The Effects of Conservation Tillage on Chemical and Microbial Soil Parameters at Four Sites across Europe
Abstract
:1. Introduction
2. Results and Discussion
2.1. Säby, Sweden
Site | Tillage | Machinery Used (Working Depth) |
---|---|---|
Säby | CT | Mouldboard plough (23 cm) |
MT | Cultivator (10–12 cm) | |
NT | Direct seeding without any tillage operations | |
Garte Süd | CT | Mouldboard plough (25–30 cm), followed by a rotary harrow |
MT | Rotary harrow (5–8 cm) | |
Turda | CT | Mouldboard plough (25–30 cm), seedbed preparation by a rotary harrow |
MT | Chisel processing (25–30 cm) after maize and wheat followed by disk harrow while direct seeding was applied after soybean | |
La Hampa | CT | Mouldboard plough (25–30 cm) plus cultivator (15–20 cm) and a disc harrow (15 cm) |
NT | Direct seeding without any tillage operations |
Site | Soil Depth | Bulk Density (g cm−3) | SOC (mg g−1 Soil) | Total N (mg g−1 Soil) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
(cm) | CT | MT | NT | CT | MT | NT | CT | MT | NT | |
Säby | 0–10 | 0.97 (0.10) | 1.01 (0.14) | 1.08 (0.16) | 26.67 (1.51) | 30.63 (1.55) | 34.90 (4.19) | 2.33 (0.05) | 2.53 (0.09) | 2.73 (0.19) |
10–20 | 1.25 (0.11) | 1.41 (0.12) | 1.50 (0.07) | 27.00 (1.61) | 26.13 (2.76) | 23.53 (1.27) | 2.30 (0.08) a | 2.17 (0.12) ab | 1.97 (0.05) b | |
20–30 | 1.33 (0.18) | 1.43 (0.07) | 1.38 (0.13) | 26.73 (2.40) a | 20.17 (3.84) b | 17.67 (3.73) b | 2.20 (0.14) | 1.77 (0.17) | 1.63 (0.21) | |
Garte Süd | 0–10 | 1.67 (0.12) | 1.66 (0.10) | 14.38 (1.48) b | 18.28 (0.75) a | 1.43 (0.04) b | 1.75 (0.05) a | |||
10–20 | 1.63 (0.05) | 1.67 (0.09) | 14.60 (0.99) | 14.80 (0.94) | 1.50 (0.00) | 1.48 (0.04) | ||||
20–30 | 1.65 (0.05) b | 1.83 (0.03) a | 14.60 (2.42) | 13.13 (1.61) | 1.40 (0.07) | 1.30 (0.00) | ||||
Turda | 0–10 | 0.89 (0.00) | 0.85 (0.01) | 22.13 (0.39) | 20.67 (0.60) | 2.13 (0.10) | 2.00 (0.00) | |||
10–20 | 0.98 (0.02) | 0.88 (0.02) | 22.53 (0.09) | 20.87 (1.53) | 2.13 (0.10) | 2.00 (0.10) | ||||
20–30 | 1.01 (0.04) | 0.90 (0.03) | 22.43 (0.33) | 19.53 (0.90) | 2.13 (0.10) | 1.90 (0.00) | ||||
La Hampa | 0–10 | 1.18 (0.29) | 1.46 (0.19) | 9.03 (0.48) b | 10.30 (0.62) a | 1.07 (0.05) | 1.20 (0.08) | |||
10–20 | 1.29 (0.25) | 1.26 (0.03) | 8.23 (0.54) | 9.13 (0.38) | 0.90 (0.08) | 1.07 (0.05) | ||||
20–30 | 1.38 (0.05) | 1.27 (0.16) | 7.77 (0.05) | 7.90 (0.65) | 0.97 (0.05) | 1.00 (0.08) |
Site | Equivalent Soil Mass | SOC (t ha−1) | MBC (t ha−1) | ||||
---|---|---|---|---|---|---|---|
(t ha−1 0–30 cm) | CT | MT | NT | CT | MT | NT | |
Säby (n = 3) | 3790 | 108.2 (1.5) | 86.7 (7.4) | 76.5 (13.7) | 0.72 (0.09) | 0.66 (0.04) | 0.68 (0.12) |
Garte Süd (n =4) | 5060 | 75.3 (9.7) | 76.2 (5.6) | 1.62 (0.09) | 1.53 (0.13) | ||
Turda (n = 3) | 2760 | 59.0 (1.4) | 58.8 (2.0) | 0.83 (0.05) | 0.77 (0.04) | ||
La Hampa (n = 3) | 3790 | 32.5 (1.1) b | 36.0 (1.1) a | 0.78 (0.07) b | 1.04 (0.02) a |
2.2. Garte Süd, Germany
2.3. Turda, Romania
2.4. La Hampa, Spain
2.5. Effects among Sites
3. Material and Methods
3.1. Field Sites Descriptions
3.2. Sampling and Soil Chemical Analysis
3.3. Soil Biological Analysis
3.4. Calculations and Statistical Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Capelle, C.; Schrader, S.; Brunotte, J. Tillage-induced changes in the functional diversity of soil biota—A review with a focus on German data. Eur. J. Soil Biol. 2012, 50, 165–181. [Google Scholar] [CrossRef]
