Classification and Characterization of the Manoor Valley’s (Lesser Himalaya) Vegetation from the Subtropical-Temperate Ecotonal Forests to the Alpine Pastures along Ecological Variables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Vegetation Sampling and Herbarium work
2.3. Ecological Variables
2.4. Statistical Analyses
3. Results
3.1. TWINSPAN Classification
3.2. Vegetation Characterization of Plant Communities
3.2.1. Salix–Sorbaria–Impatiens Community
3.2.2. Indigofera–Juglans–Isodon Community
3.2.3. Cedrus–Cynodon–Isodon Community
3.2.4. Indigofera–Parrotiopsis–Bistorta Community
3.2.5. Sambucus–Cedrus–Desmodium Community
3.2.6. Indigofera–Cedrus–Pinus Community
3.2.7. Cedrus–Pinus–Parrotiopsis Community
3.2.8. Pinus-Viburnum-Cedrus Community
3.2.9. Abies–Picea–Juniperus Community
3.2.10. Juniperus–Sibbaldia–Juniperus Community
3.2.11. Sibbaldia–Bergenia–Rheum Community
3.2.12. Poa-Bistorta-Primula Community
3.3. Non-Metric Multidimensional Scaling (NMDS)
3.4. Canonical Correspondence Analysis (CCA)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Capelo, J. Using species abundance and phylogeny conjointly to approach vegetation classification: A case study on Macaronesia’s woody vegetation. J. Veg. Sci. 2020, 31, 616–633. [Google Scholar] [CrossRef]
- Czortek, P.; Orczewska, A.; Dyderski, M.K. Niche differentiation, competition or habitat filtering? Mechanisms explaining co-occurrence of plant species on wet meadows of high conservation value. J. Veg. Sci. 2021, 32, e12983. [Google Scholar] [CrossRef]
- Černý, T.; Kopecký, M.; Petřík, P.; Song, J.; Šrůtek, M.; Valachovič, M.; Altman, J.; Doležal, J. Classification of K orean forests: Patterns along geographic and environmental gradients. Appl. Veg. Sci. 2015, 18, 5–22. [Google Scholar] [CrossRef]
- Rahman, I.U. Ecophysiological Plasticity and Ethnobotanical Studies in Manoor Area, Kaghan Valley, Pakistan. Ph.D. Thesis, Hazara University, Mansehra, Pakistan, 2020. [Google Scholar]
- Haq, F. Phytosociological Attributes of Different Vegetational Zones of Nandiar Khuwar Catchment Area. Ph.D. Thesis, Hazara University, Mansehra, Pakistan, 2015. [Google Scholar]
- Khan, S.M. Plant Communities and Vegetation Ecosystem Services in the Naran Valley, Western Himalaya. Ph.D. Thesis, University of Leicester, Leicester, UK, 2012. [Google Scholar]
- Loreau, M.; Naeem, S.; Inchausti, P.; Bengtsson, J.; Grime, J.P.; Hector, A.; Hooper, D.U.; Huston, M.A.; Raffaelli, D.; Schmid, B. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 2001, 294, 804–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamilton, A.J. Species diversity or biodiversity? J. Environ. Manage. 2005, 75, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Chiarucci, A.; Bacaro, G.; Scheiner, S.M. Old and new challenges in using species diversity for assessing biodiversity. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 2426–2437. [Google Scholar] [CrossRef] [Green Version]
- Field, R.; Hawkins, B.A.; Cornell, H.V.; Currie, D.J.; Diniz-Filho, J.A.F.; Guégan, J.-F.; Kaufman, D.M.; Kerr, J.T.; Mittelbach, G.G.; Oberdorff, T.; et al. Spatial species-richness gradients across scales: A meta-analysis. J. Biogeogr. 2009, 36, 132–147. [Google Scholar] [CrossRef]
- Kullman, L. Alpine flora dynamics—A critical review of responses to climate change in the Swedish Scandes since the early 1950s. Nord. J. Bot. 2010, 28, 398–408. [Google Scholar] [CrossRef]
- Jabis, M.D. Climate Change Impacts in Alpine Plant Communities. Ph.D. Thesis, UC Berkeley, Berkeley, CA, USA, 2018. [Google Scholar]
- Malanson, G.P.; Nelson, E.L.; Zimmerman, D.L.; Fagre, D.B. Alpine plant community diversity in species–area relations at fine scale. Arctic, Antarct. Alp. Res. 2020, 52, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Dvorský, M.; Doležal, J.; De Bello, F.; Klimešová, J.; Klimeš, L. Vegetation types of East Ladakh: Species and growth form composition along main environmental gradients. Appl. Veg. Sci. 2011, 14, 132–147. [Google Scholar] [CrossRef]
