Study on the Regulatory Effects of GA3 on Soybean Internode Elongation
Abstract
:1. Introduction
2. Results
2.1. Effect of GA3 Application on Soybean Internode Elongation
2.2. Inhibitory Effects of Uniconazole on GA3
2.3. Effects of the Apical Meristem on Soybean Internode Elongation
2.4. Transport of GA3 in Soybean Stem
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. GA3 Application
4.3. Role of the Apical Meristem in Soybean Internode Elongation
4.4. GA3 Transport Experiment in Soybean Stem
4.5. Measurements and Paraffin Section Preparation
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, R.; Wang, X.Z.; Chen, H.F.; Zhang, X.J.; Shan, Z.H.; Wu, X.J.; Cai, S.P. QTL analysis of lodging and related traits in soybean. Acta Agron. Sin. 2009, 35, 57–65. [Google Scholar] [CrossRef]
- O’Neill, D.P.; Ross, J.J.; Reid, J.B. Changes in gibberellin A1 levels and response during de-etiolation of pea seedlings. Plant Physiol. 2000, 124, 805–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, A.; Handa, A.K. Hormonal Regulation of Tomato Fruit Development: A Molecular Perspective. J. Plant Growth Regul. 2005, 24, 67–82. [Google Scholar] [CrossRef] [Green Version]
- Shen, C.; Wang, X.J.; Guo, F.T.; Zhou, W.Q.; Wang, G.L. Gibberellin and the plant growth retardant Paclobutrazol altered fruit shape and ripening in tomato. Protoplasma 2020, 257, 853–861. [Google Scholar] [CrossRef]
- Kato, F.; Araki, M.; Miyazawa, Y.; Fujii, N.; Takeda, K.; Suge, H.; Takahashi, H. Factors responsible for deep-sowing tolerance in wheat seedlings: Varietal differences in cell proliferation and the co-ordinated synchronization of epidermal cell expansion and cortical cell division for the gibberellin-mediated elongation of first internodes. Ann. Bot. 2011, 108, 439–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedden, P.; Thomas, S.G. Gibberellin biosynthesis and its regulation. Biochem. J. 2012, 444, 11–25. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Smith, D.L.; Liu, W. Effects of shade and drought stress on soybean hormones and yield of main-stem and branch. Afr. J. Biotechnol. 2011, 10, 14392–14398. [Google Scholar]
- Wu, Y.; Gong, W.; Yang, W. Shade inhibits leaf size by controlling cell proliferation and enlargement in soybean. Sci. Rep. 2017, 7, 9259. [Google Scholar] [CrossRef]
- Zhang, R.; Shan, F.X.; Wang, C.; Yan, C.; Dong, S.K.; Xu, Y.; Gong, Z.P.; Ma, C.M. Internode elongation pattern, internode diameter and hormone changes in soybean (Glycine max) under different shading conditions. Crop. Pasture Sci. 2020, 7, 679–688. [Google Scholar] [CrossRef]
- Bawa, G.; Feng, L.; Chen, G.; Chen, H.; Hu, Y.; Pu, T.; Cheng, Y.J.; Shi, J.Y.; Xiao, T.; Zhou, W.G.; et al. Gibberellins and auxin regulate soybean hypocotyl elongation under low light and high-temperature interaction. Physiol. Plant. 2020, 170, 345–356. [Google Scholar] [CrossRef]
- Beall, F.D.; Yeung, E.C.; Pharis, R.P. Far-red light stimulates internode elongation, cell division, cell elongation, and gibberellin levels in bean. Can. J. Bot. 1996, 74, 743–752. [Google Scholar] [CrossRef]