- García-Ruiz, J.M. The effects of land uses on soil erosion in Spain: A review. Catena 2010, 81, 1–11. [Google Scholar] [CrossRef]
- Soane, B.D.; van Ouwerkerk, C. (Eds.) Developments in Agricultural Engineering: Soil Compaction in Crop Production; Elsevier: Amsterdam, The Netherlands, 1994; ISBN 0167-4137. [Google Scholar]
- Lal, R.; Kimble, J.M. Conservation tillage for carbon sequestration. Nutr. Cycl. Agroecosyst. 1997, 49, 243–253. [Google Scholar] [CrossRef]
- Freibauer, A.; Rounsevell, M.D.; Smith, P.; Verhagen, J. Carbon sequestration in the agricultural soils of Europe. Geoderma 2004, 122, 1–23. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Hedlund, K.; Jackson, L.E.; Kätterer, T.; Lugato, E.; Thomsen, I.K.; Jørgensen, H.B.; Isberg, P.-E. How does tillage intensity affect soil organic carbon?: A systematic review. Environ. Evid. 2017, 6, 77. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, Z.; Chang, S.X.; Cui, S.; Jagadamma, S.; Zhang, Q.; Cai, Y. Residue retention promotes soil carbon accumulation in minimum tillage systems: Implications for conservation agriculture. Sci. Total Environ. 2020, 740, 140147. [Google Scholar] [CrossRef]
- McDonald, M.; Lewis, K.; Ritchie, G. Short term cotton lint yield improvement with cover crop and no-tillage implementation. Agronomy 2020, 10, 994. [Google Scholar] [CrossRef]
- Jemai, I.; Aissa, N.; Guirat, S.; Ben-Hammouda, M.; Tahar, G. Impact of three and seven years of no-tillage on the soil water storage, in the plant root zone, under a dry subhumid Tunisian climate. Soil Tillage Res. 2013, 126, 26–33. [Google Scholar] [CrossRef]
- Håkansson, I.; Stenberg, M.; Rydberg, T. Long-term experiments with different depths of mouldboard ploughing in Sweden. Soil Tillage Res. 1998, 46, 209–223. [Google Scholar] [CrossRef]
- Gonzalez-Sanchez, E.J.; Veroz-Gonzalez, O.; Blanco-Roldan, G.L.; Marquez-Garcia, F.; Carbonell-Bojollo, R. A renewed view of conservation agriculture and its evolution over the last decade in Spain. Soil Tillage Res. 2015, 146, 204–212. [Google Scholar] [CrossRef]
- Günal, H.; Korucu, T.; Birkas, M.; Özgöz, E.; Halbac-Cotora-Zamfir, R. Threats to sustainability of soil functions in Central and Southeast Europe. Sustainability 2015, 7, 2161–2188. [Google Scholar] [CrossRef] [Green Version]
- Hernández Plaza, E.; Navarrete, L.; González-Andújar, J.L. Intensity of soil disturbance shapes response trait diversity of weed communities: The long-term effects of different tillage systems. Agric. Ecosyst. Environ. 2015, 207, 101–108. [Google Scholar] [CrossRef]
- Koch, H.-J.; Dieckmann, J.; Büchse, A.; Märländer, B. Yield decrease in sugar beet caused by reduced tillage and direct drilling. Eur. J. Agron. 2009, 30, 101–109. [Google Scholar] [CrossRef]
- Badagliacca, G.; Saia, S.; Ruisi, P.; Amato, G.; Giambalvo, D.; Laudicina, V.A. Microbial biomass carbon dynamics in a long-term tillage and crop rotation experiment under semiarid Mediterranean conditions. Asp. Appl. Biol. 2015, 128, 213–219. [Google Scholar]
- López-Garrido, R.; Madejón, E.; León-Camacho, M.; Girón, I.; Moreno, F.; Murillo, J.M. Reduced tillage as an alternative to no-tillage under Mediterranean conditions: A case study. Soil Tillage Res. 2014, 140, 40–47. [Google Scholar] [CrossRef]
