Gene Expression and Isoform Identification of PacBio Full-Length cDNA Sequences for Berberine Biosynthesis in Berberis koreana
Abstract
:1. Introduction
2. Results
2.1. Identification and Expression Analysis of Berberine Biosynthesis Pathway Genes
2.2. Berberis Koreana Transcriptome Sequencing by PacBio
2.3. Functional Annotation
2.4. Isoforms in Berberine Biosynthesis
2.5. Phylogenetic Analyses of the Methyltransferases and Oxidase/Reductases among the Berberine Synthesis Enzymes
3. Discussion
4. Materials and Methods
4.1. Plant Material and Storage
4.2. Illumina RNA-Seq Library Construction and Sequencing
4.3. Differential Gene Expression (DEG) Analysis
4.4. Full-Length cDNA Sequencing
4.5. Iso-Seq Data Processing with a Standard Bioinformatics Pipeline
4.6. Full-Length Unique Transcript Model Reconstruction
4.7. Isoform Identification
4.8. Functional Annotation and Phylogenetic Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bhardwaj, D.; Kaushik, N. Phytochemical and pharmacological studies in genus Berberis. Phytochem. Rev. 2012, 11, 523–542. [Google Scholar] [CrossRef]
- Srivastava, S.; Srivastava, M.; Misra, A.; Pandey, G.; Rawat, A. A review on biological and chemical diversity in Berberis (Berberidaceae). EXCLI J. 2015, 14, 247–267. [Google Scholar] [CrossRef] [PubMed]
- Pabón-Mora, N.; González, F. Leaf development, metamorphic heteroblasty and heterophylly in Berberis s. l. (Berberidaceae). Bot. Rev. 2012, 78, 463–489. [Google Scholar] [CrossRef]
- Farrow, S.C.; Hagel, J.M.; Facchini, P.J. Transcript and metabolite profiling in cell cultures of 18 plant species that produce benzylisoquinoline alkaloids. Phytochemistry 2012, 77, 79–88. [Google Scholar] [CrossRef]
- Hagel, J.M.; Morris, J.S.; Lee, E.-J.; Desgagné-Penix, I.; Bross, C.D.; Chang, L.; Chen, X.; Farrow, S.C.; Zhang, Y.; Soh, J.; et al. Transcriptome analysis of 20 taxonomically related benzylisoquinoline alkaloid-producing plants. BMC Plant Biol. 2015, 15, 227. [Google Scholar] [CrossRef] [Green Version]
- Liscombe, D.K.; MacLeod, B.P.; Loukanina, N.; Nandi, O.I.; Facchini, P.J. Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms. Phytochemistry 2005, 66, 1374–1393. [Google Scholar] [CrossRef]
- Deng, X.; Zhao, L.; Fang, T.; Xiong, Y.; Ogutu, C.; Yang, D.; Vimolmangkang, S.; Liu, Y.; Han, Y. Investigation of benzylisoquinoline alkaloid biosynthetic pathway and its transcriptional regulation in lotus. Hortic. Res. 2018, 5, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Kim, Y.S.; Son, S.-W. Berberis koreana. The IUCN Red List of Threatened Species 2017: E.T97529851A104406703. Available online: https://www.iucnredlist.org/species/97529851/104406703 (accessed on 22 January 2021).
