Genomic Prediction Accuracy of Stripe Rust in Six Spring Wheat Populations by Modeling Genotype by Environment Interaction
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Variation and Variance Components
2.2. Comparisons of Prediction Models Based on CV1
2.3. Comparisons of Models Based on CV2 and CV0
2.4. Prediction Accuracies of the M3 Model across Populations and Environments
3. Discussion
4. Materials and Methods
4.1. Phenotyping and Genotyping
4.2. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jamil, S.; Shahzad, R.; Ahmad, S.; Fatima, R.; Zahid, R.; Anwar, M.; Iqbal, M.Z.; Wang, X. Role of genetics, genomics, and breeding approaches to combat stripe rust of wheat. Front. Nutr. 2020, 7, 580715. [Google Scholar] [CrossRef]
- Chen, X.M. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Can. J. Plant Pathol. 2005, 27, 314–337. [Google Scholar] [CrossRef]
- Beddow, J.M.; Pardey, P.G.; Chai, Y.; Hurley, T.M.; Kriticos, D.J.; Braun, H.-J.; Park, R.F.; Cuddy, W.S.; Yonow, T. Research investment implications of shifts in the global geography of wheat stripe rust. Nat. Plants 2015, 1, 15132. [Google Scholar] [CrossRef] [PubMed]
- Brar, G.S.; Fetch, T.; McCallum, B.D.; Hucl, P.J.; Kutcher, H.R. Virulence dynamics and breeding for resistance to stripe, stem, and leaf rust in Canada since 2000. Plant Dis. 2019, 103, 2981–2995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Wellings, C.; Chen, X.; Kang, Z.; Liu, T. Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici. Mol. Plant Pathol. 2014, 15, 433–446. [Google Scholar] [CrossRef] [PubMed]
- Randhawa, H.; Puchalski, B.J.; Frick, M.; Goyal, A.; Despins, T.; Graf, R.J.; Laroche, A.; Gaudet, D.A. Stripe rust resistance among western Canadian spring wheat and triticale varieties. Can. J. Plant Sci. 2012, 92, 713–722. [Google Scholar] [CrossRef] [Green Version]
- Coakley, S.M. Climate variability in the Pacific Northwest and its effect on stripe rust disease of winter wheat. Clim. Change 1979, 2, 33–51. [Google Scholar] [CrossRef]
- Su, H.; Conner, R.L.; Graf, R.J.; Kuzyk, A.D. Virulence of Puccinia striiformis f. sp. tritici, cause of stripe rust on wheat, in western Canada from 1984 to 2002. Can. J. Plant Pathol. 2003, 25, 312–319. [Google Scholar] [CrossRef]
- Ghanbarnia, K.; Gourlie, R.; Amundsen, E.; Aboukhaddour, R. The changing virulence of stripe rust in canada from 1984 to 2017. Phytopathology 2021, 111, 1840–1850. [Google Scholar] [CrossRef]
- Ellis, J.G.; Lagudah, E.S.; Spielmeyer, W.; Dodds, P.N. The past, present and future of breeding rust resistant wheat. Front. Plant Sci. 2014, 5, 641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McIntosh, R.A.; Dubcovsky, W.J.; Rogers, W.J.; Raupp, W.J. Catalogue of gene symbols for wheat: 2020 supplement. In Annual Wheat Newsletter; The Wheat Genetic and Genomic Resources Center, Kansas State University: Manhattan, KS, USA, 2020; Volume 66. Available online: https://wheat.pw.usda.gov/GG3/wgc (accessed on 28 June 2022).