- Balota, E.L.; Colozzi Filho, A.; Andrade, D.S.; Dick, R.P. Long-term tillage and crop rotation effects on microbial biomass and C and N mineralization in a Brazilian Oxisol. Soil Tillage Res. 2004, 77, 137–145. [Google Scholar] [CrossRef]
- Chen, H.; Hou, R.; Gong, Y.; Li, H.; Fan, M.; Kuzyakov, Y. Effects of 11 years of conservation tillage on soil organic matter fractions in wheat monoculture in Loess Plateau of China. Soil Tillage Res. 2009, 106, 85–94. [Google Scholar] [CrossRef]
- Heinze, S.; Rauber, R.; Joergensen, R.G. Influence of mouldboard plough and rotary harrow tillage on microbial biomass and nutrient stocks in two long-term experiments on loess derived Luvisols. Appl. Soil Ecol. 2010, 46, 405–412. [Google Scholar] [CrossRef]
- Carter, M.R. The influence of tillage on the proportion of organic carbon and nitrogen in the microbial biomass of medium-textured soils in a humid climate. Biol. Fertil. Soils 1991, 11, 135–139. [Google Scholar] [CrossRef]
- Andruschkewitsch, R.; Koch, H.-J.; Ludwig, B. Effect of long-term tillage treatments on the temporal dynamics of water-stable aggregates and on macro-aggregate turnover at three German sites. Geoderma 2014, 217–218, 57–64. [Google Scholar] [CrossRef]
- Hernanz, J.L.; López, R.; Navarette, L.; Sánchez-Girón, V. Long-term effects of tillage systems and rotations on soil structural stability and organic carbon stratification in semiarid central Spain. Soil Tillage Res. 2002, 66, 129–141. [Google Scholar] [CrossRef]
- Morris, N.; Miller, P.; Orson, J.H.; Froud-Williams, R. The adoption of non-inversion tillage systems in the United Kingdom and the agronomic impact on soil, crops and the environment—A review. Soil Tillage Res. 2010, 108, 1–15. [Google Scholar] [CrossRef]
- Griffiths, B.S.; Philippot, L. Insights into the resistance and resilience of the soil microbial community. FEMS Microbiol. Rev. 2013, 37, 112–129. [Google Scholar] [CrossRef] [Green Version]
- Khan, K.S.; Mack, R.; Castillo, X.; Kaiser, M.; Joergensen, R.G. Microbial biomass, fungal and bacterial residues, and their relationships to the soil organic matter C/N/P/S ratios. Geoderma 2016, 271, 115–123. [Google Scholar] [CrossRef]
- Joergensen, R.G.; Wichern, F. Alive and kicking: Why dormant soil microorganisms matter. Soil Biol. Biochem. 2018, 116, 419–430. [Google Scholar] [CrossRef]
- Anderson, T.-H.; Domsch, K.H. Application of eco-physiologicai quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biol. Biochem. 1990, 22, 251–255. [Google Scholar] [CrossRef]
- Anderson, T.-H.; Domsch, K.H. Soil microbial biomass: The eco-physiological approach. Soil Biol. Biochem. 2010, 42, 2039–2043. [Google Scholar] [CrossRef]
- Anderson, T.; Domsch, K.H. The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biol. Biochem. 1993, 25, 393–395. [Google Scholar] [CrossRef]
- Anderson, T.-H.; Domsch, K.H. Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biol. Biochem. 1989, 21, 471–479. [Google Scholar] [CrossRef]
- Hydbom, S.; Ernfors, M.; Birgander, J.; Hollander, J.; Jensen, E.S.; Olsson, P.A. Reduced tillage stimulated symbiotic fungi and microbial saprotrophs, but did not lead to a shift in the saprotrophic microorganism community structure. Appl. Soil Ecol. 2017, 119, 104–114. [Google Scholar] [CrossRef]
- Murugan, R.; Koch, H.-J.; Joergensen, R.G. Long-term influence of different tillage intensities on soil microbial biomass, residues and community structure at different depths. Biol. Fertil. Soils 2014, 50, 487–498. [Google Scholar] [CrossRef]