- Pauli, H.; Gottfried, M.; Dullinger, S.; Abdaladze, O.; Akhalkatsi, M.; Alonso, J.L.B.; Coldea, G.; Dick, J.; Erschbamer, B.; Calzado, R.F.; et al. Recent Plant Diversity Changes on Europe’s Mountain Summits. Science 2012, 336, 353–355. [Google Scholar] [CrossRef] [Green Version]
- Steinbauer, M.J.; Grytnes, J.-A.; Jurasinski, G.; Kulonen, A.; Lenoir, J.; Pauli, H.; Rixen, C.; Winkler, M.; Bardy-Durchhalter, M.; Barni, E.; et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 2018, 556, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Adair, K.L.; Lindgreen, S.; Poole, A.M.; Young, L.M.; Bernard-Verdier, M.; Wardle, D.A.; Tylianakis, J.M. Above and belowground community strategies respond to different global change drivers. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brun, P.; Zimmermann, N.E.; Graham, C.H.; Lavergne, S.; Pellissier, L.; Münkemüller, T.; Thuiller, W. The productivity-biodiversity relationship varies across diversity dimensions. Nat. Commun. 2019, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Curtis, J.T.; McIntosh, R. The interrelations of certain analytic and synthetic phytosociological characters. Ecology 1950, 31, 434–455. [Google Scholar] [CrossRef]
- Dufrêne, M.; Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 1997, 67, 345–366. [Google Scholar] [CrossRef]
- Paudel, P.K.; Sipos, J.; Brodie, J.F. Threatened species richness along a Himalayan elevational gradient: Quantifying the influences of human population density, range size, and geometric constraints. BMC Ecol. 2018, 18, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Hussain, F.; Shah, S.M.; Badshah, L.; Durrani, M.J. Diversity and ecological characteristics of flora of Mastuj valley, district Chitral, Hindukush range, Pakistan. Pak. J. Bot 2015, 47, 495–510. [Google Scholar]
- Rahman, I.U.; Afzal, A.; Iqbal, Z.; Ijaz, F.; Ali, N.; Asif, M.; Alam, J.; Majid, A.; Hart, R.; Bussmann, R.W. First insights into the floristic diversity, biological spectra and phenology of Manoor valley, Pakistan. Pakistan J. Bot. 2018, 50, 1113–1124. [Google Scholar]
- Rahman, I.U.; Hart, R.; Afzal, A.; Iqbal, Z.; Abdallah, E.F.; Alqarawi, A.A.; Ijaz, F.; Ali, N.; Kausar, R.; Muzammil, S.; et al. Phenological plasticity in Berberis lycium Royle along temporal and altitudinal gradients. Appl. Ecol. Environ. Res. 2019, 17, 331–341. [Google Scholar] [CrossRef]
- Cañadas, E.M.; Fenu, G.; Peñas, J.; Lorite, J.; Mattana, E.; Bacchetta, G. Hotspots within hotspots: Endemic plant richness, environmental drivers, and implications for conservation. Biol. Conserv. 2014, 170, 282–291. [Google Scholar] [CrossRef]
- Noroozi, J.; Talebi, A.; Doostmohammadi, M.; Rumpf, S.B.; Linder, H.P.; Schneeweiss, G.M. Hotspots within a global biodiversity hotspot—Areas of endemism are associated with high mountain ranges. Sci. Rep. 2018, 8, 10345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kidane, Y.O.; Steinbauer, M.J.; Beierkuhnlein, C. Dead end for endemic plant species? A biodiversity hotspot under pressure. Glob. Ecol. Conserv. 2019, 19, e00670. [Google Scholar] [CrossRef]
- Noroozi, J.; Naqinezhad, A.; Talebi, A.; Doostmohammadi, M.; Plutzar, C.; Rumpf, S.B.; Asgarpour, Z.; Schneeweiss, G.M. Hotspots of vascular plant endemism in a global biodiversity hotspot in Southwest Asia suffer from significant conservation gaps. Biol. Conserv. 2019, 237, 299–307. [Google Scholar] [CrossRef]
- Givnish, T.J. On the causes of gradients in tropical tree diversity. J. Ecol. 1999, 87, 193–210. [Google Scholar] [CrossRef]
