLoS ONE 2015, 10, 1–16. [Google Scholar]
- Ji, H.; Li, X.K. Oxidative stress in atopic dermatitis. Oxid. Med. Cell. Longev. 2016, 2016, 2721469. [Google Scholar] [CrossRef]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef]
- Sivaranjani, N.; Venkata Rao, S.; Rajeev, G. Role of reactive oxygen species and antioxidants in atopic dermatitis. J. Clin. Diagn. Res. 2013, 7, 12683–12685. [Google Scholar] [CrossRef] [PubMed]
- Mates, J.M.; Perez-Gomez, C.; De Castro, I.N. Antioxidant enzymes and human disease. IOP Conf. Ser. Mater. Sci. Eng. 2015, 100, 595–603. [Google Scholar] [CrossRef]
- Kiyohara, C.; Tanaka, K.; Miyake, Y. Genetic susceptibility to atopic dermatitis. Allergol. Int. 2008, 57, 39–56. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.W.; Jeong, J.T.; Shin, C.S. Component analysis and sensory evaluation of Korean black raspberry (Rubus coreanus Mique) wines. Int. J. Food Sci. Technol. 2012, 47, 918–926. [Google Scholar] [CrossRef]
- Lee, Y.A.; Lee, M.W. Tannins from Rubus coreanum. Korean J. Pharmacogn. 1995, 26, 27–30. [Google Scholar]
- Park, Y.K.; Choi, S.H.; Kim, S.H.; Jang, Y.S.; Han, J.; Chung, H.G. Functional composition and antioxidant activity from the fruits of Rubus coreanus according to cultivars. J. Korean Wood Sci. Technol. 2008, 36, 102–109. [Google Scholar]
- Yang, H.M.; Lim, S.S.; Lee, Y.S.; Shin, H.K.; Oh, Y.S.; Kim, J.K. Comparison of the anti-inflammatory effects of the extracts from Rubus coreanus and Rubus occidentalis. Korean J. Food Sci. Technol. 2007, 39, 342–347. [Google Scholar]
- Kim, J.H.; Kim, C.H.; Kim, H.S.; Kwon, M.C.; Song, Y.K.; Seong, N.S.; Lee, S.E.; Yi, J.S.; Kwon, O.W.; Lee, H.Y. Effect of Aqueous Extracts from Rubus coreanus Miquel and Angelica gigas Nakai on Anti-tumor and Anti-stress activities in mice. Korean J. Med. Crop Sci. 2006, 14, 206–211. [Google Scholar]
- Lim, J.W.; Hwang, H.J.; Shin, C.S. Polyphenol compounds and anti-inflammatory activities of Korean black raspberry (Rubus coreanus Miquel) wines produced from juice supplemented with pulp and seed. J. Agric. Food Chem. 2012, 60, 5121–5127. [Google Scholar] [CrossRef] [PubMed]
- Seo, K.H.; Lee, J.Y.; Park, J.Y.; Jang, G.Y.; Kim, H.D.; Lee, Y.S.; Kim, D.H. Differences in anti-inflammatory effect of immature and mature of Rubus coreanus fruits on LPS-induced RAW 264.7 macrophages via NF-κB signal pathways. BMC Complement. Altern. Med. 2019, 19, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Meda, A.; Lamien, C.E.; Romito, M.; Millogo, J.; Nacoulma, O.G. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem. 2005, 91, 571–577. [Google Scholar] [CrossRef]
- Atanassova, M.; Georgieva, S.; Ivancheva, K. Total phenolic and total flavonoid contents, antioxidant capacity and biological contaminants in medicinal herbs. J. Univ. Chem. Technol. Metall. 2011, 46, 81–88. [Google Scholar]
- Aebi, H. Catalase. Methods Enzym. Anal. 1974, 105, 121–126. [Google Scholar]
