Towards the Well-Tempered Chloroplast DNA Sequences
Abstract
:1. Introduction
2. Results
2.1. Input Sequences and Annotations
2.2. Standardization and Alignment
2.3. Tree Comparisons
3. Discussion
3.1. Inconsistencies in cpDNA Sequence Data
3.2. Comparison Procedure
3.3. Impact of Standardization
4. Materials and Methods
4.1. Data Acquisition
4.2. Standard Form of Whole Chloroplast Genome Sequence
4.3. Sequence Annotation and Standardization
4.4. Tree Constructions and Comparisons
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wicke, S.; Schneeweiss, G.M.; dePamphilis, C.W.; Müller, K.F.; Quandt, D. The Evolution of the Plastid Chromosome in Land Plants: Gene Content, Gene Order, Gene Function. Plant Mol. Biol. 2011, 76, 273–297. [Google Scholar] [CrossRef] [Green Version]
- Jin, D.M.; Wicke, S.; Gan, L.; Yang, J.B.; Jin, J.J.; Yi, T.S. The Loss of the Inverted Repeat in the Putranjivoid Clade of Malpighiales. Front. Plant Sci. 2020, 11, 942. [Google Scholar] [CrossRef]
- Martin, W.; Rujan, T.; Richly, E.; Hansen, A.; Cornelsen, S.; Lins, T.; Leister, D.; Stoebe, B.; Hasegawa, M.; Penny, D. Evolutionary Analysis of Arabidopsis, Cyanobacterial, and Chloroplast Genomes Reveals Plastid Phylogeny and Thousands of Cyanobacterial Genes in the Nucleus. Proc. Natl. Acad. Sci. USA 2002, 99, 12246–12251. [Google Scholar] [CrossRef] [Green Version]
- Ruhlman, T.A.; Jansen, R.K. The Plastid Genomes of Flowering Plants; Humana Press: Totowa, NJ, USA, 2014; Volume 1132, ISBN 9781627039956. [Google Scholar]
- Ohyama, K.; Fukuzawa, H.; Kohchi, T.; Shirai, H.; Sano, T.; Sano, S.; Umesono, K.; Shiki, Y.; Takeuchi, M.; Chang, Z.; et al. Chloroplast Gene Organization Deduced from Complete Sequence of Liverwort Marchantia Polymorpha Chloroplast DNA. Nature 1986, 322, 572–574. [Google Scholar] [CrossRef]
- Shinozaki, K.; Ohme, M.; Tanaka, M.; Wakasugi, T.; Hayashida, N.; Matsubayashi, T.; Zaita, N.; Chunwongse, J.; Obokata, J.; Yamaguchi-Shinozaki, K.; et al. The Complete Nucleotide Sequence of the Tobacco Chloroplast Genome: Its Gene Organization and Expression. EMBO J. 1986, 5, 2043–2049. [Google Scholar] [CrossRef]
- Wu, C.S.; Lai, Y.T.; Lin, C.P.; Wang, Y.N.; Chaw, S.M. Evolution of Reduced and Compact Chloroplast Genomes (CpDNAs) in Gnetophytes: Selection toward a Lower-Cost Strategy. Mol. Phylogenet. Evol. 2009, 52, 115–124. [Google Scholar] [CrossRef]
- Kolodner, R.; Tewari, K.K. Inverted Repeats in Chloroplast DNA from Higher Plants. Proc. Natl. Acad. Sci. USA 1979, 76, 41–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oldenburg, D.J.; Bendich, A.J. Changes in the Structure of DNA Molecules and the Amount of DNA per Plastid during Chloroplast Development in Maize. J. Mol. Biol. 2004, 344. [Google Scholar] [CrossRef] [PubMed]
- Shaver, J.M.; Oldenburg, D.J.; Bendich, A.J. The Structure of Chloroplast DNA Molecules and the Effects of Light on the Amount of Chloroplast DNA during Development in Medicago Truncatula. Plant Physiol. 2008, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, J.D. Chloroplast DNA Exists in Two Orientations. Nature 1983, 301, 92–93. [Google Scholar] [CrossRef]