- Iqbal, Z.; Zeb, A.; Abd_Allah, E.F.; Rahman, I.U.; Khan, S.M.; Ali, N.; Ijaz, F.; Anwar, Y.; Muzammil, S.; Alqarawi, A.A.; et al. Ecological assessment of plant communities along the edaphic and topographic gradients of biha valley, District Swat, Pakistan. Appl. Ecol. Environ. Res. 2018, 16. [Google Scholar] [CrossRef]
- Klanderud, K.; Birks, H.J.B. Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants. The Holocene 2003, 13, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Odland, A.; Birks, H.J.B. The altitudinal gradient of vascular plant richness in Aurland, western Norway. Ecography (Cop.). 1999, 22, 548–566. [Google Scholar] [CrossRef]
- Weckström, J.; Korhola, A. Patterns in the distribution, composition and diversity of diatom assemblages in relation to ecoclimatic factors in Arctic Lapland. J. Biogeogr. 2001, 28, 31–45. [Google Scholar] [CrossRef]
- Heywood, V.H.; Watson, R.T. Global Biodiversity Assessment; Cambridge University Press: Cambridge, UK, 1995; Volume 1140. [Google Scholar]
- McGrady-Steed, J.; Morin, P.J. Biodiversity, density compensation, and the dynamics of populations and functional groups. Ecology 2000, 81, 361–373. [Google Scholar] [CrossRef]
- Luo, Z.; Tang, S.; Li, C.; Fang, H.; Hu, H.; Yang, J.; Ding, J.; Jiang, Z. Environmental effects on vertebrate species richness: Testing the energy, environmental stability and habitat heterogeneity hypotheses. PLoS ONE 2012, 7, e35514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.; Liu, X.; Zhou, M.; Ai, D.; Wang, G.; Wang, Y.; Chu, C.; Lundholm, J.T. The effect of environmental heterogeneity on species richness depends on community position along the environmental gradient. Sci. Rep. 2015, 5, 15723. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.; Facelli, J.; Cavagnaro, T. Interactions between soil properties, soil microbes and plants in remnant-grassland and old-field areas: A reciprocal transplant approach. Plant Soil 2018, 433, 127–145. [Google Scholar] [CrossRef]
- Champion, S.H.; Seth, S.K.; Khattak, G.M. Forest Types of Pakistan; Pakistan Forest Institute: Peshawar, Pakistan, 1965.
- Beg, A.R. Wildlife Habitats of Pakistan; Pakistan Forest Institute: Peshawar, Pakistan, 1975.
- Ahmed, M.; Husain, T.; Sheikh, A.H.; Hussain, S.S.; Siddiqui, M.F. Phytosociology and structure of Himalayan forests from different climatic zones of Pakistan. Pakistan J. Bot. 2006, 38, 361. [Google Scholar]
- Rahman, I.-U.; Afzal, A.; Abd_Allah, E.F.; Iqbal, Z.; Alqarawi, A.A.; Hashem, A.; Calixto, E.S.; Ali, N.; Asmarayani, R. Composition of plant communities driven by environmental gradients in alpine pastures and cold desert of northwestern Himalaya, Pakistan. Pakistan J. Bot. 2021, 53, 655–664. [Google Scholar] [CrossRef]
- Rahman, I.U.; Afzal, A.; Iqbal, Z.; Bussmann, R.W.; Alsamadany, H.; Calixto, E.S.; Shah, G.M.; Kausar, R.; Shah, M.; Ali, N.; et al. Ecological gradients hosting plant communities in Himalayan subalpine pastures: Application of multivariate approaches to identify indicator species. Ecol. Inform. 2020, 60, 101162. [Google Scholar] [CrossRef]
- Rahman, I.U.; Afzal, A.; Iqbal, Z.; Hart, R.; Abd_Allah, E.F.; Alqarawi, A.A.; Alsubeie, M.S.; Calixto, E.S.; Ijaz, F.; Ali, N.; et al. Response of plant physiological attributes to altitudinal gradient: Plant adaptation to temperature variation in the Himalayan region. Sci. Total Environ. 2020, 706, 135714. [Google Scholar] [CrossRef]
- Rahman, I.U.; Calixto, E.S.; Afzal, A.; Iqbal, Z.; Ali, N.; Ijaz, F.; Shah, M.; Hakeem, K.R. Advanced multivariate and computational approaches in agricultural studies. In Essentials of Bioinformatics, Volume II: In Silico Life Sciences: Medicine; Shaik, N.A., Hakeem, K.R., Banaganapall, B., Elango, R., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 93–102. ISBN 9783030193171. [Google Scholar]