- Singh, K.; Batra, R.; Sharma, S.; Saripalli, G.; Gautam, T.; Singh, R.; Pal, S.; Malik, P.; Kumar, M.; Jan, I.; et al. WheatQTLdb: A QTL database for wheat. Mol. Genet. Genom. 2021, 296, 1051–1056. [Google Scholar] [CrossRef]
- Toth, J.; Pandurangan, S.; Burt, A.; Mitchell Fetch, J.; Kumar, S. Marker-assisted breeding of hexaploid spring wheat in the canadian prairies. Can. J. Plant Sci. 2019, 99, 111–127. [Google Scholar] [CrossRef] [Green Version]
- Mundt, C.C. Pyramiding for resistance durability: Theory and practice. Phytopathology 2018, 108, 792–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarquin, D.; Howard, R.; Crossa, J.; Beyene, Y.; Gowda, M.; Martini, J.W.R.; Covarrubias Pazaran, G.; Burgueño, J.; Pacheco, A.; Grondona, M.; et al. Genomic prediction enhanced sparse testing for multi-environment trials. G3 (Bethesda) 2020, 10, 2725. [Google Scholar] [CrossRef]
- Persa, R.; Grondona, M.; Jarquin, D. Development of a genomic prediction pipeline for maintaining comparable sample sizes in training and testing sets across prediction schemes accounting for the genotype-by-environment interaction. Agriculture 2021, 11, 932. [Google Scholar] [CrossRef]
- Muleta, K.T.; Bulli, P.; Zhang, Z.; Chen, X.; Pumphrey, M. Unlocking diversity in germplasm collections via genomic selection: A case study based on quantitative adult plant resistance to stripe rust in spring wheat. Plant Genome 2017, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tehseen, M.M.; Kehel, Z.; Sansaloni, C.P.; Lopes, M.D.S.; Amri, A.; Kurtulus, E.; Nazari, K. Comparison of genomic prediction methods for yellow, stem, and leaf rust resistance in wheat landraces from Afghanistan. Plants 2021, 10, 558. [Google Scholar] [CrossRef] [PubMed]
- Merrick, L.F.; Burke, A.B.; Chen, X.; Carter, A.H. Breeding with major and minor genes: Genomic selection for quantitative disease resistance. Front. Plant Sci. 2021, 12, 1599. [Google Scholar] [CrossRef]
- Beukert, U.; Thorwarth, P.; Zhao, Y.; Longin, C.F.H.; Serfling, A.; Ordon, F.; Reif, J.C. Comparing the potential of marker-assisted selection and genomic prediction for improving rust resistance in hybrid wheat. Front. Plant Sci. 2020, 11, 594113. [Google Scholar] [CrossRef] [PubMed]
- Juliana, P.; Singh, R.P.; Singh, P.K.; Crossa, J.; Huerta-Espino, J.; Lan, C.; Bhavani, S.; Rutkoski, J.E.; Poland, J.A.; Bergstrom, G.C.; et al. Genomic and pedigree-based prediction for leaf, stem, and stripe rust resistance in wheat. Theor. Appl. Genet. 2017, 130, 1415–1430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semagn, K.; Iqbal, M.; Jarquin, D.; Crossa, J.; Howard, R.; Ciechanowska, I.; Henriquez, M.H.; Randhawa, H.; Aboukhaddour, R.; McCallum, B.D.; et al. Genomic predictions for common bunt, FHB, stripe rust, leaf rust, and leaf spotting resistance in spring wheat. Genes 2022, 13, 565. [Google Scholar] [CrossRef] [PubMed]
- Bicici, M.; Dincer, N.; Canihos, Y.; Toker, S.; Erkilic, A.; Ozgonen, H.; Karatoprak, G. Management of wheat stripe rust and septoria leaf blotch with cultural practices and fungicides using disease prediction. Acta Phytopathol. Entomol. Hung. 2000, 35, 365–374. [Google Scholar]
- Zhang, S.; Wang, Z.; Wang, Z. Prediction of wheat stripe rust disease by combining knowledge graph and bidirectional long short term memory network. Trans. Chin. Soc. Agric. Eng. 2020, 36, 172–178. [Google Scholar] [CrossRef]