- Yuan, Y.; Yang, W.Y. Effects of Shading on Endogenous Hormone of Cardiocrinum Giganteum. North. Hortic. 2007, 8, 123–125. [Google Scholar]
- Martínez-García, J.F.; Santes, C.M.; García-Martínez, J.L. The end-of-day far-red irradiation increases gibberellin A1 content in cowpea (Vigna sinensis) epicotyls by reducing its inactivation. Physiol. Plant. 2010, 108, 426–434. [Google Scholar] [CrossRef]
- Peng, D.; Chen, X.; Yin, Y.; Lu, K.L.; Yang, W.B.; Tang, Y.H.; Wang, Z.L. Lodging resistance of winter wheat (Triticum aestivum L.): Lignin accumulation and its related enzymes activities due to the application of paclobutrazol or gibberellin acid. Field Crop. Res. 2014, 157, 1–7. [Google Scholar] [CrossRef]
- Fang, X.; Liu, X.; Zhang, Y.; Huang, K.; Zhang, Y.; Li, Y.; Nie, J.; She, H.; Ruan, R.; Yuan, X.; et al. Effects of uniconazole or gibberellic acid application on the lignin metabolism in relation to lodging resistance of culm in common buckwheat (Fagopyrum esculentum M.). J. Agron. Crop Sci. 2018, 204, 414–423. [Google Scholar] [CrossRef]
- Zhang, H.X.; Wang, H.H.; Zhu, Q.; Gao, Y.B.; Wang, H.Y.; Zhao, L.Z.; Wang, Y.S.; Xi, F.H.; Wang, W.F.; Yang, Y.Q.; et al. Transcriptome characterization of moso bamboo (Phyllostachys edulis) seedlings in response to exogenous gibberellin applications. BMC Plant Biol. 2018, 18, 125–140. [Google Scholar] [CrossRef] [PubMed]
- Karimi, M.; Hashemi, J.; Ahmadi, A.; Abbasi, A.; Pompeiano, A.; Tavarini, S.; Guglielminetti, L.; Angelini, L.G. Opposing Effects of External Gibberellin and Daminozide on Stevia Growth and Metabolites. Appl. Biochem. Biotechnol. 2015, 175, 780–791. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.F.; Fan, Y.G.; Yan, H.F.; Zhou, H.W.; Zhou, Z.F.; Weng, M.L.; Huang, X.; Prakash, L.; Li, Y.R.; Qiu, L.H.; et al. Enhanced Activity of Genes Associated With Photosynthesis, Phytohormone Metabolism and Cell Wall Synthesis Is Involved in Gibberellin-Mediated Sugarcane Internode Growth. Front. Genet. 2020, 11, 70–94. [Google Scholar] [CrossRef] [PubMed]
- Ingram, T.J.; Reid, J.B.; Macmillan, J. The quantitative relationship between gibberellin A1 and internode growth in Pisum sativum L. Planta 1986, 168, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.N.; Proebsting, W.M.; Parks, T.D.; Dougherty, W.G.; Lange, T.; Lewis, J.M.; Gaskin, P.; Hedden, P. Feed-back regulation of gibberellin biosynthesis and gene expression in pisum sativum L. Planta 1996, 200, 159–166. [Google Scholar] [CrossRef]
- Hamayun, M.; Khan, S.A.; Khan, A.L.; Shin, J.H.; Ahmad, B.; Shin, D.H.; Lee, I.J. Exogenous Gibberellic Acid Reprograms Soybean to Higher Growth and Salt Stress Tolerance. J. Agric. Food Chem. 2010, 58, 7226–7232. [Google Scholar] [CrossRef] [PubMed]
- Sauter, M.; Kende, H. Internodal elongation and orientation of cellulose microfibrils and microtubules in deepwater rice. Planta 1993, 190, 354–362. [Google Scholar] [CrossRef]