- Gehlhausen, S.M.; Schwartz, M.W.; Augspurger, C.K. Vegetation and microclimatic edge effects in two mixed-mesophytic forest fragments. Plant Ecol. 2000, 147, 21–35. [Google Scholar] [CrossRef]
- Sánchez-Rojas, G.; Gallina, S. Factors affecting habitat use by mule deer (Odocoileus hemionus) in the central part of the Chihuahuan Desert, Mexico: An assessment with univariate and multivariate methods. Ethol. Ecol. Evol. 2000, 12, 405–417. [Google Scholar] [CrossRef]
- Kleyer, M.; Dray, S.; Bello, F.; Lepš, J.; Pakeman, R.J.; Strauss, B.; Thuiller, W.; Lavorel, S. Assessing species and community functional responses to environmental gradients: Which multivariate methods? J. Veg. Sci. 2012, 23, 805–821. [Google Scholar] [CrossRef]
- Gauch, H.G.; Gauch, H.G., Jr. Multivariate Analysis in Community Ecology; Cambridge University Press: Cambridge, UK, 1982; ISBN 0521282403. [Google Scholar]
- Rahman, I.U.; Afzal, A.; Iqbal, Z.; Abd-Allah, E.F.; Alqarawi, A.A.; Calixto, E.S.; Ali, N.; Ijaz, F.; Kausar, R.; Alsubeie, M.S.; et al. Role of multivariate approaches in floristic diversity of Manoor valley (Himalayan region) Pakistan. Appl. Ecol. Environ. Res. 2019, 17, 1475–1498. [Google Scholar] [CrossRef]
- Rahman, I.U.; Ijaz, F.; Afzal, A.; Iqbal, Z.; Ali, N.; Khan, S.M. Contributions to the phytotherapies of digestive disorders: Traditional knowledge and cultural drivers of Manoor Valley, Northern Pakistan. J. Ethnopharmacol. 2016, 192, 30–52. [Google Scholar] [CrossRef] [PubMed]
- Clift, P.D.; Giosan, L.; Blusztajn, J.; Campbell, I.H.; Allen, C.; Pringle, M.; Tabrez, A.R.; Danish, M.; Rabbani, M.M.; Alizai, A. Holocene erosion of the Lesser Himalaya triggered by intensified summer monsoon. Geology 2008, 36, 79–82. [Google Scholar] [CrossRef] [Green Version]
- Haq, F.; Ahmad, H.; Iqbal, Z.; Alam, M.; Aksoy, A. Multivariate approach to the classification and ordination of the forest ecosystem of Nandiar valley western Himalayas. Ecol. Indic. 2017, 80, 232–241. [Google Scholar] [CrossRef]
- Buckland, S.T.; Anderson, D.R.; Burnham, K.P.; Laake, J.L.; Borchers, D.L.; Thomas, L. Introduction to Distance Sampling: Estimating Abundance of Biological Populations; Oxford Univ. Press: Oxford, UK, 2001. [Google Scholar]
- Buckland, S.T.; Anderson, D.R.; Burnham, K.P.; Laake, J.L.; Borchers, D.L.; Thomas, L. Advanced Distance Sampling; Oxford University Press: Oxford, UK, 2004; Volume 2. [Google Scholar]
- Buckland, S.T.; Newman, K.B.; Fernández, C.; Thomas, L.; Harwood, J. Embedding population dynamics models in inference. Stat. Sci. 2007, 22, 44–58. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.R.; Burnham, K.P.; Laake, J.L. Distance Sampling: Estimating Abundance of Biological Populations; Chapman &Hall: London, UK, 1993. [Google Scholar]
- Le Moullec, M.; Pedersen, Å.Ø.; Yoccoz, N.G.; Aanes, R.; Tufto, J.; Hansen, B.B. Ungulate population monitoring in an open tundra landscape: Distance sampling versus total counts. Wildl. Biol. 2017, 2017, 4. [Google Scholar] [CrossRef] [Green Version]
- Kent, M. Vegetation Description and Data Analysis: A Practical Approach, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 1119962390. [Google Scholar]
- Qadir, S.A.; Qureshi, S.Z.; Ahmed, M.A. A phytosociological survey of the Karachi University Campus. Vegetatio 1966, 13, 339–362. [Google Scholar] [CrossRef]
- Rahman, M.M.; Mahmud, M.A.A.; Shahidullah, M.; Nath, T.K.; Jashimuddin, M. The competitiveness of the phytosociological attributes of the protected areas in Bangladesh with that in the other tropical countries. J. Sustain. For. 2016, 35, 431–450. [Google Scholar] [CrossRef]
- Curtis, J.T. The Vegetation of Wisconsin: An Ordination of Plant Communities; University of Wisconsin Press: Madison, WI, USA, 1959; ISBN 0299019438. [Google Scholar]