- Peskin, A.V.; Winterbourn, C.C. Assay of superoxide dismutase activity in a plate assay using WST-1. Free Radic. Biol. Med. 2017, 103, 188–191. [Google Scholar] [CrossRef]
- Thomson, C.D.; Rea, H.M.; Robinson, M.F.; Simpson, F.O. Selenium concentrations and glutathione peroxidase activities in blood of hypertensive patients. Br. J. Nutr. 1977, 37, 457–460. [Google Scholar] [CrossRef]
- Dinarello, C.A. Proinflammatory cytokines. Chest 2000, 118, 503–508. [Google Scholar] [CrossRef]
- Hubbard, A.K.; Rothlein, R. Intercellular adhesion molecule-1 (ICAM-1) expression and cell signaling cascades. Free Radic. Biol. Med. 2000, 28, 1379–1386. [Google Scholar] [CrossRef]
- Furue, M. Regulation of filaggrin, loricrin, and involucrin by IL-4, IL-13, IL-17A, IL-22, AHR, and NRF2: Pathogenic implications in atopic dermatitis. Int. J. Mol. Sci. 2020, 21, 5382. [Google Scholar] [CrossRef]
- Choi, J.K.; Kim, S.H. Inhibitory effect of galangin on atopic dermatitis-like skin lesions. Food Chem. Toxicol. 2014, 68, 135–141. [Google Scholar] [CrossRef]
- Kwon, D.J.; Bae, Y.S.; Ju, S.M.; Goh, A.R.; Youn, G.S.; Choi, S.Y.; Park, J. Casuarinin suppresses TARC/CCL17 and MDC/CCL22 production via blockade of NF-κB and STAT1 activation in HaCaT cells. Biochem. Biophys. Res. Commun. 2012, 417, 1254–1259. [Google Scholar] [CrossRef]
- Gröne, A. Keratinocytes and cytokines. Vet. Immunol. Immunopathol. 2002, 88, 1–12. [Google Scholar] [CrossRef]
- Brandt, E.B.; Sivaprasad, U. Th2 cytokines and atopic dermatitis. J. Clin. Cell. Immunol. 2011, 2, 110. [Google Scholar] [CrossRef] [PubMed]
- Madonna, S.; Scarponi, C.; De Pità, O.; Albanesi, C. Suppressor of cytokine signaling 1 inhibits IFN-γ inflammatory signaling in human keratinocytes by sustaining ERK1/2 activation. FASEB J. 2008, 22, 3287–3297. [Google Scholar] [CrossRef]
- Kong, L.; Liu, J.; Wang, J.; Luo, Q.; Zhang, H.; Liu, B.; Xu, F.; Pang, Q.; Liu, Y.; Dong, J. Icariin inhibits TNF-α/IFN-γ induced inflammatory response via inhibition of the substance P and p38-MAPK signaling pathway in human keratinocytes. Int. Immunopharmacol. 2015, 29, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Mitterman, I.; Aichberger, K.J.; Bünder, R.; Mothes, N.; Renz, H.; Valenta, R. Autoimmunity and atopic dermatitis. Curr. Opin. Allergy Clin. Immunol. 2004, 4, 367–371. [Google Scholar] [CrossRef]
- Vestergaard, C.; Kirstejn, N.; Gesser, B.; Mortensen, J.T.; Matsushima, K.; Larsen, C.G. IL-10 augments the IFN-γ and TNF-α induced TARC production in HaCaT cells: A possible mechanism in the inflammatory reaction of atopic dermatitis. J. Dermatol. Sci. 2001, 26, 46–54. [Google Scholar] [CrossRef]
- Kim, J.E.; Kim, J.S.; Cho, D.H.; Park, H.J. Molecular mechanisms of cutaneous inflammatory disorder: Atopic dermatitis. Int. J. Mol. Sci. 2016, 17, 1234. [Google Scholar] [CrossRef] [Green Version]