- Wang, W.; Lanfear, R.; Gaut, B. Long-Reads Reveal That the Chloroplast Genome Exists in Two Distinct Versions in Most Plants. Genome Biol. Evol. 2019, 11, 3372–3381. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, D.J.P.; Jansen, R.K.; Ruhlman, T.A.; Mandel, J.R. Under the Rug: Abandoning Persistent Misconceptions That Obfuscate Organelle Evolution. Mol. Phylogenet. Evol. 2020, 151, 106903. [Google Scholar] [CrossRef]
- Jansen, R.K.; Ruhlman, T.A. Plastid Genomes of Seed Plants. In Genomics of Chloroplasts and Mitochondria; Springer: Dordrecht, The Netherlands, 2012; pp. 103–126. [Google Scholar]
- Chumley, T.W.; Palmer, J.D.; Mower, J.P.; Fourcade, H.M.; Calie, P.J.; Boore, J.L.; Jansen, R.K. The Complete Chloroplast Genome Sequence of Pelargonium × Hortorum: Organization and Evolution of the Largest and Most Highly Rearranged Chloroplast Genome of Land Plants. Mol. Biol. Evol. 2006, 23, 2175–2190. [Google Scholar] [CrossRef]
- Maréchal, A.; Brisson, N. Recombination and the Maintenance of Plant Organelle Genome Stability. N. Phytol. 2010, 186, 299–317. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.S.; Jansen, R.; Ruhlman, T. Lost and Found: Return of the Inverted Repeat in the Legume Clade Defined by Its Absence. Genome Biol. Evol. 2019, 11, 1321–1333. [Google Scholar] [CrossRef] [Green Version]
- Corriveau, J.L.; Coleman, A.W. Rapid Screening Method to Detect Potential Biparental Inheritance of Plastid DNA and Results for Over 200 Angiosperm Species. Am. J. Bot. 1988, 75, 1443. [Google Scholar] [CrossRef]
- Harris, S.A.; Ingram, R. Chloroplast DNA and Biosystematics: The Effects of Intraspecific Diversity and Plastid Transmission. Taxon 1991, 40. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, Y. Sodmergen Examination of the Cytoplasmic DNA in Male Reproductive Cells to Determine the Potential for Cytoplasmic Inheritance in 295 Angiosperm Species. Plant Cell Physiol. 2003, 44, 941–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Zhang, Q.; Rao, G. Sodmergen Occurrence of Plastids in the Sperm Cells of Caprifoliaceae: Biparental Plastid Inheritance in Angiosperms Is Unilaterally Derived from Maternal Inheritance. Plant Cell Physiol. 2008, 49, 958–968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnard-Kubow, K.B.; McCoy, M.A.; Galloway, L.F. Biparental Chloroplast Inheritance Leads to Rescue from Cytonuclear Incompatibility. N. Phytol. 2017, 213, 1466–1476. [Google Scholar] [CrossRef] [Green Version]
- Ruhlman, T.A.; Zhang, J.; Blazier, J.C.; Sabir, J.S.M.; Jansen, R.K. Recombination-Dependent Replication and Gene Conversion Homogenize Repeat Sequences and Diversify Plastid Genome Structure. Am. J. Bot. 2017, 104, 559–572. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q. Sodmergen Why Does Biparental Plastid Inheritance Revive in Angiosperms? J. Plant Res. 2010, 123, 201–206. [Google Scholar] [CrossRef]
- Gonçalves, D.J.P.; Simpson, B.B.; Ortiz, E.M.; Shimizu, G.H.; Jansen, R.K. Incongruence between Gene Trees and Species Trees and Phylogenetic Signal Variation in Plastid Genes. Mol. Phylogenet. Evol. 2019, 138, 219–232. [Google Scholar] [CrossRef]