- Son, H.-J.; Park, S.-H.; Lee, D.-H.; Song, J.-H.; Park, H.-W.; Park, W.-G. Growing environment characteristics and vegetation structure of Vaccinium Oldhamii Miq. native habitats in Korea. For. Sci. Technol. 2019, 15, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Tian, Z.; Li, H.; Li, W.; Gan, X.; Zhang, X.; Fan, Z. Structural characteristics and niches of dominant tree populations in Tetracentron sinense communities: Implications for conservation. Bot. Sci. 2018, 96, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Lou, Y.; Pan, Y.; Gao, C.; Jiang, M.; Lu, X.; Xu, Y.J. Response of plant height, species richness and aboveground biomass to flooding gradient along vegetation zones in floodplain wetlands, Northeast China. PLoS ONE 2016, 11, e0153972. [Google Scholar] [CrossRef]
- Song, J.H.; Cheong, E.J.; Kim, H.; Kim, M.S.; Kim, S.H. Variation of morphological characteristics and anthocyanin contents from fruit of Vaccinium oldhamii in Korea. J. Korean Soc. For. Sci. 2015, 104, 193–197. [Google Scholar] [CrossRef]
- Raunkiaer, C. The Life Forms of Plants and Statistical Plant Geography; Being the Collected Papers of C. Raunkiaer; Clarendon Press: Oxford, UK, 1934. [Google Scholar]
- Ijaz, F. Biodiversity and Traditional uses of Plants of Sarban Hills, Abbottabad. Ph.D. Thesis, Hazara University, Manehra, Pakistan, 2014. [Google Scholar]
- Ijaz, F.; Rahman, I.; Iqbal, Z.; Alam, J.; Ali, N.; Khan, S. Ethno-ecology of the healing forests of Sarban Hills, Abbottabad, Pakistan: An economic and medicinal appraisal. In Plant and Human Health; Ozturk, K.R.H., Ed.; Springer International Publishing AG: Berlin/Heidelberg, Germany, 2018; pp. 675–706. [Google Scholar]
- Nasir, E.; Ali, S.I. Flora West of Pakistan.; National Herbarium: Karachi, Pakistan, 1971. [Google Scholar]
- Ali, S.I.; Nasir, Y.J. Flora of Pakistan; Department of Botany, University of Karachi, Karachi and National Herbarium: Islamabad, Pakistan, 1989. [Google Scholar]
- Ali, S.I.; Qaiser, M. Flora of Pakistan; Department of Botany, University of Karachi: Karachi, Pakistan, 1995. [Google Scholar]
- Haq, F.; Ahmad, H.; Iqbal, Z. Vegetation description and phytoclimatic gradients of subtropical forests of Nandiar Khuwar catchment District Battagram. Pakistan J. Bot. 2015, 47, 1399–1405. [Google Scholar]
- Ravindranath, N.H.; Ostwald, M. Carbon Inventory Methods: Handbook for Greenhouse Gas Inventory, Carbon Mitigation and Roundwood Production Projects; Springer International Publishing AG: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Mc Lean, E.O. Soil pH and Lime requirement. n Methods of Soil Analysis Part 2 Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy, Inc. Soil Science Society of America, Inc.: Madison, WI, USA, 1982; pp. 199–223. [Google Scholar]
- Wilson, M.J.; Bayley, S.E. Use of single versus multiple biotic communities as indicators of biological integrity in northern prairie wetlands. Ecol. Indic. 2012, 20, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods ofSoil Analysis. Part 3. Chemical Method; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Summer, M.E., Eds.; Soil Science Society of America and American Society of Agronomy: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Paul, A.E.; Berry, E.H. The Kjeldahl nitrogen method and its modifications. J. Assoc. Off. Agric. Chem. 1921, 5, 108–132. [Google Scholar] [CrossRef]
- Soltanpour, P.N.; Workman, S. Modification of the NH4 HCO3-DTPA soil test to omit carbon black. Commun. Soil Sci. Plant Anal. 1979, 10, 1411–1420. [Google Scholar] [CrossRef]
- Soltanpour, P.N. Determination of nutrient availability and elemental toxicity by AB-DTPA soil test and ICPS. In Advances in Soil Science; Springer: New York, NY, USA, 1991; pp. 165–190. [Google Scholar]
- Rahman, I.U.; Afzal, A.; Iqbal, Z.; Ijaz, F.; Khan, S.M.; Khan, S.A.; Shah, A.H.; Khan, K.; Ali, N. Influence of different nutrients application in nutrient deficient soil on growth and yield of onion. Bangladesh J. Bot. 2015, 44, 613–619. [Google Scholar] [CrossRef]