- Jarquin, D.; Crossa, J.; Lacaze, X.; Cheyron, P.; Daucourt, J.l.; Lorgeou, J.; Piraux, F.c.; Guerreiro, L.; Perez, P.; Calus, M.; et al. A reaction norm model for genomic selection using high-dimensional genomic and environmental data. Theor. Appl. Genet. 2014, 127, 595–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heslot, N.; Jannink, J.-L.; Sorrells, M.E. Perspectives for Genomic Selection Applications and Research in Plants. Crop Sci. 2015, 55, 1–12. [Google Scholar] [CrossRef]
- Krishnappa, G.; Savadi, S.; Tyagi, B.S.; Singh, S.K.; Mamrutha, H.M.; Kumar, S.; Mishra, C.N.; Khan, H.; Gangadhara, K.; Uday, G.; et al. Integrated genomic selection for rapid improvement of crops. Genomics 2021, 113, 1070–1086. [Google Scholar] [CrossRef]
- Voss-Fels, K.P.; Cooper, M.; Hayes, B.J. Accelerating crop genetic gains with genomic selection. Theor. Appl. Genet. 2019, 132, 669–686. [Google Scholar] [CrossRef]
- Larkin, D.L.; Lozada, D.N.; Mason, R.E. Genomic selection-considerations for successful implementation in wheat breeding programs. Agronomy 2019, 9, 479. [Google Scholar] [CrossRef] [Green Version]
- Bhat, J.A.; Ali, S.; Salgotra, R.K.; Mir, Z.A.; Dutta, S.; Jadon, V.; Tyagi, A.; Mushtaq, M.; Jain, N.; Singh, P.K.; et al. Genomic selection in the era of next generation sequencing for complex traits in plant breeding. Front. Genet. 2016, 7, 221. [Google Scholar] [CrossRef] [Green Version]
- Burgueno, J.; de los Campos, G.; Weigel, K.; Crossa, J. Genomic prediction of breeding values when modeling genotype × environment interaction using pedigree and dense molecular markers. Crop Sci. 2012, 52, 707–719. [Google Scholar] [CrossRef] [Green Version]
- Jarquín, D.; Lemes da Silva, C.; Gaynor, R.C.; Poland, J.; Fritz, A.; Howard, R.; Battenfield, S.; Crossa, J. Increasing genomic-enabled prediction accuracy by modeling genotype × environment interactions in Kansas wheat. Plant Genome 2017, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roorkiwal, M.; Jarquin, D.; Singh, M.K.; Gaur, P.M.; Bharadwaj, C.; Rathore, A.; Howard, R.; Srinivasan, S.; Jain, A.; Garg, V.; et al. Genomic-enabled prediction models using multi-environment trials to estimate the effect of genotype × environment interaction on prediction accuracy in chickpea. Sci. Rep. 2018, 8, 11701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, M.K.; Chaudhari, S.; Jarquin, D.; Janila, P.; Crossa, J.; Patil, S.C.; Sundravadana, S.; Khare, D.; Bhat, R.S.; Radhakrishnan, T.; et al. Genome-based trait prediction in multi- environment breeding trials in groundnut. Theor. Appl. Genet. 2020, 133, 3101–3117. [Google Scholar] [CrossRef] [PubMed]
- Sukumaran, S.; Jarquin, D.; Crossa, J.; Reynolds, M. Genomic-enabled prediction accuracies increased by modeling genotype × environment interaction in durum wheat. Plant Genome 2018, 11. [Google Scholar] [CrossRef]
- Semagn, K.; Iqbal, M.; Crossa, J.; Jarquin, D.; Howard, R.; Chen, H.; Bemister, D.H.; Beres, B.L.; Randhawa, H.; N’Diaye, A.; et al. Genome-based prediction of agronomic traits in spring wheat under conventional and organic management systems. Theor. Appl. Genet. 2022, 135, 537–552. [Google Scholar] [CrossRef]
- Azizinia, S.; Bariana, H.; Kolmer, J.; Pasam, R.; Bhavani, S.; Chhetri, M.; Toor, A.; Miah, H.; Hayden, M.J.; Del Carpio, D.P.; et al. Genomic prediction of rust resistance in tetraploid wheat under field and controlled environment conditions. Agronomy 2020, 10, 1843. [Google Scholar] [CrossRef]
- Daetwyler, H.D.; Bansal, U.K.; Bariana, H.S.; Hayden, M.J.; Hayes, B.J. Genomic prediction for rust resistance in diverse wheat landraces. Theor. Appl. Genet. 2014, 127, 1795–1803. [Google Scholar] [CrossRef]