- Qadir, S.A.; Kwon, M.C.; Han, J.G.; Ha, J.H.; Chung, H.S.; Ahn, J.; Lee, H.Y. Effect of different extraction protocols on anticancer and antioxidant activities of Berberis koreana bark extracts. J. Biosci. Bioeng. 2009, 107, 331–338. [Google Scholar] [CrossRef]
- Yoo, K.-Y.; Hwang, I.K.; Lim, B.O.; Kang, T.-C.; Kim, D.-W.; Kim, S.M.; Lee, H.Y.; Kim, J.D.; Won, M.H. Berberry extract reduces neuronal damage and N-Methyl-D-aspartate receptor 1 immunoreactivity in the gerbil hippocampus after transient forebrain ischemia. Biol. Pharm. Bull. 2006, 29, 623–628. [Google Scholar] [CrossRef] [Green Version]
- Yoo, K.-Y.; Hwang, I.K.; Kim, J.D.; Kang, I.-J.; Park, J.; Yi, J.-S.; Kim, J.-K.; Bae, Y.-S.; Won, M.-H. Antiinflammatory effect of the ethanol extract of Berberis koreana in a gerbil model of cerebral ischemia/reperfusion. Phytother. Res. 2008, 22, 1527–1532. [Google Scholar] [CrossRef]
- Kim, K.H.; Choi, S.U.; Ha, S.K.; Kim, S.Y.; Lee, K.R. Biphenyls from Berberis koreana. J. Nat. Prod. 2009, 72, 2061–2064. [Google Scholar] [CrossRef]
- Saeidnia, S.; Gohari, A.; Kurepaz-Mahmoodabadi, M.; Mokhber-Dezfuli, N. Phytochemistry and pharmacology of berberis species. Pharmacogn. Rev. 2014, 8, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Zhong, F.; Huang, L.; Qi, L.; Ma, Y.; Yan, Z. Full-length transcriptome analysis of Coptis deltoidea and identification of putative genes involved in benzylisoquinoline alkaloids biosynthesis based on combined sequencing platforms. Plant Mol. Biol. 2020, 102, 477–499. [Google Scholar] [CrossRef]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef]
- Wang, B.; Tseng, E.; Regulski, M.; Clark, T.A.; Hon, T.; Jiao, Y.; Lu, Z.; Olson, A.; Stein, J.C.; Ware, D. Unveiling the complexity of the maize transcriptome by single-molecule long-read sequencing. Nat. Commun. 2016, 7, 11708. [Google Scholar] [CrossRef] [Green Version]
- Minio, A.; Massonnet, M.; Figueroa-Balderas, R.; Vondras, A.M.; Blanco-Ulate, B.; Cantu, D. Iso-Seq allows genome-independent transcriptome profiling of grape berry development. G3 2019, 9, 755–767. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Kumar, V.; Olson, A.; Ware, D. Reviving the transcriptome studies: An insight into the emergence of single-molecule transcriptome sequencing. Front. Genet. 2019, 10, 384. [Google Scholar] [CrossRef] [Green Version]
- Sahlin, K.; Tomaszkiewicz, M.; Makova, K.D.; Medvedev, P. Deciphering highly similar multigene family transcripts from Iso-Seq data with IsoCon. Nat. Commun. 2018, 9, 4601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, I.-H.; Lee, J.; Hong, C.E.; Lee, D.J.; Bae, W.; Park, S.-G.; Ahn, Y.J.; Kim, Y.C.; Kim, J.U.; Lee, J.W.; et al. Isoform sequencing provides a more comprehensive view of the Panax ginseng transcriptome. Genes 2017, 8, 228. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-A.; Roy, N.S.; Lee, I.-H.; Choi, A.-Y.; Choi, B.-S.; Yu, Y.-S.; Park, N.-I.; Park, K.-C.; Kim, S.; Yang, H.-S.; et al. Genome-wide transcriptome profiling of the medicinal plant Zanthoxylum planispinum using a single-molecule direct RNA sequencing approach. Genomics 2019, 111, 973–979. [Google Scholar] [CrossRef]