- Cuiting, W.; Bao, Y.; Wang, Q.Q.; Zhang, H.X. Introduction of the rice CYP714D1 gene into Populus inhibits expression of its homologous genes and promotes growth, biomass production and xylem fibre length in transgenic trees. J. Exp. Bot. 2013, 64, 2847–2857. [Google Scholar] [CrossRef] [Green Version]
- Björklund, S.; Antti, H.; Uddestrand, I.; Moritz, T.; Sundberg, B. Cross-talk between gibberellin and auxin in development of Populus wood: Gibberellin stimulates polar auxin transport and has a common transcriptome with auxin. Plant J. 2007, 52, 499–511. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.L.; Que, F.; Xu, Z.S.; Wang, F.; Xiong, A.S. Exogenous gibberellin altered morphology, anatomic and transcriptional regulatory networks of hormones in carrot root and shoot. BMC Plant Biol. 2015, 15, 290–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.Q.; Zhou, T.; Zhang, C.; Zheng, W.; Li, J.; Jiang, W.K.; Xiao, C.H.; Wei, D.Q.; Yang, C.G.; Xu, R.; et al. Gibberellin disturbs the balance of endogenesis hormones and inhibits adventitious root development of Pseudostellaria heterophylla through regulating gene expression related to hormone synthesis. Saudi J. Biol. Sci. 2021, 28, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Ragni, L.; Nieminen, K.; Pacheco-Villalobos, D.; Sibout, R.; Schwechheimer, C.; Hardtke, C.S. Mobile Gibberellin Directly Stimulates Arabidopsis Hypocotyl Xylem Expansion. Plant Cell 2011, 23, 1322–1336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Zhang, R.; Hou, Z.F.; Yan, C.; Xia, X.; Ma, C.M.; Dong, S.K.; Gong, Z.P. Mechanical properties of soybean plants under various plant densities. Crop Pasture Sci. 2020, 7, 249–259. [Google Scholar] [CrossRef]
- Hedden, P. Gibberellin Metabolism and Its Regulation. J. Plant Growth Regul. 2001, 220, 317–318. [Google Scholar] [CrossRef]
- Davière, J.M.; Achard, P. Gibberellin signaling in plants. Development 2013, 140, 1147–1151. [Google Scholar] [CrossRef] [Green Version]
- Binenbaum, J.; Weinstain, R.; Shani, E. Gibberellin localization and transport in plants. Trends Plant Sci. 2018, 23, 410–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gawronska, H.; Yang, Y.Y.; Furukawa, K.; Kendrick, R.E.; Takahashi, N.; Kamiya, Y. Effects of Low Irradiance Stress on Gibberellin Levels in Pea Seedlings. Plant Cell Physiol. 1995, 36, 1361–1367. [Google Scholar] [CrossRef]
- Potter, T.I.; Rood, S.B.; Zanewich, K.P. Light intensity, gibberellin content and the resolution of shoot growth in Brassica. Planta 1999, 207, 505–511. [Google Scholar] [CrossRef]
- Reid, J.B.; Ross, J.J. A mutant-based approach, using pisum sativum, to understanding plant growth. Int. J. Plant Sci. 1993, 154, 22–34. [Google Scholar] [CrossRef]
- Bensen, R.J.; Beall, F.D.; Mullet, J.E.; Morgan, P.W. Detection of endogenous gibberellins and their relationship to hypocotyl elongation in soybean seedlings. Plant Physiol. 1990, 94, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Yu, X.B.; Wan, Y.; Jiang, T.; Du, J.B.; Zou, J.L.; Yang, W.Y.; Liu, W.G. The Relationship Between Lodging and Stem Endogenous Gibberellins Metabolism Pathway of Relay Intercropping Soybean at Seedling Stage. Entia Agric. Sin. 2015, 48, 2528–2537. [Google Scholar]