- Nakazato, J.; Kishida, M.; Kuroiwa, R.; Fujiwara, J.; Shimoda, M.; Shinomiya, N. Serum levels of Th2 chemokines, CCL17, CCL22, and CCL27, were the important markers of severity in infantile atopic dermatitis. Pediatr. Allergy Immunol. 2008, 19, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Nickel, R.G.; Casolaro, V.; Wahn, U.; Beyer, K.; Barnes, K.C.; Plunkett, B.S.; Freidhoff, L.R.; Sengler, C.; Plitt, J.R.; Schleimer, R.P.; et al. Atopic dermatitis is associated with a functional mutation in the promoter of the C-C chemokine RANTES. J. Immunol. 2000, 164, 1612–1616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rafatpanah, H.; Bennett, E.; Pravica, V.; McCoy, M.J.; David, T.J.; Hutchinson, I.V.; Arkwright, P.D. Association between novel GM-CSF gene polymorphisms and the frequency and severity of atopic dermatitis. J. Allergy Clin. Immunol. 2003, 112, 593–598. [Google Scholar] [CrossRef]
- Ackermann, L.; Harvima, I.T. Mast cells of psoriatic and atopic dermatitis skin are positive for TNF-α and their degranulation is associated with expression of ICAM-1 in the epidermis. Arch. Dermatol. Res. 1998, 290, 353–359. [Google Scholar] [CrossRef]
- Candi, E.; Schmidt, R.; Melino, G. The cornified envelope: A model of cell death in the skin. Nat. Rev. Mol. Cell Biol. 2005, 6, 328–340. [Google Scholar] [CrossRef] [PubMed]
- Proksch, E.; Brandner, J.M.; Jensen, J.M. The skin: An indispensable barrier. Exp. Dermatol. 2008, 17, 1063–1072. [Google Scholar] [CrossRef] [PubMed]
- Thyssen, J.P.; Kezic, S. Causes of epidermal filaggrin reduction and their role in the pathogenesis of atopic dermatitis. J. Allergy Clin. Immunol. 2014, 134, 792–799. [Google Scholar] [CrossRef]
- Scott, I.R.; Harding, C.R. Filaggrin breakdown to water binding compounds during development of the rat stratum corneum is controlled by the water activity of the environment. Dev. Biol. 1986, 115, 84–92. [Google Scholar] [CrossRef]
- Kezic, S.; Kammeyer, A.; Calkoen, F.; Fluhr, J.W.; Bos, J.D. Natural moisturizing factor components in the stratum corneum as biomarkers of filaggrin genotype: Evaluation of minimally invasive methods. Br. J. Dermatol. 2009, 161, 1098–1104. [Google Scholar] [CrossRef]
- Leung, D.Y.M.; Boguniewicz, M.; Howell, M.D.; Nomura, I.; Hamid, Q.A. New insights into atopic dermatitis find the latest version: Science in medicine new insights into atopic dermatitis. J. Clin. Investig. 2004, 113, 651–657. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.W.; Lee, K.S.; Kim, C.W. Curcumin attenuates the expression of IL-1β, IL-6, and TNF-α as well as cyclin E in TNF-α-treated HaCaT cells; NF-κB and MAPKs as potential upstream targets. Int. J. Mol. Med. 2007, 19, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Subhan, F.; Kang, H.Y.; Lim, Y.; Ikram, M.; Baek, S.Y.; Jin, S.; Jeong, Y.H.; Kwak, J.Y.; Yoon, S. Fish scale collagen peptides protect against CoCl2/TNF- α-Induced cytotoxicity and inflammation via inhibition of ROS, MAPK, and NF-κB pathways in HaCaT cells. Oxid. Med. Cell. Longev. 2017, 2017, 9703609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene | Primer Sequence (5′ to 3′) | |