- Feng, S.; Xu, M.; Liu, F.; Cui, C.; Zhou, B. Reconstruction of the full-length transcriptome atlas using PacBio Iso-Seq provides insight into the alternative splicing in Gossypium australe. BMC Plant Biol. 2019, 19, 365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Harata-Lee, Y.; Denton, M.D.; Feng, Q.; Rathjen, J.R.; Qu, Z.; Adelson, D.L. Long read reference genome-free reconstruction of a full-length transcriptome from Astragalus membranaceus reveals transcript variants involved in bioactive compound biosynthesis. Cell Discov. 2017, 3, 17031. [Google Scholar] [CrossRef] [PubMed]
- Hao, D.-C. Biodiversity, chemodiversity, and pharmacotherapy of thalictrum medicinal plants. In Ranunculales Medicinal Plants; Elsevier BV: Amsterdam, The Netherlands, 2019; pp. 261–296. [Google Scholar] [CrossRef]
- Sharma, B.R.; Gautam, L.N.S.; Adhikari, D.; Karki, R. A comprehensive review on chemical profiling of Nelumbo Nucifera: Potential for drug development. Phytother. Res. 2016, 31, 3–26. [Google Scholar] [CrossRef]
- Ober, D. Seeing double: Gene duplication and diversification in plant secondary metabolism. Trends Plant Sci. 2005, 10, 444–449. [Google Scholar] [CrossRef]
- Mizutani, M.; Sato, F. Unusual P450 reactions in plant secondary metabolism. Arch. Biochem. Biophys. 2011, 507, 194–203. [Google Scholar] [CrossRef]
- He, S.-M.; Liang, Y.-L.; Cong, K.; Chen, G.; Zhao, X.; Zhao, Q.-M.; Zhang, J.-J.; Wang, X.; Dong, Y.; Yang, J.-L.; et al. Identification and characterization of genes involved in benzylisoquinoline alkaloid biosynthesis in coptis species. Front. Plant Sci. 2018, 9, 731. [Google Scholar] [CrossRef] [Green Version]
- Daniel, B.; Konrad, B.; Toplak, M.; Lahham, M.; Messenlehner, J.; Winkler, A.; Macheroux, P. The family of berberine bridge enzyme-like enzymes: A treasure-trove of oxidative reactions. Arch. Biochem. Biophys. 2017, 632, 88–103. [Google Scholar] [CrossRef]
- Guo, Y.-L. Gene family evolution in green plants with emphasis on the origination and evolution of Arabidopsis thaliana genes. Plant J. 2013, 73, 941–951. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Huang, P.; Ma, Y.; Qing, Z.; Tang, Q.; Cao, H.; Cheng, P.; Zheng, Y.; Yuan, Z.; et al. The genome of medicinal plant Macleaya cordata provides new insights into benzylisoquinoline alkaloids metabolism. Mol. Plant 2017, 10, 975–989. [Google Scholar] [CrossRef] [Green Version]
- Nelson, D.R.; Nebert, D.W. Cytochrome P450 (CYP) Gene Superfamily. eLS 2011, 1–19. [Google Scholar] [CrossRef]
- Stadler, R.; Zenk, M. The purification and characterization of a unique cytochrome P-450 enzyme from Berberis stolonifera plant cell cultures. J. Biol. Chem. 1993, 268, 823–831. [Google Scholar] [CrossRef]
- Ikezawa, N.; Iwasa, K.; Sato, F. Molecular cloning and characterization of CYP80G2, a cytochrome P450 that catalyzes an intramolecular C–C phenol coupling of (S)-reticuline in magnoflorine biosynthesis, from cultured Coptis japonica cells. J. Biol. Chem. 2008, 283, 8810–8821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rueffer, M.; Zenk, M.H. Canadine synthase from Thalictrum tuberosum cell cultures catalyses the formation of the methylenedioxy bridge in berberine synthesis. Phytochemistry 1994, 36, 1219–1223. [Google Scholar] [CrossRef] [Green Version]
- Rueffer, M.; Nagakura, N.; Zenk, M. Partial purification and properties of S-Adenosylmethionine: (R), (S)-Norlaudanosoline-6-O-Methyltransferase from argemone platyceras cell cultures. Planta Med. 1983, 49, 131–137. [Google Scholar] [CrossRef]
- Loeffler, S.; Deus-Neumann, B.; Zenk, M.H. S-adenosyl-l-methionine:(S)-coclaurine-N-methyltransferase from Tinospora cordifolia. Phytochemistry 1995, 38, 1387–1395. [Google Scholar] [CrossRef]