- Suo, H.C.; Ma, Q.B.; Ye, K.X.; Yang, C.Y.; Tang, Y.J.; Hao, J.; Zhang, Z.Y.J.; Chen, M.L.; Feng, Y.Q.; Nian, H. Overexpression of AtDREB1A Causes a Severe Dwarf Phenotype by Decreasing Endogenous Gibberellin Levels in Soybean [Glycine max (L.) Merr.]. PLoS ONE 2017, 7, e45568. [Google Scholar] [CrossRef]
- Lee, J.; Moon, S.; Jang, S.; Lee, S.; An, G.; Jung, K.H.; Park, S.K. OsbHLH073 Negatively Regulates Internode Elongation and Plant Height by Modulating GA Homeostasis in Rice. Plants 2020, 9, 547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, A.; Cosgrove, D.J. Gibberellic Acid Stimulation of Cucumber Hypocotyl Elongation: Effects on Growth, turgor, osmotic Pressure, and cell wall properties. Plant Physiol. 1989, 90, 1335–1340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, N.; Xie, Y.D.; Guo, H.J.; Zhao, L.S.; Xiong, H.C.; Gu, J.Y.; Li, J.H.; Kong, F.Q.; Sui, L.; Zhao, Z.W.; et al. Gibberellins regulate the stem elongation rate without affecting the mature plant height of a quick development mutant of winter wheat (Triticum aestivum L.). Plant Physiol. Bioch. 2016, 107, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Santosmatos, F.; Silvestrefreitas, I.A.; Gonalvespereira, V.L.; Limapires, W.K. Effect of gibberellin on growth and development of Spondias tuberosa seedlinngs. Rev. Caatinga 2020, 33, 1124–1130. [Google Scholar] [CrossRef]
- Eriksson, M.E.; Israelsson, M.; Olsson, O.; Moritz, T. Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat. Biotechnol. 2000, 18, 784–788. [Google Scholar] [CrossRef] [PubMed]
- Pan, R.Z. Plant Physiology; Higher Education Press: Beijing, China, 2008. [Google Scholar]
- Kaneko, M.; Itoh, H.; Inukai, Y.; Sakamoto, T.; Ueguchi-Tanaka, M.; Ashikari, M.; Matsuoka, M. Where do gibberellin biosynthesis and gibberellin signaling occur in rice plants? Plant J. 2003, 35, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Silverstone, A.L.; Mak, P.Y.A.; Martinez, E.C.; Sun, T.P. Developmental regulation of the gibberellin biosynthetic gene GA1 in Arabidopsis thaliana. Plant J. 2010, 12, 9–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, V.A.; Knatt, C.J.; Gaskin, P.; Reid, J.B. The Distribution of Gibberellins in Vegetative Tissues of Pisum sativum L.: I. Biological and Biochemical Consequences of the le Mutation. Plant Physiol. 1992, 99, 368–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, R.L.; Phillips, I.D.J. Organs of Gibberellin Synthesis in Light-Grown Sunflower Plants. Plant Physiol. 1966, 41, 1381–1386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, P.J. The Plant Hormones: Their Nature, Occurrence, and Functions; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995; pp. 1–5. [Google Scholar]
- Mauriat, M.; Moritz, T. Analyses of GA20ox- and GID1-over-expressing aspen suggest that gibberellins play two distinct roles in wood formation. Plant J. 2010, 58, 989–1003. [Google Scholar] [CrossRef] [PubMed]