- Androsiuk, P.; Jastrzębski, J.P.; Paukszto, Ł.; Makowczenko, K.; Okorski, A.; Pszczółkowska, A.; Chwedorzewska, K.J.; Górecki, R.; Giełwanowska, I. Evolutionary Dynamics of the Chloroplast Genome Sequences of Six Colobanthus Species. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Bendich, A.J. Why Do Chloroplasts and Mitochondria Contain so Many Copies of Their Genome? BioEssays 1987, 6, 279–282. [Google Scholar] [CrossRef] [PubMed]
- Heinhorst, S.; Cannon, G.C. DNA Replication in Chloroplasts. J. Cell Sci. 1993, 104, 1–9. [Google Scholar] [CrossRef]
- Twyford, A.D.; Ness, R.W. Strategies for Complete Plastid Genome Sequencing. Mol. Ecol. Resour. 2017, 17, 858–868. [Google Scholar] [CrossRef]
- Tonti-Filippini, J.; Nevill, P.G.; Dixon, K.; Small, I. What Can We Do with 1000 Plastid Genomes? Plant J. 2017, 90, 808–818. [Google Scholar] [CrossRef] [Green Version]
- Sandhya, S.; Srivastava, H.; Kaila, T.; Tyagi, A.; Gaikwad, K. Methods and tools for plant organelle genome sequencing, assembly, and downstream analysis. In Legume Genomics; Methods in Molecular Biology; Humana: New York, NY, USA, 2020; Volume 2107. [Google Scholar]
- Ng, P.K.; Lin, S.M.; Lim, P.E.; Liu, L.C.; Chen, C.M.; Pai, T.W. Complete Chloroplast Genome of Gracilaria Firma (Gracilariaceae, Rhodophyta), with Discussion on the Use of Chloroplast Phylogenomics in the Subclass Rhodymeniophycidae. BMC Genom. 2017, 18, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Feng, C.; Xu, M.; Feng, C.; Von Wettberg, E.J.B.; Kang, M. The Complete Chloroplast Genome of Primulina and Two Novel Strategies for Development of High Polymorphic Loci for Population Genetic and Phylogenetic Studies. BMC Evol. Biol. 2017, 17, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.; Zhu, H.; Ruan, J.; Qian, W.; Fang, X.; Shi, Z.; Li, Y.; Li, S.; Shan, G.; Kristiansen, K.; et al. De Novo Assembly of Human Genomes with Massively Parallel Short Read Sequencing. Genome Res. 2010, 20, 265–272. [Google Scholar] [CrossRef] [Green Version]
- Simpson, J.T.; Wong, K.; Jackman, S.D.; Schein, J.E.; Jones, S.J.M.; Birol, I. ABySS: A Parallel Assembler for Short Read Sequence Data. Genome Res. 2009, 19, 1117–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKain, M.R.; Wilson, M.C. Fast-Plast: A Rapid de Novo Assembly Pipeline for Whole Chloroplast Genomes. Available online: https://github.com/mrmckain/Fast-Plast (accessed on 1 December 2020).
- Jin, J.J.; Yu, W.B.; Yang, J.B.; Song, Y.; DePamphilis, C.W.; Yi, T.S.; Li, D.Z. GetOrganelle: A Fast and Versatile Toolkit for Accurate de Novo Assembly of Organelle Genomes. Genome Biol. 2020, 21. [Google Scholar] [CrossRef] [PubMed]
- Freudenthal, J.A.; Pfaff, S.; Terhoeven, N.; Korte, A.; Ankenbrand, M.J.; Förster, F. The Landscape of Chloroplast Genome Assembly Tools. bioRxiv 2020, 665869. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S.; Poczai, P.; Hyvönen, J.; Tang, J.; Amiryousefi, A. Chloroplot: An Online Program for the Versatile Plotting of Organelle Genomes. Front. Genet. 2020, 11. [Google Scholar] [CrossRef]
- Khayi, S.; Gaboun, F.; Pirro, S.; Tatusova, T.; El Mousadik, A.; Ghazal, H.; Mentag, R. Complete Chloroplast Genome of Argania Spinosa: Structural Organization and Phylogenetic Relationships in Sapotaceae. Plants 2020, 9, 1354. [Google Scholar] [CrossRef] [PubMed]