- Ornella, L.; Sukhwinder, S.; Perez, P.; Burgueno, J.; Singh, R.; Tapia, E.; Bhavani, S.; Dreisigacker, S.; Braun, H.J.; Mathews, K.; et al. Genomic prediction of genetic values for resistance to wheat rusts. Plant Genome 2012, 5, 136–148. [Google Scholar] [CrossRef] [Green Version]
- Tomar, V.; Dhillon, G.S.; Singh, D.; Singh, R.P.; Poland, J.; Chaudhary, A.A.; Bhati, P.K.; Joshi, A.K.; Kumar, U. Evaluations of genomic prediction and identification of new loci for resistance to stripe rust disease in wheat (Triticum aestivum L.). Front. Genet. 2021, 12, 710485. [Google Scholar] [CrossRef]
- Consortium, R.D.; Fugeray-Scarbel, A.; Bastien, C.; Dupont-Nivet, M.; Lemarié, S. Why and how to switch to genomic selection: Lessons from plant and animal breeding experience. Front. Genet. 2021, 12, 1185. [Google Scholar] [CrossRef]
- Saltz, J.B.; Bell, A.M.; Flint, J.; Gomulkiewicz, R.; Hughes, K.A.; Keagy, J. Why does the magnitude of genotype-by-environment interaction vary? Ecol. Evol. 2018, 8, 6342–6353. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, J.; Crossa, J.; Soberanis, V.; Pérez-Elizalde, S.; Pérez-Rodríguez, P.; Campos, G.d.l.; Montesinos-López, O.A.; Burgueño, J. Genomic prediction of genotype × environment interaction kernel regression models. Plant Genome 2016, 9. [Google Scholar] [CrossRef] [Green Version]
- Heslot, N.; Akdemir, D.; Sorrells, M.E.; Jannink, J.L. Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions. Theor. Appl. Genet. 2013, 127, 463–480. [Google Scholar] [CrossRef]
- Sukumaran, S.; Crossa, J.; Jarquin, D.; Lopes, M.; Reynolds, M.P. Genomic prediction with pedigree and genotype × environment interaction in spring wheat grown in South and West Asia, North Africa, and Mexico. G3 (Bethesda) 2017, 7, 481–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juliana, P.; Singh, R.P.; Braun, H.-J.; Huerta-Espino, J.; Crespo-Herrera, L.; Govindan, V.; Mondal, S.; Poland, J.; Shrestha, S. Genomic selection for grain yield in the cimmyt wheat breeding program—status and perspectives. Front. Plant Sci. 2020, 11, 1418. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.; Dekkers, J.C.; Fernando, R.L.; Jannink, J.L. Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: A Barley case study. Genetics 2009, 182, 355–364. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Mrode, R.; Zhang, S.; Zhang, Q.; Li, B.; Liu, J.-F. Factors affecting GEBV accuracy with single-step Bayesian models. Heredity 2018, 120, 100–109. [Google Scholar] [CrossRef]
- Zhang, A.; Wang, H.; Beyene, Y.; Semagn, K.; Liu, Y.; Cao, S.; Cui, Z.; Ruan, Y.; Burgueño, J.; San Vicente, F.; et al. Effect of trait heritability, training population size and marker density on genomic prediction accuracy estimation in 22 bi-parental tropical maize populations. Front. Plant Sci. 2017, 8, 1916. [Google Scholar] [CrossRef]
- Norman, A.; Taylor, J.; Edwards, J.; Kuchel, H. Optimising genomic selection in wheat: Effect of marker density, population size and population structure on prediction accuracy. G3 Genes|Genomes|Genet. 2018, 8, 2889–2899. [Google Scholar] [CrossRef] [Green Version]
- Werner, C.R.; Gaynor, R.C.; Gorjanc, G.; Hickey, J.M.; Kox, T.; Abbadi, A.; Leckband, G.; Snowdon, R.J.; Stahl, A. How population structure impacts genomic selection accuracy in cross-validation: Implications for practical breeding. Front. Plant Sci. 2020, 11, 592977. [Google Scholar] [CrossRef]