- Lyu, X.; Li, M.; Li, X.; Li, S.; Yan, C.; Ma, C.M.; Gong, Z.P. Assessing the Systematic Effects of the Concentration of Nitrogen Supplied to Dual-Root Systems of Soybean Plants on Nodulation and Nitrogen Fixation. Agronomy 2020, 10, 763. [Google Scholar] [CrossRef]
- Ruzin, S.E. Plant Microtechnique and Microscopy; Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
Cultivar | Node Position | Internode Length (cm) | GA3 (μg kg−1) | ||||
---|---|---|---|---|---|---|---|
CK | V1-GA3 | V3-GA3 | CK | V1-GA3 | V3-GA3 | ||
HN48 | 1 | 7.20 ± 0.12 b | 7.90 ± 0.09 a | 7.13 ± 0.08 b | 31.25 ± 1.27 c | 34.65 ± 0.35 b | 37.36 ± 0.42 a |
2 | 3.62 ± 0.03 b | 9.66 ± 0.57 a | 3.66 ± 0.03 b | 29.26 ± 0.85 c | 35.07 ± 0.61 b | 40.33 ± 1.71 a | |
3 | 2.64 ± 0.09 c | 13.46 ± 0.29 a | 4.56 ± 0.44 b | 27.54 ± 1.24 c | 33.75 ± 0.30 b | 37.76 ± 0.14 a | |
4 | 4.48 ± 0.11 c | 19.52 ± 0.21 a | 8.40 ± 0.29 b | 24.31 ± 0.55 c | 28.44 ± 0.41 b | 33.57 ± 0.39 a | |
5 | 5.18 ± 0.08 c | 10.24 ± 0.20 a | 6.55 ± 0.12 b | - | - | - | |
HN60 | 1 | 5.15 ± 0.07 b | 6.73 ± 0.12 a | 5.23 ± 0.10 b | 30.22 ± 0.75 c | 33.51 ± 0.18 b | 35.46 ± 0.49 a |
2 | 2.66 ± 0.05 b | 8.08 ± 0.18 a | 2.78 ± 0.12 b | 27.34 ± 0.39 c | 34.18 ± 0.47 b | 38.18 ± 0.40 a | |
3 | 2.22 ± 0.05 c | 13.18 ± 0.21 a | 3.18 ± 0.02 b | 26.42 ± 0.47 c | 28.78 ± 0.20 b | 30.10 ± 0.39 a | |
4 | 2.70 ± 0.04 c | 13.56 ± 0.31 a | 5.72 ± 0.14 b | 23.20 ± 0.50 c | 27.50 ± 0.78 b | 31.89 ± 0.41 a | |
5 | 3.20 ± 0.12 c | 9.18 ± 0.13 a | 5.70 ± 0.22 b | - | - | - |
Cultivar | Internode Position | Internode Length (cm) | GA3 (μg kg−1) | ||
---|---|---|---|---|---|
CK | Leaf-GA3 | CK | Leaf-GA3 | ||
HN48 | 2 | 3.58 ± 0.07 a | 3.56 ± 0.07 a | 30.10 ± 0.75 b | 33.59 ± 0.93 a |
3 | 3.22 ± 0.02 a | 3.20 ± 0.05 a | 26.77 ± 0.76 b | 31.53 ± 1.08 a | |
4 | 3.30 ± 0.07 b | 3.80 ± 0.12 a | 25.22 ± 0.93 b | 30.26 ± 1.71 a | |
5 | 3.81 ± 0.18 b | 6.30 ± 0.31 a | 24.47 ± 0.46 b | 26.86 ± 1.02 a | |
6 | 4.28 ± 0.02 b | 12.48 ± 0.11 a | 23.83 ± 0.32 b | 28.59 ± 0.94 a | |
7 | 4.98 ± 0.17 b | 11.90 ± 0.19 a | 21.98 ± 0.30 b | 25.31 ± 0.10 a | |
HN60 | 2 | 2.30 ± 0.00 a | 2.22 ± 0.06 a | 26.50 ± 2.29 b | 30.40 ± 1.94 a |
3 | 2.00 ± 0.00 a | 2.14 ± 0.05 a | 23.77 ± 0.56 b | 28.34 ± 1.51 a | |
4 | 1.90 ± 0.05 b | 2.35 ± 0.06 a | 24.39 ± 0.61 b | 29.81 ± 0.24 a | |
5 | 2.18 ± 0.04 b | 3.29 ± 0.04 a | 23.48 ± 1.22 b | 25.96 ± 0.30 a | |
6 | 3.40 ± 0.06 b | 6.36 ± 0.13 a | 22.72 ± 0.83 b | 24.79 ± 1.13 a | |
7 | 4.18 ± 0.17 b | 8.32 ± 0.20 a | 21.87 ± 0.63 b | 23.88 ± 0.75 a |
Cultivar | Internode Position | Internode Length (cm) | GA3 (μg kg−1) | ||
---|---|---|---|---|---|
CK | Root-GA3 | CK | Root-GA3 | ||
HN48 | 1 | 6.25 ± 0.07 a | 6.27 ± 0.06 a | 19.37 ± 0.16 b | 21.09 ± 0.20 a |
2 | 4.28 ± 0.11 a | 4.30 ± 0.24 a | 14.93 ± 0.11 b | 16.45 ± 0.15 a | |
3 | 4.52 ± 0.06 b | 5.35 ± 0.07 a | 14.85 ± 0.21 b | 18.55 ± 0.09 a | |
4 | 6.12 ± 0.07 b | 9.00 ± 0.31 a | 15.78 ± 0.14 b | 18.91 ± 0.12 a | |
5 | 5.20 ± 0.13 b | 9.38 ± 0.32 a | 12.62 ± 0.24 b | 17.60 ± 0.31 a | |