- Frasier, I.; Quiroga, A.; Noellemeyer, E. Effect of different cover crops on C and N cycling in sorghum NT systems. Sci. Total Environ. 2016, 562, 628–639. [Google Scholar] [CrossRef]
- Van Groenigen, K.-J.; Bloem, J.; Bååth, E.; Boeckx, P.; Rousk, J.; Bodé, S.; Forristal, D.; Jones, M.B. Abundance, production and stabilization of microbial biomass under conventional and reduced tillage. Soil Biol. Biochem. 2010, 42, 48–55. [Google Scholar] [CrossRef]
- Angers, D.A.; Eriksen-Hamel, N.S. Full-Inversion tillage and organic carbon distribution in soil profiles: A meta-analysis. Soil Sci. Soc. Am. J. 2008, 72, 1370–1374. [Google Scholar] [CrossRef]
- Du, Z.; Angers, D.A.; Ren, T.; Zhang, Q.; Li, G. The effect of no-till on organic C storage in Chinese soils should not be overemphasized: A meta-analysis. Agric. Ecosyst. Environ. 2017, 236, 1–11. [Google Scholar] [CrossRef]
- Jacobs, A.; Rauber, R.; Ludwig, B. Impact of reduced tillage on carbon and nitrogen storage of two Haplic Luvisols after 40 years. Soil Tillage Res. 2009, 102, 158–164. [Google Scholar] [CrossRef]
- Jacobs, A.; Jungert, S.; Koch, H.-J. Soil organic carbon as affected by direct drilling and mulching in sugar beet—Wheat rotations. Arch. Agron. Soil Sci. 2015, 61, 1079–1087. [Google Scholar] [CrossRef]
- Schjønning, P.; Thomsen, I.K. Shallow tillage effects on soil properties for temperate-region hard-setting soils. Soil Tillage Res. 2013, 132, 12–20. [Google Scholar] [CrossRef]
- Struecker, J.; Joergensen, R.G. Microorganisms and their substrate utilization patterns in topsoil and subsoil layers of two silt loams, differing in soil organic C accumulation due to colluvial processes. Soil Biol. Biochem. 2015, 91, 310–317. [Google Scholar] [CrossRef]
- Ahl, C.; Joergensen, R.G.; Kandeler, E.; Meyer, B.; Woehler, V. Microbial biomass and activity in silt and sand loams after long-term shallow tillage in central Germany. Soil Tillage Res. 1998, 49, 93–104. [Google Scholar] [CrossRef]
- Tian, S.; Ning, T.; Wang, Y.; Liu, Z.; Li, G.; Li, Z.; Lal, R. Crop yield and soil carbon responses to tillage method changes in North China. Soil Tillage Res. 2016, 163, 207–213. [Google Scholar] [CrossRef]
- Anderson, T.-H.; Joergensen, R.G. Relationship between SIR and FE estimates of microbial biomass C in deciduous forest soils at different pH. Soil Biol. Biochem. 1997, 29, 1033–1042. [Google Scholar] [CrossRef]
- Heinze, S.; Raupp, J.; Joergensen, R.G. Effects of fertilizer and spatial heterogeneity in soil pH on microbial biomass indices in a long-term field trial of organic agriculture. Plant Soil 2010, 328, 203–215. [Google Scholar] [CrossRef]
- Malik, A.A.; Puissant, J.; Buckeridge, K.M.; Goodall, T.; Jehmlich, N.; Chowdhury, S.; Gweon, H.S.; Peyton, J.M.; Mason, K.E.; van Agtmaal, M.; et al. Land use driven change in soil pH affects microbial carbon cycling processes. Nat. Commun. 2018, 9, 3591. [Google Scholar] [CrossRef]
- Ehlers, W.; Werner, D.; Mähner, T. Wirkung mechanischer Belastung auf Gefüge und Ertragsleistung einer Löss-Parabraunerde mit zwei Bearbeitungssystemen. J. Plant Nutr. Soil Sci. 2000, 163, 321–333. [Google Scholar] [CrossRef]
- Lamandé, M.; Greve, M.H.; Schjønning, P. Risk assessment of soil compaction in Europe—Rubber Tracks or Wheels on Machinery. Catena 2018, 167, 353–362. [Google Scholar] [CrossRef]