- Lubna; Asaf, S.; Jan, R.; Khan, A.L.; Lee, I.J. Complete Chloroplast Genome Characterization of Oxalis Corniculata and Its Comparison with Related Species from Family Oxalidaceae. Plants 2020, 9, 928. [Google Scholar] [CrossRef]
- Hladnik, M.; Baruca Arbeiter, A.; Knap, T.; Jakše, J.; Bandelj, D. The Complete Chloroplast Genome of Helichrysum Italicum (Roth) G. Don (Asteraceae). Mitochondrial DNA Part B Resour. 2019, 4, 1036–1037. [Google Scholar] [CrossRef] [Green Version]
- Dong, F.; Lin, Z.; Lin, J.; Ming, R.; Zhang, W. Chloroplast Genome of Rambutan and Comparative Analyses in Sapindaceae. Plants 2021, 10, 283. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.J.; Hassan, N.; Gitzendanner, M.A.; Bruenn, R.A.; Croley, M.; Vandeventer, A.; Horn, J.W.; Dhingra, A.; Brockington, S.F.; Latvis, M.; et al. Phylogenetic Analysis of the Plastid Inverted Repeat for 244 Species: Insights into Deeper-Level Angiosperm Relationships from a Long, Slowly Evolving Sequence Region. Int. J. Plant Sci. 2011, 172. [Google Scholar] [CrossRef] [Green Version]
- Walker, J.F.; Walker-Hale, N.; Vargas, O.M.; Larson, D.A.; Stull, G.W. Characterizing Gene Tree Conflict in Plastome-Inferred Phylogenies. PeerJ 2019, 2019, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Thode, V.A.; Lohmann, L.G.; Sanmartín, I. Evaluating Character Partitioning and Molecular Models in Plastid Phylogenomics at Low Taxonomic Levels: A Case Study Using Amphilophium (Bignonieae, Bignoniaceae). J. Syst. Evol. 2020, 58, 1071–1089. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, Y.H.; Jin, J.J.; Stull, G.W.; Bruneau, A.; Cardoso, D.; De Queiroz, L.P.; Moore, M.J.; Zhang, S.D.; Chen, S.Y.; et al. Exploration of Plastid Phylogenomic Conflict Yields New Insights into the Deep Relationships of Leguminosae. Syst. Biol. 2020, 69, 613–622. [Google Scholar] [CrossRef]
- Chase, M.W.; Christenhusz, M.J.M.; Fay, M.F.; Byng, J.W.; Judd, W.S.; Soltis, D.E.; Mabberley, D.J.; Sennikov, A.N.; Soltis, P.S.; Stevens, P.F.; et al. An Update of the Angiosperm Phylogeny Group Classification for the Orders and Families of Flowering Plants: APG IV. Bot. J. Linn. Soc. 2016, 181, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Walker, J.F.; Zanis, M.J.; Emery, N.C. Erratum to Comparative Analysis of Complete Chloroplast Genome Sequence and Inversion Variation in Lasthenia Burkei (Madieae, Asteraceae). Am. J. Bot. 2015, 102, 1008. [Google Scholar] [CrossRef] [Green Version]
- Walker, J.F.; Jansen, R.K.; Zanis, M.J.; Emery, N.C. Sources of Inversion Variation in the Small Single Copy (SSC) Region of Chloroplast Genomes. Am. J. Bot. 2015, 102, 1751–1752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim, R.I.H.; Azuma, J.I.; Sakamoto, M. Complete Nucleotide Sequence of the Cotton (Gossypium barbadense L.) Chloroplast Genome with a Comparative Analysis of Sequences among 9 Dicot Plants. Genes Genet. Syst. 2006, 81, 311–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, M.; Zhang, X.; Liu, G.; Yin, Y.; Chen, K.; Yun, Q.; Zhao, D.; Al-Mssallem, I.S.; Yu, J. The Complete Chloroplast Genome Sequence of Date Palm (Phoenix dactylifera L.). PLoS ONE 2010, 5, e12762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Huo, N.; Dong, L.; Wang, Y.; Zhang, S.; Young, H.A.; Feng, X.; Gu, Y.Q. Complete Chloroplast Genome Sequences of Mongolia Medicine Artemisia Frigida and Phylogenetic Relationships with Other Plants. PLoS ONE 2013, 8, e57533. [Google Scholar] [CrossRef] [Green Version]