---|---|---|
TNF-α | Forward | 5′- CCACTTCGAAACCTGGGATTC-3′ |
Reverse | 5-′TTAGTGGTTGCCAGCACTTCA-3′ | |
IL-6 | Forward | 5′-AGGGCTCTTCGGCAAATGTA-3′ |
Reverse | 5′-GAAGGAATGCCCATTAACAACAA-3′ | |
IL-1β | Forward | 5′-GCATCCAGCTACGAATCTCC-3′ |
Reverse | 5′-GGAACCAGCATCTTCCTCAG-3′ | |
CCL17/TARC | Forward | 5′-GAAGACGTGGTACCAGACATCTGA-3′ |
Reverse | 5′-CCCTGCACAGTTACAAAAACGA-3′ | |
CCL11/Eotaxin | Forward | 5′-GCGACTAGAGAGCTACAGGAGAATC-3′ |
Reverse | 5′-GGTCTTGAAGATCACAGCTTTCTG-3′ | |
CCL22/MDC | Forward | 5′-GTTGTCCTCGTCCTCCTTGC-3′ |
Reverse | 5′-GGAGTCTGAGGTCCAGTAGAAGTG-3′ | |
CCL5/RANTES | Forward | 5′-AGTGTGTGCCAACCCAGAGA-3′ |
Reverse | 5′-AGCAAGCAGAAACAGGCAAA-3′ | |
GM-CSF | Forward | 5′-ACTTCCTGTGCAACCCAGATT-3′ |
Reverse | 5′-CATCTGGCCGGTCTCACTC-3′ | |
ICAM-1 | Forward | 5′-CAAGGCCTCAGTCAGTGTGA-3′ |
Reverse | 5′-CCTCTGGCTTCGTCAGAATC-3′ | |
Filaggrin | Forward | 5′-GCAAGGTCAAGTCCAGGAGAA-3′ |
Reverse | 5′-CCCTCGGTTTCCACTGTCTC-3′ | |
Involucrin | Forward | 5′-CTGCCTGAGCAAGAATGTGA-3′ |
Reverse | 5′-AGCTGCTGATCCCTTTGTGT-3′ | |
NF-κB | Forward | 5′-CTCCTGTGCGTGTCTCCATG-3′ |
Reverse | 5′-TTACGTTTCTCCTCAATCCG-3′ | |
IκBα | Forward | 5′-GAAATACCCCCCTACACCTT-3′ |
Reverse | 5′-GACACCAAAAGCTCCACGAT-3′ | |
GAPDH | Forward | 5′-CTGCTCCTCCTGTTCGACAGT-3′ |
Reverse | 5′-CCGTTGACTCCGACCTTCAC-3′ |
Total Phenolic Compounds Content (mg GAE/100 g RCW) | Flavonoid Content (mg CE/100 g RCW) | |
---|---|---|
RCW | 4242.40 ± 54.84 | 1010.99 ± 14.75 |
CAT (U/mg Protein) | SOD (U/mg Protein) | GPx (U/mg Protein) | |
---|---|---|---|
CON | 4.48 ± 0.66 a | 62.35 ± 2.94 a | 0.0102 ± 0.0001 a |
T/I | 2.02 ± 0.08 c | 34.70 ± 2.23 d | 0.0058 ± 0.0001 c |
RCW 100 | 2.20 ± 0.17 c | 39.28 ± 1.85 c | 0.0075 ± 0.0002 b |
RCW 200 | 2.92 ± 0.27 b | 50.72 ± 1.09 b | 0.0099 ± 0.0004 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pyeon, S.; Kim, O.-K.; Yoon, H.-G.; Kim, S.; Choi, K.-C.; Lee, Y.-H.; Lee, J.; Park, J.; Jun, W. Water Extract of Rubus coreanus Prevents Inflammatory Skin Diseases In Vitro Models. Plants 2021, 10, 1230. https://doi.org/10.3390/plants10061230
Pyeon S, Kim O-K, Yoon H-G, Kim S, Choi K-C, Lee Y-H, Lee J, Park J, Jun W. Water Extract of Rubus coreanus Prevents Inflammatory Skin Diseases In Vitro Models. Plants. 2021; 10(6):1230. https://doi.org/10.3390/plants10061230
Chicago/Turabian StylePyeon, Sumin, Ok-Kyung Kim, Ho-Geun Yoon, Shintae Kim, Kyung-Chul Choi, Yoo-Hyun Lee, Jeongmin Lee, Jeongjin Park, and Woojin Jun. 2021. "Water Extract of Rubus coreanus Prevents Inflammatory Skin Diseases In Vitro Models" Plants 10, no. 6: 1230. https://doi.org/10.3390/plants10061230
APA StylePyeon, S., Kim, O. -K., Yoon, H. -G., Kim, S., Choi, K. -C., Lee, Y. -H., Lee, J., Park, J., & Jun, W. (2021). Water Extract of Rubus coreanus Prevents Inflammatory Skin Diseases In Vitro Models. Plants, 10(6), 1230. https://doi.org/10.3390/plants10061230