- Widener, S.; Graef, G.; Lipka, A.E.; Jarquin, D. An Assessment of the Factors Influencing the Prediction Accuracy of Genomic Prediction Models Across Multiple Environments. Front. Genet. 2021, 12, 1150. [Google Scholar] [CrossRef] [PubMed]
- Semagn, K.; Iqbal, M.; Alachiotis, N.; N’Diaye, A.; Pozniak, C.; Spaner, D. Genetic diversity and selective sweeps in historical and modern Canadian spring wheat cultivars using the 90K SNP array. Sci. Rep. 2021, 11, 23773. [Google Scholar] [CrossRef]
- Bemister, D.H.; Semagn, K.; Iqbal, M.; Randhawa, H.; Strelkov, S.E.; Spaner, D.M. Mapping QTL associated with stripe rust, leaf rust, and leaf spotting in a Canadian spring wheat population. Crop Sci. 2019, 59, 650–658. [Google Scholar] [CrossRef]
- Zou, J.; Semagn, K.; Chen, H.; Iqbal, M.; Asif, M.; N’Diaye, A.; Navabi, A.; Perez-Lara, E.; Pozniak, C.; Yang, R.C.; et al. Mapping of QTLs associated with resistance to common bunt, tan spot, leaf rust, and stripe rust in a spring wheat population. Mol. Breed. 2017, 37, 144. [Google Scholar] [CrossRef]
- Xiang, R.; Semagn, K.; Iqbal, M.; Chen, H.; Yang, R.-C.; Spaner, D. Phenotypic performance and associated QTL of ‘Peace’ × ‘CDC Stanley’ mapping population under conventional and organic management systems. Crop Sci. 2021, 61, 3469–3483. [Google Scholar] [CrossRef]
- Farzand, M.; Dhariwal, R.; Hiebert, C.W.; Spaner, D.; Randhawa, H.S. QTL mapping for adult plant field resistance to stripe rust in the AAC Cameron/P2711 spring wheat population. Crop Sci. 2022, 62, 1088–1106. [Google Scholar] [CrossRef]
- Farzand, M.; Dhariwal, R.; Hiebert, C.W.; Spaner, D.; Randhawa, H.S. Mapping quantitative trait loci associated with stripe rust resistance from the Canadian wheat cultivar ‘AAC Innova’. Can. J. Plant Pathol. 2021, 43, S227–S241. [Google Scholar] [CrossRef]
- Sadasivaiah, R.S.; Orshinsky, B.R.; Kozub, G.C. Production of wheat haploids using anther culture and wheat x maize hybridization techniques. Cereal Res. Commun. 1999, 27, 33–40. [Google Scholar] [CrossRef]
- Azmat, M.A.; Khan, A.A.; Saeed, A.; Ashraf, M.; Niaz, S. Screening pea germplasm against erysiphe polygoni for disease severity and latent period. Int. J. Veg. Sci. 2012, 18, 153–160. [Google Scholar] [CrossRef]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef]
- Pérez, P.; De Los Campos, G. Genome-wide regression and prediction with the BGLR statistical package. Genetics 2014, 198, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.; Sall, J. JMP statistical discovery software. Wiley Interdiscip. Rev. Comput. Stat. 2011, 3, 188–194. [Google Scholar] [CrossRef]
Statistic | Diversity Panel | Peace/Carberry | Attila/CDC Go | Peace/CDC Stanley | AAC Innova/AAC Proclaim | AAC Cameron/P2711 |
---|---|---|---|---|---|---|
Genotype variance (σ2g) | 3.00 | 0.53 | 1.28 | 4.55 | 4.80 | 3.65 |
Environment variance (σ2e) | 1.15 | 0.83 | 0.99 | 2.28 | 0.04 | 1.18 |
G × E interaction (σ2ge) | 1.19 | 0.36 | 0.84 | 1.73 | 0.71 | 1.65 |
Residual (error) variance | 1.54 | 0.96 | 1.24 | 1.12 | 1.58 | 1.78 |
Grand mean | 3.76 | 2.07 | 3.85 | 3.66 | 2.83 | 3.59 |
Least significant difference | 1.35 | 0.83 | 1.68 | 2.29 | 1.56 | 2.03 |
Mean number of replicates | 2.00 | 2.00 | 2.33 | 2.00 | 1.80 | 1.40 |
No. of environments | 8.00 | 8.00 | 3.00 | 3.00 | 5.00 | 5.00 |
p value for genotypes | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
p value for environments | 0.01 | 0.01 | 0.25 | 0.01 | 0.51 | 0.01 |