- Walker, J.F.; Zanis, M.J.; Emery, N.C. Comparative Analysis of Complete Chloroplast Genome Sequence and Inversion Variation in Lasthenia Burkei (Madieae, Asteraceae). Am. J. Bot. 2014, 101, 722–729. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, L.; Yan, T.L.; Liu, Q. Complete Chloroplast Genome Sequences of Praxelis (Eupatorium Catarium Veldkamp), an Important Invasive Species. Gene 2014, 549, 58–69. [Google Scholar] [CrossRef]
- Wang, M.; Cui, L.; Feng, K.; Deng, P.; Du, X.; Wan, F.; Weining, S.; Nie, X. Comparative Analysis of Asteraceae Chloroplast Genomes: Structural Organization, RNA Editing and Evolution. Plant Mol. Biol. Report. 2015, 33, 1526–1538. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Dierckxsens, N.; Mardulyn, P.; Smits, G. NOVOPlasty: De Novo Assembly of Organelle Genomes from Whole Genome Data. Nucleic Acids Res. 2017, 45. [Google Scholar] [CrossRef] [Green Version]
- Freudenthal, J.A.; Pfaff, S.; Terhoeven, N.; Korte, A.; Ankenbrand, M.J.; Förster, F. A Systematic Comparison of Chloroplast Genome Assembly Tools. Genome Biol. 2020, 21, 1–21. [Google Scholar] [CrossRef]
- Coissac, E.; Hollingsworth, P.M.; Lavergne, S.; Taberlet, P. From Barcodes to Genomes: Extending the Concept of DNA Barcoding. Mol. Ecol. 2016, 25, 1423–1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ankenbrand, M.J.; Pfaff, S.; Terhoeven, N.; Qureischi, M.; Gündel, M.; Weiß, C.L.; Hackl, T.; Förster, F. ChloroExtractor: Extraction and Assembly of the Chloroplast Genome from Whole Genome Shotgun Data. J. Open Source Softw. 2018, 3, 464. [Google Scholar] [CrossRef]
- Bakker, F.T.; Lei, D.; Yu, J.; Mohammadin, S.; Wei, Z.; van de Kerke, S.; Gravendeel, B.; Nieuwenhuis, M.; Staats, M.; Alquezar-Planas, D.E.; et al. Herbarium Genomics: Plastome Sequence Assembly from a Range of Herbarium Specimens Using an Iterative Organelle Genome Assembly Pipeline. Biol. J. Linn. Soc. 2016, 117, 33–43. [Google Scholar] [CrossRef]
- Achakkagari, S.R.; Tai, H.H.; Davidson, C.; De Jong, H.; Strömvik, M.V. The Complete Plastome Sequences of Nine Diploid Potato Clones. Mitochondrial DNA Part B Resour. 2021, 6, 811–813. [Google Scholar] [CrossRef] [PubMed]
- Balaji, R.; Ravichandiran, K.; Parani, M.; Balaji, R.; Ravichandiran, K.; Parani, M. The Complete Chloroplast Genome of Ocimum Gratissimum from India—A Medicinal Plant in the Lamiaceae the Complete Chloroplast Genome of Ocimum Gratissimum from India—A Medicinal Plant in the Lamiaceae. Mitochondrial DNA Part B 2021, 6, 948–950. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, J.A.M.; Gibert, A.; Llauro, C.; Panaud, O. Whole Plastid Genome-Based Phylogenomics Supports an Inner Placement of the O. Insectifera Group Rather than a Basal Position in the Rapidly Diversifying Ophrys Genus (Orchidaceae). bioRxiv 2020. [Google Scholar] [CrossRef]