- Frenzel, T.; Zenk, M.H. S-adenosyl-l-methionine: 3′-hydroxy-N-methyl-(S)-coclaurine-4′-O-methyl transferase, a regio- and stereoselective enzyme of the (S)-reticuline pathway. Phytochemistry 1990, 29, 3505–3511. [Google Scholar] [CrossRef]
- Muemmler, S.; Rueffer, M.; Nagakura, N.; Zenk, M.H. S-adenosyl-L-methionine: (S)-scoulerine 9-O-methyltransferase, a highly stereo- and regio-specific enzyme in tetrahydroprotoberberine biosynthesis. Plant Cell Rep. 1985, 4, 36–39. [Google Scholar] [CrossRef] [Green Version]
- Choi, I.-Y.; Kwon, E.-C.; Kim, N.-S. The C- and G-value paradox with polyploidy, repeatomes, introns, phenomes and cell economy. Genes Genom. 2020, 42, 699–714. [Google Scholar] [CrossRef]
- Wang, M.; Wang, P.; Liang, F.; Ye, Z.; Li, J.; Shen, C.; Pei, L.; Wang, F.; Daohua, H.; Tu, L.; et al. A global survey of alternative splicing in allopolyploid cotton: Landscape, complexity and regulation. New Phytol. 2018, 217, 163–178. [Google Scholar] [CrossRef] [Green Version]
- Dubrovina, A.S.; Kiselev, K.V.; Zhuravlev, Y.N. The role of canonical and noncanonical pre-mRNA splicing in plant stress responses. BioMed Res. Int. 2012, 2013, 264314. [Google Scholar] [CrossRef]
- Mastrangelo, A.M.; Marone, D.; Laidò, G.; De Leonardis, A.M.; De Vita, P. Alternative splicing: Enhancing ability to cope with stress via transcriptome plasticity. Plant Sci. 2012, 185–186, 40–49. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Desgagné-Penix, I.; Facchini, P.J. Systematic silencing of benzylisoquinoline alkaloid biosynthetic genes reveals the major route to papaverine in opium poppy. Plant J. 2012, 72, 331–344. [Google Scholar] [CrossRef]
- Steffens, P.; Nagakura, N.; Zenk, M. The berberine bridge forming enzyme in tetrahydroprotoberberine biosynthesis. Tetrahedron Lett. 1984, 25, 951–952. [Google Scholar] [CrossRef]
- Gesell, A.; Chávez, M.L.D.; Kramell, R.; Piotrowski, M.; Macheroux, P.; Kutchan, T.M. Heterologous expression of two FAD-dependent oxidases with (S)-tetrahydroprotoberberine oxidase activity from Arge mone mexicana and Berberis wilsoniae in insect cells. Planta 2011, 233, 1185–1197. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [Green Version]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [Green Version]
- Chin, C.-S.; Alexander, D.H.; Marks, P.; Klammer, A.A.; Drake, J.; Heiner, C.; Clum, A.; Copeland, A.; Huddleston, J.; Eichler, E.E.; et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 2013, 10, 563–569. [Google Scholar] [CrossRef]
- Bayega, A.; Fahiminiya, S.; Oikonomopoulos, S.; Ragoussis, J. Current and future methods for mRNA analysis: A drive toward single molecule sequencing. Methods Mol. Biol. 2018, 1783, 209–241. [Google Scholar] [CrossRef]
- Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
Enzymes | Abbreviation | EC Numbers | No. of Paralogues | Range of Isoforms |
---|---|---|---|---|
Tyrosine aminotransferase | TyrAT | 2.6.1.5 | 5 | 1–2 |
Tyrosine decarboxylase | TYDC | 4.1.1.25 | 11 | 1–3 |
Tyrosine/tyramine 3-hydroxylase | 3OHase | 1.14.16.2 | 22 | 1–4 |
(S)-norcoclaurine synthase | NCS | 4.2.1.78 | 11 | 1–10 |
(RS)-norcoclaurine 6-O-methyltransferase | 6OMT | 2.1.1.128 | 2 | 1 |
(S)-coclaurine N-methyltransferase | CNMT | 2.1.1.140 | 5 | 1–5 |
(S)-N-methylcoclaurine 3′-hydroxylase/N-methylcoclaurine 3′-monooxygenase | NMCH/CYP80B3 | 1.14.13.71 | 7 | 1–3 |
3′-hydroxy-N-methyl-(S)-coclaurine 4′-O-methyltransferase | 4′OMT | 2.1.1.116 | 2 | 1 |