- Rahman, I.U.; Ijaz, F.; Afzal, A.; Iqbal, Z. Effect of foliar application of plant mineral nutrients on the growth and yield attributes of chickpea (Cicer arietinum L.) Under nutrient deficient soil conditions. Bangladesh J. Bot. 2017, 46, 111–118. [Google Scholar]
- Gilliam, F.S.; Saunders, N.E. Making more sense of the order: A review of Canoco for Windows 4.5, PC-ORD version 4 and SYN-TAX 2000. J. Veg. Sci. 2003, 14, 297–304. [Google Scholar] [CrossRef]
- Šmilauer, P.; Lepš, J. Multivariate Analysis of Ecological Data Using CANOCO, 2nd ed.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Mayor, J.R.; Sanders, N.J.; Classen, A.T.; Bardgett, R.D.; Clément, J.C.; Fajardo, A.; Lavorel, S.; Sundqvist, M.K.; Bahn, M.; Chisholm, C.; et al. Elevation alters ecosystem properties across temperate treelines globally. Nature 2017, 542, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Knapp, A.K.; Fay, P.A.; Blair, J.M.; Collins, S.L.; Smith, M.D.; Carlisle, J.D.; Harper, C.W.; Danner, B.T.; Lett, M.S.; McCarron, J.K. Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science 2002, 298, 2202–2205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCune, B. PC-ORD: An integrated system for multivariate analysis of ecological data. Abstr. Bot. 1986, 10, 221–225. [Google Scholar]
- Rahman, I.U.; Afzal, A.; Iqbal, Z.; Hashem, A.; Al-Arjani, A.-B.F.; Alqarawi, A.A.; Abd_Allah, E.F.; Abdalla, M.; Calixto, E.S.; Sakhi, S. Species Distribution Pattern and Their Contribution in Plant Community Assembly in Response to Ecological Gradients of the Ecotonal Zone in the Himalayan Region. Plants 2021, 10, 2372. [Google Scholar] [CrossRef]
- Terzi, M.; Bogdanović, S.; D’Amico, F.S.; Jasprica, N. Rare plant communities of the Vis Archipelago (Croatia). Bot. Lett. 2019, 167, 1–14. [Google Scholar] [CrossRef]
- Jackson, D.A.; Somers, K.M. Putting things in order: The ups and downs of detrended correspondence analysis. Am. Nat. 1991, 137, 704–712. [Google Scholar] [CrossRef]
- Hill, M.O.; Gauch, H.G. Detrended Correspondence Analysis: An Improved Ordination Technique. Vegetatio 1980, 42, 47–58. [Google Scholar] [CrossRef]
- ter Braak, C.J.F.; Smilauer, P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5); Canoco: Ithaca NY, USA, 2002. [Google Scholar]
- Šmilauer, P.; Lepš, J. Multivariate Analysis of Ecological Data Using CANOCO 5; Cambridge University Press: Cambridge, UK, 2014; ISBN 110769440X. [Google Scholar]
- Oksanen, J.; Kindt, R.; Legendre, P.; O’Hara, B.; Stevens, M.H.H.; Oksanen, M.J.; Suggests, M. The vegan package. Community Ecol. Packag. 2007, 10, 719. [Google Scholar]
- Ricklefs, R.E. Evolutionary diversification and the origin of the diversity–environment relationship. Ecology 2006, 87, S3–S13. [Google Scholar] [CrossRef]
- Becker, A.; Körner, C.; Brun, J.-J.; Guisan, A.; Tappeiner, U. Ecological and Land Use Studies Along Elevational Gradients. Mt. Res. Dev. 2007, 27, 58–65. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Kent, M.; Ballard, J. Trends and problems in the application of classification and ordination methods in plant ecology. Vegetatio 1988, 78, 109–124. [Google Scholar] [CrossRef]
- Digby, P.G.N.; Kempton, R.A. Multivariate Analysis of Ecological Communities; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 5, ISBN 9400931352. [Google Scholar]
- Cleaver, G.; Brown, L.R.; Bredenkamp, G.J. The phytosociology of the vermaaks, marnewicks and buffelsklip valleys of the kammanassie nature reserve, western cape. Koedoe 2005, 48, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Cáceres, M.; Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 2009, 90, 3566–3574. [Google Scholar] [CrossRef]