- Shi, S.; Li, S.; Zhang, S.; Shen, F.; Niu, J.; Li, L.; Zhao, J. The Complete Chloroplast Genome of Mnium Marginatum (With.) P. Beauv. Mitochondrial DNA Part B Resour. 2021, 6, 837–839. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Sasaki, Y.; Lian, C.; Wang, L.; Zhang, F.; Zhang, X.; Chen, S. The Complete Chloroplast Genome Sequence of Rehmannia Glutinosa (Gaertn.) DC. Wild. (Rehmannia). Mitochondrial DNA Part B Resour. 2021, 6, 769–770. [Google Scholar] [CrossRef]
- Yuan, W.; Liu, P.; Zhang, S.; He, Y. The Complete Chloroplast Genome of Achyranthes Bidentata Blume. Mitochondrial DNA Part B Resour. 2021, 6, 782–783. [Google Scholar] [CrossRef] [PubMed]
- Haberle, R.C.; Fourcade, H.M.; Boore, J.L.; Jansen, R.K. Extensive Rearrangements in the Chloroplast Genome of Trachelium Caeruleum Are Associated with Repeats and TRNA Genes. J. Mol. Evol. 2008, 66, 350–361. [Google Scholar] [CrossRef]
- Zhu, A.; Guo, W.; Gupta, S.; Fan, W.; Mower, J.P. Evolutionary Dynamics of the Plastid Inverted Repeat: The Effects of Expansion, Contraction, and Loss on Substitution Rates. N. Phytol. 2016, 209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fast-Plast Issue. Question: Orientation of the Chloroplast Regions. Available online: https://github.com/mrmckain/Fast-Plast/issues/22 (accessed on 22 December 2020).
- Wang, W.; Schalamun, M.; Morales-Suarez, A.; Kainer, D.; Schwessinger, B.; Lanfear, R. Assembly of Chloroplast Genomes with Long-and Short-Read Data: A Comparison of Approaches Using Eucalyptus Pauciflora as a Test Case. BMC Genom. 2018, 19, 977. [Google Scholar] [CrossRef] [Green Version]
- Tillich, M.; Lehwark, P.; Pellizzer, T.; Ulbricht-Jones, E.S.; Fischer, A.; Bock, R.; Greiner, S. GeSeq—Versatile and Accurate Annotation of Organelle Genomes. Nucleic Acids Res. 2017, 45, W6–W11. [Google Scholar] [CrossRef] [PubMed]
- Guyeux, C.; Charr, J.C.; Tran, H.T.M.; Furtado, A.; Henry, R.J.; Crouzillat, D.; Guyot, R.; Hamon, P. Evaluation of Chloroplast Genome Annotation Tools and Application to Analysis of the Evolution of Coffee Species. PLoS ONE 2019, 14, e216347. [Google Scholar] [CrossRef]
- Kahraman, K.; Lucas, S.J. Comparison of Different Annotation Tools for Characterization of the Complete Chloroplast Genome of Corylus Avellana Cv Tombul. BMC Genom. 2019, 20, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Cock, P.J.A.; Antao, T.; Chang, J.T.; Chapman, B.A.; Cox, C.J.; Dalke, A.; Friedberg, I.; Hamelryck, T.; Kauff, F.; Wilczynski, B.; et al. Biopython: Freely Available Python Tools for Computational Molecular Biology and Bioinformatics. Bioinformatics 2009, 25, 1422–1423. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Stamatakis, A. RAxML Version 8: A Tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. Mrbayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice across a Large Model Space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [Green Version]
- Altekar, G.; Dwarkadas, S.; Huelsenbeck, J.P.; Ronquist, F. Parallel Metropolis Coupled Markov Chain Monte Carlo for Bayesian Phylogenetic Inference. Bioinformatics 2004, 20, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.F.; Foulds, L.R. Comparison of weighted labelled trees. In Combinatorial Mathematics VI; Springer: Berlin/Heidelberg, Germany, 1979; pp. 119–126. [Google Scholar]
- Kendall, M.; Colijn, C. Mapping Phylogenetic Trees to Reveal Distinct Patterns of Evolution. Mol. Biol. Evol. 2016, 33, 2735–2743. [Google Scholar] [CrossRef] [Green Version]