Berberine bridge enzyme (reticuline oxidase) | BBE | 1.21.3.3 | 1 | 1 |
(S)-tetrahydroprotoberberine oxidase | STOX | 1.3.3.8 | 1 | 1 |
(S)-scoulerine 9-O-methyltransferase | SOMT | 2.1.1.117 | 1 | 1 |
Canadine synthase enzyme | CAS/CYP719A21 | 1.14.21.5 | 3 | 1–2 |
Codeinone reductase | COR | 1.1.1.247 | 12 | 1–7 |
Salutaridine reductase | SalR | 1.1.1.248 | 6 | 1–5 |
Codeine O-demethylase | CODM | 1.14.11.32 | 6 | 1–4 |
3′-O-methyltransferase | 3OMT | 2.1.1.267 | 4 | 1–5 |
Iso Seq Result | Number of Reads | Length (bp) |
High quality consensus Seq. | 76,631 | 216,086,311 |
Reconstructed Coding Contig | 19,902 | 60,494,776 |
Unassigned Seq | 3344 | 10,608,597 |
Fake Genome | 23,246 | 71,103,373 |
Minimun read length | 100 | |
Maximum read length | 13,544 | |
Average read length | 3059 | |
Number of Isoforms | Number of Transcripts | Percentage (%) |
1 | 14,767 | 64.21 |
2 | 4812 | 20.92 |
3 | 1680 | 7.30 |
4 | 728 | 3.17 |
5 | 393 | 1.71 |
6 | 209 | 0.91 |
7 | 132 | 0.57 |
8> | 525 | 2.27 |
KEGG Category | KEGG Subcategory | Number of Pathways | Number of Enzymes | Number of Unigenes | Percentage |
---|---|---|---|---|---|
Metabolism | Biosynthesis of other secondary metabolites | 23 | 140 | 574 | 4.64 |
Amino acid metabolism | 14 | 314 | 1189 | 9.62 | |
Galactose metabolism | 1 | 9 | 9 | 0.07 | |
Metabolism of terpenoids and polyketides | 11 | 68 | 235 | 1.90 | |
Metabolism of other amino acids | 8 | 74 | 328 | 2.65 | |
Nucleotide metabolism | 2 | 81 | 1765 | 14.28 | |
Lipid metabolism | 16 | 185 | 1019 | 8.24 | |
Metabolism of cofactors and vitamins | 13 | 153 | 2322 | 18.78 | |
Carbohydrate metabolism | 15 | 358 | 1987 | 16.07 | |
Energy metabolism | 7 | 99 | 691 | 5.59 | |
Xenobiotics biodegradation and metabolism | 15 | 70 | 965 | 7.81 | |
Glycan biosynthesis and metabolism | 15 | 81 | 376 | 3.04 | |
Human Diseases | Infectious disease: viral | 3 | 3 | 3 | 0.02 |
Cancer: overview | 1 | 1 | 240 | 1.94 | |
Drug resistance: antimicrobial | 1 | 1 | 1 | 0.01 | |
Environmental information processing | Signal transduction | 3 | 25 | 142 | 1.15 |
Genetic information processing | Translation | 1 | 21 | 21 | 0.17 |
Organismal System | Immune system | 2 | 3 | 495 | 4.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roy, N.S.; Choi, I.-Y.; Um, T.; Jeon, M.J.; Kim, B.-Y.; Kim, Y.-D.; Yu, J.-K.; Kim, S.; Kim, N.-S. Gene Expression and Isoform Identification of PacBio Full-Length cDNA Sequences for Berberine Biosynthesis in Berberis koreana. Plants 2021, 10, 1314. https://doi.org/10.3390/plants10071314
Roy NS, Choi I-Y, Um T, Jeon MJ, Kim B-Y, Kim Y-D, Yu J-K, Kim S, Kim N-S. Gene Expression and Isoform Identification of PacBio Full-Length cDNA Sequences for Berberine Biosynthesis in Berberis koreana. Plants. 2021; 10(7):1314. https://doi.org/10.3390/plants10071314
Chicago/Turabian StyleRoy, Neha Samir, Ik-Young Choi, Taeyoung Um, Mi Jin Jeon, Bo-Yun Kim, Young-Dong Kim, Ju-Kyung Yu, Soonok Kim, and Nam-Soo Kim. 2021. "Gene Expression and Isoform Identification of PacBio Full-Length cDNA Sequences for Berberine Biosynthesis in Berberis koreana" Plants 10, no. 7: 1314. https://doi.org/10.3390/plants10071314
APA StyleRoy, N. S., Choi, I. -Y., Um, T., Jeon, M. J., Kim, B. -Y., Kim, Y. -D., Yu, J. -K., Kim, S., & Kim, N. -S. (2021). Gene Expression and Isoform Identification of PacBio Full-Length cDNA Sequences for Berberine Biosynthesis in Berberis koreana. Plants, 10(7), 1314. https://doi.org/10.3390/plants10071314