- Unger, P.W.; Kaspar, T.C. Soil compaction and root growth: A review. Agron. J. 1994, 86, 759–766. [Google Scholar] [CrossRef]
- Ştefan, C.; Ştefan, G. An overview on the main properties of a gleyic Phaeozem located in Mitroc, Botosani Country, Romania. Sci. Papers. Ser. A Agron. 2012, 55, 117–120. [Google Scholar]
- Blair, N.; Faulkner, R.D.; Till, A.R.; Poulton, P.R. Long-term management impacts on soil C, N and physical fertility. Soil Tillage Res. 2006, 91, 30–38. [Google Scholar] [CrossRef]
- Kravchenko, Y.; Rogovska, N.; Petrenko, L.; Zhang, X.; Song, C.; Chen, Y. Quality and dynamics of soil organic matter in a typical Chernozem of Ukraine under different long-term tillage systems. Can. J. Soil. Sci. 2012, 92, 429–438. [Google Scholar] [CrossRef] [Green Version]
- Bonetti, J.d.; Anghinoni, I.; de Moraes, M.T.; Fink, J.R. Resilience of soils with different texture, mineralogy and organic matter under long-term conservation systems. Soil Tillage Res. 2017, 174, 104–112. [Google Scholar] [CrossRef]
- Gregory, A.S.; Watts, C.W.; Whalley, W.R.; Kuan, H.L.; Griffiths, B.S.; Hallett, P.D.; Whitmore, A.P. Physical resilience of soil to field compaction and the interactions with plant growth and microbial community structure. Eur. J. Soil Sci. 2007, 58, 1221–1232. [Google Scholar] [CrossRef]
- Puget, P.; Lal, R. Soil organic carbon and nitrogen in a Mollisol in central Ohio as affected by tillage and land use. Soil Tillage Res. 2005, 80, 201–213. [Google Scholar] [CrossRef]
- Cooper, J.; Baranski, M.; Stewart, G.; Nobel-de Lange, M.; Bàrberi, P.; Fließbach, A.; Peigné, J.; Berner, A.; Brock, C.; Casagrande, M.; et al. Shallow non-inversion tillage in organic farming maintains crop yields and increases soil C stocks: A meta-analysis. Agron. Sustain. Dev. 2016, 36, 22. [Google Scholar] [CrossRef]
- Sarkar, B.; Singh, M.; Mandal, S.; Churchman, G.J.; Bolan, N.S. Clay minerals—Organic matter interactions in relation to carbon stabilization in soils. In The Future of Soil Carbon: Its Conservation and Formation; Garcia, C., Nannipieri, P., Hernandez, T., Eds.; Elsevier: London, UK, 2018; pp. 71–86. ISBN 9780128116876. [Google Scholar]
- Goenster, S.; Gründler, C.; Buerkert, A.; Joergensen, R.G. Soil microbial indicators across land use types in the river oasis Bulgan sum center, Western Mongolia. Ecol. Indic. 2017, 76, 111–118. [Google Scholar] [CrossRef]
- Wichern, F.; Joergensen, R.G. Soil microbial properties along a precipitation transect in Southern Africa. Arid. Land Res. Manag. 2009, 23, 115–126. [Google Scholar] [CrossRef]
- Zuber, S.M.; Villamil, M.B. Meta-analysis approach to assess effect of tillage on microbial biomass and enzyme activities. Soil Biol. Biochem. 2016, 97, 176–187. [Google Scholar] [CrossRef] [Green Version]
- Virto, I.; Barré, P.; Burlot, A.; Chenu, C. Carbon input differences as the main factor explaining the variability in soil organic C storage in no-tilled compared to inversion tilled agrosystems. Biogeochemistry 2012, 108, 17–26. [Google Scholar] [CrossRef]
- Helgason, B.L.; Walley, F.L.; Germida, J.J. No-till soil management increases microbial biomass and alters community profiles in soil aggregates. Appl. Soil Ecol. 2010, 46, 390–397. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Ma, Z.; Chen, J.; Akbar, J.; Zhang, S.; Che, C.; Zhang, M.; Cerdà, A.; Lupwayi, N. A review of preferential water flow in soil science. Can. J. Soil Sci. 2018, 98, 604–618. [Google Scholar] [CrossRef]