- Kuhner, M.K.; Felsenstein, J. A Simulation Comparison of Phylogeny Algorithms under Equal and Unequal Evolutionary Rates. Mol. Biol. Evol. 1994, 11, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Huerta-Cepas, J.; Serra, F.; Bork, P. ETE 3: Reconstruction, Analysis, and Visualization of Phylogenomic Data. Mol. Biol. Evol. 2016, 33, 1635–1638. [Google Scholar] [CrossRef] [Green Version]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
Parameter | Family | ||||
---|---|---|---|---|---|
Apiaceae | Asteraceae | Campanulaceae | Lamiaceae | Rosaceae | |
No. of NCBI genomes | 58 | 259 | 30 | 62 | 181 |
No. of different species | 58 | 252 | 30 | 62 | 178 |
Outgroup species | Aralia continentalis Kitag. | Adenophora triphylla (Thunb.) A.DC. | Artemisia ordosica Krasch. | Pedicularis longiflora (Klotsch.) P.C.Tsoong. | Ulmus elongata L. K. Fu & C. S. Ding |
Outgroup accession number | NC_041648 | NC_040857 | NC_046571 | NC_046852 | NC_046061 |
No. of sequences included in the analyses (with outgroup) | 56 | 237 | 22 | 54 | 164 |
Min. genome length (bp) | 141,948 | 149,510 | 151,061 | 149,736 | 129,788 |
Max. genome length (bp) | 164,653 | 154,223 | 176,331 | 155,293 | 160,937 |
Earliest NCBI create date | 6 September 2006 | 8 November 2005 | 25 March 2008 | 2 January 2013 | 2 December 2010 |
Latest NCBI create date | 10 December 2020 | 10 December 2020 | 28 June 2020 | 10 December 2020 | 10 December 2020 |
Parameter | Apiaceae | Asteraceae | Campanulaceae | Lamiaceae | Rosaceae |
---|---|---|---|---|---|
No. of sequences included in the analyses | 56 | 237 | 22 | 54 | 164 |
No. of standardized sequences 1 | 9 | 172 | 8 | 7 | 14 |
No. of sequences in which one or more sequence regions were replaced with the inverse complement | 1 | 170 | 8 | 1 | 3 |
• Sequence regions replaced with the inverse complement | SSC | SSC | 7 LSC, 1SSC | SSC | SSC |
No. of sequences which were cyclically shifted | 8 | 11 | 0 | 6 | 11 |
• Offset range (bp) | 18–40,289 | 14–68,671 | - | 101–1803 | 30–29,019 |
Alignment length of the original sequences | 234,804 | 302,303 | 308,697 | 184,539 | 264,556 |
• No. of gene partitions | 48 | 22 | 14 | 88 | 40 |
Alignment length of the standardized sequences | 204,800 | 210,475 | 315,141 | 182,261 | 208,977 |
• No. of gene partitions | 88 | 80 | 23 | 97 | 62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turudić, A.; Liber, Z.; Grdiša, M.; Jakše, J.; Varga, F.; Šatović, Z. Towards the Well-Tempered Chloroplast DNA Sequences. Plants 2021, 10, 1360. https://doi.org/10.3390/plants10071360
Turudić A, Liber Z, Grdiša M, Jakše J, Varga F, Šatović Z. Towards the Well-Tempered Chloroplast DNA Sequences. Plants. 2021; 10(7):1360. https://doi.org/10.3390/plants10071360
Chicago/Turabian StyleTurudić, Ante, Zlatko Liber, Martina Grdiša, Jernej Jakše, Filip Varga, and Zlatko Šatović. 2021. "Towards the Well-Tempered Chloroplast DNA Sequences" Plants 10, no. 7: 1360. https://doi.org/10.3390/plants10071360
APA StyleTurudić, A., Liber, Z., Grdiša, M., Jakše, J., Varga, F., & Šatović, Z. (2021). Towards the Well-Tempered Chloroplast DNA Sequences. Plants, 10(7), 1360. https://doi.org/10.3390/plants10071360