HN60 | 1 | 4.12 ± 0.04 a | 4.14 ± 0.06 a | 15.04 ± 0.29 b | 16.83 ± 0.21 a |
2 | 2.48 ± 0.05 a | 2.45 ± 0.05 a | 14.14 ± 0.09 b | 15.97 ± 0.06 a | |
3 | 3.00 ± 0.08 b | 3.66 ± 0.05 a | 13.46 ± 0.05 b | 18.13 ± 0.42 a | |
4 | 3.90 ± 0.08 b | 5.78 ± 0.13 a | 14.31 ± 0.10 b | 17.78 ± 0.17 a | |
5 | 3.70 ± 0.05 b | 7.33 ± 0.20 a | 12.27 ± 0.18 b | 16.11 ± 0.14 a |
Internode Position/Treatment | CK | S3307 | GA3 | GA3 + S3307 | |
---|---|---|---|---|---|
Internode length (cm) | 1 | 5.66 ± 0.13 b | 4.60 ± 0.10 c | 6.27 ± 0.14 a | 6.20 ± 0.12 a |
2 | 3.68 ± 0.06 b | 2.71 ± 0.12 c | 7.33 ± 0.20 a | 7.28 ± 0.14 a | |
3 | 3.54 ± 0.03 c | 1.23 ± 0.14 d | 16.67 ± 1.24 a | 11.54 ± 0.41 b | |
4 | 3.51 ± 0.13 c | 0.83 ± 0.01 d | 26.53 ± 0.59 a | 18.04 ± 0.29 b | |
5 | 0.94 ± 0.05 c | - | 9.45 ± 0.31 a | 3.04 ± 0.23 b | |
GA3 (μg kg−1) | 1 | 29.99 ± 0.17 c | 25.15 ± 0.36 d | 34.65 ± 0.20 a | 31.58 ± 0.42 b |
2 | 29.44 ± 0.12 c | 24.70 ± 0.28 d | 37.36 ± 0.24 a | 35.37 ± 0.38 b | |
3 | 25.93 ± 0.40 c | 21.37 ± 0.52 d | 35.07 ± 0.35 a | 32.64 ± 0.44 b | |
4 | 23.38 ± 0.14 c | 19.57 ± 0.49 d | 32.23 ± 0.37 a | 30.82 ± 0.23 b |
Cultivar | Internode Position | Internode Length (cm) | GA3 (μg kg−1) | ||||
---|---|---|---|---|---|---|---|
CK | DW | GA3 | CK | DW | GA3 | ||
HN48 | 2 | 4.00 ± 0.00 a | 3.97 ± 0.01 a | 4.00 ± 0.02 a | - | - | - |
3 | 3.77 ± 0.01 b | 3.29 ± 0.03 c | 4.06 ± 0.01 a | 36.43 ± 1.71 a | 29.87 ± 0.60 b | 37.54 ± 1.16 a | |
4 | 4.11 ± 0.02 b | 2.86 ± 0.05 c | 5.09 ± 0.06 a | 32.44 ± 0.49 b | 28.84 ± 0.41 c | 35.69 ± 0.28 a | |
5 | 4.56 ± 0.07 b | 2.03 ± 0.04 c | 7.98 ± 0.02 a | 30.30 ± 0.48 b | 25.82 ± 0.75 c | 34.81 ± 0.26 a | |
HN60 | 2 | 3.16 ± 0.09 a | 3.09 ± 0.06 a | 3.11 ± 0.04 a | - | - | - |
3 | 2.71 ± 0.02 b | 2.30 ± 0.06 c | 3.06 ± 0.03 a | 28.55 ± 0.60 b | 23.56 ± 0.64 c | 32.00 ± 1.66 a | |
4 | 3.22 ± 0.08 b | 2.42 ± 0.02 c | 4.26 ± 0.02 a | 25.61 ± 1.09 b | 22.60 ± 0.66 c | 30.32 ± 0.49 a | |
5 | 2.96 ± 0.05 b | 1.81 ± 0.01 c | 5.23 ± 0.04 a | 25.33 ± 0.76 b | 21.52 ± 0.29 c | 29.73 ± 1.18 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, F.; Zhang, R.; Zhang, J.; Wang, C.; Lyu, X.; Xin, T.; Yan, C.; Dong, S.; Ma, C.; Gong, Z. Study on the Regulatory Effects of GA3 on Soybean Internode Elongation. Plants 2021, 10, 1737. https://doi.org/10.3390/plants10081737
Shan F, Zhang R, Zhang J, Wang C, Lyu X, Xin T, Yan C, Dong S, Ma C, Gong Z. Study on the Regulatory Effects of GA3 on Soybean Internode Elongation. Plants. 2021; 10(8):1737. https://doi.org/10.3390/plants10081737
Chicago/Turabian StyleShan, Fuxin, Rui Zhang, Jin Zhang, Chang Wang, Xiaochen Lyu, Tianyu Xin, Chao Yan, Shoukun Dong, Chunmei Ma, and Zhenping Gong. 2021. "Study on the Regulatory Effects of GA3 on Soybean Internode Elongation" Plants 10, no. 8: 1737. https://doi.org/10.3390/plants10081737
APA StyleShan, F., Zhang, R., Zhang, J., Wang, C., Lyu, X., Xin, T., Yan, C., Dong, S., Ma, C., & Gong, Z. (2021). Study on the Regulatory Effects of GA3 on Soybean Internode Elongation. Plants, 10(8), 1737. https://doi.org/10.3390/plants10081737