p value for G × E interaction | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Broad-sense heritability | 0.89 | 0.72 | 0.62 | 0.75 | 0.94 | 0.82 |
CV1 | CV2 | CV0 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Population | Model | Min | Max | Mean | Std | Min | Max | Mean | Std | Min | Max | Mean | Std |
AAC Cameron/P2711 | M1 | −0.12 | −0.09 | −0.10 | 0.01 | 0.55 | 0.75 | 0.65 | 0.08 | 0.57 | 0.79 | 0.68 | 0.08 |
M2 | 0.19 | 0.30 | 0.24 | 0.04 | 0.55 | 0.76 | 0.66 | 0.08 | 0.57 | 0.80 | 0.69 | 0.08 | |
M3 | 0.14 | 0.30 | 0.24 | 0.06 | 0.53 | 0.76 | 0.66 | 0.09 | 0.57 | 0.80 | 0.68 | 0.08 | |
AAC Innova/AAC Proclaim | M1 | −0.09 | −0.06 | −0.07 | 0.01 | 0.77 | 0.87 | 0.82 | 0.04 | 0.78 | 0.89 | 0.84 | 0.04 |
M2 | 0.42 | 0.55 | 0.49 | 0.05 | 0.76 | 0.87 | 0.82 | 0.04 | 0.78 | 0.89 | 0.84 | 0.04 | |
M3 | 0.40 | 0.57 | 0.48 | 0.07 | 0.76 | 0.87 | 0.83 | 0.04 | 0.78 | 0.89 | 0.84 | 0.04 | |
Attila/CDC Go | M1 | −0.12 | −0.10 | −0.11 | 0.01 | 0.49 | 0.59 | 0.53 | 0.06 | 0.51 | 0.61 | 0.54 | 0.06 |
M2 | 0.22 | 0.29 | 0.25 | 0.04 | 0.50 | 0.60 | 0.54 | 0.05 | 0.50 | 0.58 | 0.53 | 0.04 | |
M3 | 0.23 | 0.33 | 0.29 | 0.05 | 0.51 | 0.64 | 0.57 | 0.07 | 0.51 | 0.6 | 0.54 | 0.05 | |
Diversity panel | M1 | −0.10 | −0.06 | −0.08 | 0.01 | 0.64 | 0.83 | 0.75 | 0.07 | 0.66 | 0.85 | 0.76 | 0.07 |
M2 | 0.32 | 0.53 | 0.45 | 0.08 | 0.63 | 0.84 | 0.75 | 0.07 | 0.65 | 0.86 | 0.76 | 0.08 | |
M3 | 0.33 | 0.57 | 0.47 | 0.08 | 0.67 | 0.84 | 0.76 | 0.07 | 0.65 | 0.86 | 0.76 | 0.08 | |
Peace/Carberry | M1 | −0.11 | −0.08 | −0.09 | 0.01 | 0.40 | 0.69 | 0.57 | 0.11 | 0.42 | 0.72 | 0.59 | 0.12 |
M2 | 0.15 | 0.30 | 0.22 | 0.05 | 0.4 | 0.69 | 0.57 | 0.11 | 0.42 | 0.72 | 0.59 | 0.11 | |
M3 | 0.14 | 0.32 | 0.22 | 0.09 | 0.38 | 0.69 | 0.57 | 0.11 | 0.42 | 0.72 | 0.59 | 0.12 | |
Peace/CDC Stanley | M1 | −0.10 | −0.07 | −0.09 | 0.01 | 0.67 | 0.91 | 0.82 | 0.13 | 0.68 | 0.91 | 0.82 | 0.13 |
M2 | 0.20 | 0.24 | 0.22 | 0.02 | 0.67 | 0.91 | 0.82 | 0.13 | 0.68 | 0.91 | 0.82 | 0.13 | |
M3 | 0.18 | 0.21 | 0.19 | 0.06 | 0.67 | 0.90 | 0.80 | 0.12 | 0.68 | 0.91 | 0.82 | 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semagn, K.; Iqbal, M.; Jarquin, D.; Randhawa, H.; Aboukhaddour, R.; Howard, R.; Ciechanowska, I.; Farzand, M.; Dhariwal, R.; Hiebert, C.W.; et al. Genomic Prediction Accuracy of Stripe Rust in Six Spring Wheat Populations by Modeling Genotype by Environment Interaction. Plants 2022, 11, 1736. https://doi.org/10.3390/plants11131736
Semagn K, Iqbal M, Jarquin D, Randhawa H, Aboukhaddour R, Howard R, Ciechanowska I, Farzand M, Dhariwal R, Hiebert CW, et al. Genomic Prediction Accuracy of Stripe Rust in Six Spring Wheat Populations by Modeling Genotype by Environment Interaction. Plants. 2022; 11(13):1736. https://doi.org/10.3390/plants11131736
Chicago/Turabian StyleSemagn, Kassa, Muhammad Iqbal, Diego Jarquin, Harpinder Randhawa, Reem Aboukhaddour, Reka Howard, Izabela Ciechanowska, Momna Farzand, Raman Dhariwal, Colin W. Hiebert, and et al. 2022. "Genomic Prediction Accuracy of Stripe Rust in Six Spring Wheat Populations by Modeling Genotype by Environment Interaction" Plants 11, no. 13: 1736. https://doi.org/10.3390/plants11131736
APA StyleSemagn, K., Iqbal, M., Jarquin, D., Randhawa, H., Aboukhaddour, R., Howard, R., Ciechanowska, I., Farzand, M., Dhariwal, R., Hiebert, C. W., N’Diaye, A., Pozniak, C., & Spaner, D. (2022). Genomic Prediction Accuracy of Stripe Rust in Six Spring Wheat Populations by Modeling Genotype by Environment Interaction. Plants, 11(13), 1736. https://doi.org/10.3390/plants11131736