- Reed, M.; Dougill, A.; Baker, T. Participatory indicator development: What can ecologists and local communities learn from each other. Ecol. Appl. 2008, 18, 1253–1269. [Google Scholar] [CrossRef] [Green Version]
- Magiera, A.; Feilhauer, H.; Waldhardt, R.; Wiesmair, M.; Otte, A. Mapping Plant Functional Groups in Subalpine Grassland of the Greater Caucasus. Mt. Res. Dev. 2018, 38, 63–72. [Google Scholar] [CrossRef]
- Haq, F.; Ahmad, H.; Iqbal, Z. Vegetation composition and ecological gradients of subtropical-moist temperate ecotonal forests of Nandiar Khuwar catchment, Pakistan. Bangladesh J. Bot. 2015, 44, 267–276. [Google Scholar] [CrossRef]
- Sher, H.; Al_yemeni, M. Economically and ecologically important plant communities in high altitude coniferous forest of Malam Jabba, Swat, Pakistan. Saudi J. Biol. Sci. 2011, 18, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Rahman, I.U.; Khan, N.; Ali, K. Classification and ordination of understory vegetation using multivariate techniques in the Pinus wallichiana forests of Swat Valley, northern Pakistan. Sci. Nat. 2017, 104, 24. [Google Scholar] [CrossRef] [PubMed]
- Dukes, J.; Mooney, H. Does global change increase the success of biological invaders? Trends Ecol. Evol. 1999, 1, 135–139. [Google Scholar] [CrossRef]
- Reich, P.B. Elevated CO2 reduces losses of plant diversity caused by nitrogen deposition. Science 2009, 326, 1399–1402. [Google Scholar] [CrossRef]
- Jafari, M.; Jafarian Jeloudar, Z. Vegetation community in relation to the soil characteristics of Rineh rangeland, Iran. Casp. J. Environ. Sci. 2010, 8, 141–150. [Google Scholar]
- Kabir, M.; Iqbal, M.Z.; Farooqi, Z.R.; Shafiq, M. Vegetation pattern and soil characteristics of the polluted industrial area of Karachi. Pak. J. Bot 2010, 42, 661–678. [Google Scholar]
- Shaheen, H.; Riffat, A.; Salika, M.; Firdous, S.S. Impacts of roads and trails on floral diversity and structure of Ganga-Choti forest in Kashmir Himalayas. Bosque 2018, 39, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.M.; Harper, D.M.; Page, S.; Ahmad, H. Species and community diversity of vascular flora along environmental gradient in Naran Valley: A multivariate approach through indicator species analysis. Pak. J. Bot 2011, 43, 2337–2346. [Google Scholar]
- Ellenberg, D.; Mueller-Dombois, D. Aims and Methods of Vegetation Ecology; Wiley: New York, NY, USA, 1974. [Google Scholar]
- Srivastava, S.; Shukla, R.P. Similarity and difference of species among various plant communities across grassland vegetation of north-eastern Uttar Pradesh. Trop. Plants Res. 2016, 3, 364–369. [Google Scholar]
- Shaheen, H.; Ullah, Z.; Khan, S.M.; Harper, D.M. Species composition and community structure of western Himalayan moist temperate forests in Kashmir. For. Ecol. Manage. 2012, 278, 138–145. [Google Scholar] [CrossRef]
- Bano, S.; Khan, S.M.; Alam, J.; Alqarawi, A.A.; Abd_Allah, E.F.; Ahmad, Z.; Rahman, I.U.; Ahmad, H.; Aldubise, A.; Hashem, A. Eco-Floristic studies of native plants of the Beer Hills along the Indus River in the districts Haripur and Abbottabad, Pakistan. Saudi J. Biol. Sci. 2018, 25, 801–810. [Google Scholar] [CrossRef]
- Amagai, Y.; Kudo, G.; Sato, K. Changes in alpine plant communities under climate change: Dynamics of snow-meadow vegetation in northern Japan over the last 40 years. Appl. Veg. Sci. 2018, 21, 561–571. [Google Scholar] [CrossRef]
- Jiménez-Alfaro, B.; Girardello, M.; Chytrý, M.; Svenning, J.-C.; Willner, W.; Gégout, J.-C.; Agrillo, E.; Campos, J.A.; Jandt, U.; Kącki, Z.; et al. History and environment shape species pools and community diversity in European beech forests. Nat. Ecol. Evol. 2018, 2, 483–490. [Google Scholar] [CrossRef]
Plant Communities | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SSI | IJI | CCI | IPB | SCD | ICP | CPP | PVC | APJ | JSJ | SBR | PBP | |
Life form | ||||||||||||
Chamaephytes | 9.23 | 10.71 | 12.68 | 10.23 | 10.68 | 7.09 | 8.79 | 5.94 | 9.84 | 0.00 | 12.00 | 12.82 |
Geophytes | 4.62 | 5.36 | 9.86 | 6.82 | 7.77 | 9.22 | 0.00 | 11.39 | 9.84 | 11.36 | 8.00 | 10.26 |
Hemicryptophytes | 15.38 | 22.32 | 25.35 | 25.00 | 0.00 | 25.53 | 27.47 | 30.69 | 40.98 | 56.82 | 48.00 | 53.85 |
Liana | 3.08 | 0.89 | 2.82 | 1.14 | 1.94 | 0.00 | 1.65 | 0.99 | 0.00 | 0.00 | 0.00 | 0.00 |
Megaphanerophytes | 0.00 | 3.57 | 2.82 | 1.14 | 5.83 | 2.13 | 1.65 | 2.97 | 6.56 | 0.00 | 0.00 | 0.00 |
Mesophanerophytes | 13.85 | 7.14 | 0.00 | 3.41 | 9.71 | 4.96 | 2.75 | 1.98 | 3.28 | 0.00 | 0.00 | 0.00 |
Microphanerophytes | 4.62 | 5.36 | 1.41 | 3.41 | 0.97 | 2.13 | 0.55 | 0.50 | 0.00 | 2.27 | 0.00 | 0.00 |
Nanophanerophytes | 12.31 | 10.71 | 9.86 | 11.36 | 19.42 | 11.35 | 14.84 | 11.88 | 0.00 | 11.36 | 8.00 | 0.00 |
Parasitic | 0.00 | 0.89 | 1.41 | 1.14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Therophytes | 36.92 | 33.04 | 33.80 | 36.36 | 43.69 | 37.59 | 42.31 | 33.66 | 29.51 | 18.18 | 24.00 | 23.08 |
Leaf size | ||||||||||||
Aphyllous | 1.54 | 0.89 | 1.33 | 1.14 | 0.76 | 1.42 | 0.00 | 0.00 | 1.52 | 2.04 | 2.00 | 2.63 |
Leptophyll | 10.77 | 10.71 | 10.67 | 15.91 | 19.08 | 17.02 | 17.77 | 16.84 | 24.24 | 26.53 | 28.00 | 21.05 |
Macrophyllous | 1.54 | 5.36 | 6.67 | 1.14 | 6.11 | 7.09 | 5.58 | 5.61 | 3.03 | 2.04 | 2.00 | 2.63 |
Mesophyll | 27.69 | 20.54 | 10.67 | 13.64 | 14.50 | 16.31 | 14.72 | 15.31 | 10.61 | 14.29 | 10.00 | 15.79 |
Microphyll | 27.69 | 26.79 | 30.67 | 22.73 | 28.24 | 26.95 | 30.96 | 28.06 | 27.27 | 20.41 | 20.00 | 28.95 |
Nanophyll | 30.77 | 35.71 | 40.00 | 45.45 | 31.30 | 31.21 | 30.96 | 34.18 | 33.33 | 34.69 | 38.00 | 28.95 |
Gradient Class | Variation (adj) | % of Explained | Eigen Values | F | p | |||
---|---|---|---|---|---|---|---|---|
Axis 1 | Axis 2 | Axis 3 | Axis 4 | |||||
Edaphic | 9.8 | 18.7 | 0.6211 | 0.1887 | 0.1135 | 0.0904 | 2.1 | 0.002 |
Climatic | 9.8 | 13.9 | 0.7210 | 0.1138 | 0.0841 | 0.0546 | 3.4 | 0.002 |
Physio-graphic | 18.1 | 25.5 | 0.7641 | 0.2903 | 0.2176 | 0.1624 | 3.4 | 0.002 |
Aspect | 9.1 | 15.3 | 0.4280 | 0.1675 | 0.1417 | 0.1206 | 2.5 | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, I.U.; Afzal, A.; Iqbal, Z.; Alzain, M.N.; Al-Arjani, A.-B.F.; Alqarawi, A.A.; Abd_Allah, E.F.; Ali, N.; Sakhi, S.; Khan, M.A.; et al. Classification and Characterization of the Manoor Valley’s (Lesser Himalaya) Vegetation from the Subtropical-Temperate Ecotonal Forests to the Alpine Pastures along Ecological Variables. Plants 2022, 11, 87. https://doi.org/10.3390/plants11010087
Rahman IU, Afzal A, Iqbal Z, Alzain MN, Al-Arjani A-BF, Alqarawi AA, Abd_Allah EF, Ali N, Sakhi S, Khan MA, et al. Classification and Characterization of the Manoor Valley’s (Lesser Himalaya) Vegetation from the Subtropical-Temperate Ecotonal Forests to the Alpine Pastures along Ecological Variables. Plants. 2022; 11(1):87. https://doi.org/10.3390/plants11010087
Chicago/Turabian StyleRahman, Inayat Ur, Aftab Afzal, Zafar Iqbal, Mashail Nasser Alzain, Al-Bandari Fahad Al-Arjani, Abdulaziz A. Alqarawi, Elsayed Fathi Abd_Allah, Niaz Ali, Shazia Sakhi, Muhammad Azhar Khan, and et al. 2022. "Classification and Characterization of the Manoor Valley’s (Lesser Himalaya) Vegetation from the Subtropical-Temperate Ecotonal Forests to the Alpine Pastures along Ecological Variables" Plants 11, no. 1: 87. https://doi.org/10.3390/plants11010087
APA StyleRahman, I. U., Afzal, A., Iqbal, Z., Alzain, M. N., Al-Arjani, A. -B. F., Alqarawi, A. A., Abd_Allah, E. F., Ali, N., Sakhi, S., Khan, M. A., Khan, U., Ijaz, F., Mumtaz, S., & Calixto, E. S. (2022). Classification and Characterization of the Manoor Valley’s (Lesser Himalaya) Vegetation from the Subtropical-Temperate Ecotonal Forests to the Alpine Pastures along Ecological Variables. Plants, 11(1), 87. https://doi.org/10.3390/plants11010087