- Faust, S.; Koch, H.-J.; Joergensen, R.G. Respiration response to different tillage intensities in transplanted soil columns. Geoderma 2019, 352, 289–297. [Google Scholar] [CrossRef]
- Smith, P.; Powlson, D.; Glendining, M.; Smith, J. Preliminary estimates of the potential for carbon mitigation in European soils through no-till farming. Glob. Change Biol. 1998, 4, 679–685. [Google Scholar] [CrossRef]
- Etana, A.; Rydberg, T.; Arvidsson, J. Readily dispersible clay and particle transport in five Swedish soils under long-term shallow tillage and mouldboard ploughing. Soil Tillage Res. 2009, 106, 79–84. [Google Scholar] [CrossRef]
- Arvidsson, J. Energy use efficiency in different tillage systems for winter wheat on a clay and silt loam in Sweden. Eur. J. Agron. 2010, 33, 250–256. [Google Scholar] [CrossRef]
- Reiter, K.; Schmidtke, K.; Rauber, R. The influence of long-term tillage systems on symbiotic N2 fixation of pea (Pisum sativum L.) and red clover (Trifolium pratense L.). Plant Soil 2002, 238, 41–55. [Google Scholar] [CrossRef]
- Chetan, F. Pretabilitatea Rotației Soia-Grâu-Porumb la Cultivarea în Sistemul de Conservare a Însușirilor Solului Pentru Zonele Culinare cu Agresivitate Hidrică Medie. Ph.D. Thesis, Universitatea de Științe Agricole și Medicină Veterinară (USAMV), Cluj-Napoca, Romania, 2015. [Google Scholar]
- Chetan, F. Cercetări Privind Aplicabilitatea Sistemelor Conservative de Lucrări ale Solului la SCDA Turda. In Contribuții ale Cercetării Științifice la Dezvoltarea Agriculturii; Tritean, N., Muresan, F., Moldovan, V., Eds.; Revista Agricultura Transilvana: Cluj, Romania, 2017; Volume VII. [Google Scholar]
- Panettieri, M.; Berns, A.E.; Knicker, H.; Murillo, J.M.; Madejón, E. Evaluation of seasonal variability of soil biogeochemical properties in aggregate-size fractioned soil under different tillages. Soil Tillage Res. 2015, 151, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Engelking, B.; Flessa, H.; Joergensen, R.G. Microbial use of maize cellulose and sugarcane sucrose monitored by changes in the 13C/12C ratio. Soil Biol. Biochem. 2007, 39, 1888–1896. [Google Scholar] [CrossRef]
- Wu, J.; Joergensen, R.G.; Pommerening, B.; Chaussod, R. Measurement of soil microbial biomass C by fumigation-extraction—an automated procedure. Soil Biol. Biochem. 1990, 22, 1167–1169. [Google Scholar] [CrossRef]
- Campbell, C.D.; Chapman, S.J.; Cameron, C.M.; Davidson, M.S.; Potts, J.M. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl. Environ. Microbiol. 2003, 69, 3593–3599. [Google Scholar] [CrossRef] [Green Version]
- Ellert, B.H.; Bettany, J.R. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can. J. Soil Sci. 1995, 75, 529–538. [Google Scholar] [CrossRef] [Green Version]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; R Core Team. nlme: Linear and Nonlinear Mixed Effects Models: R package version 3.1-145. Available online: https://CRAN.R-project.org/package=nlme (accessed on 29 August 2021).
- Lenth, R.V. Least-Squares Means: The R Package lsmeans. J. Stat. Softw. 2016, 69, 1–33. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Engell, I.; Linsler, D.; Sandor, M.; Joergensen, R.G.; Meinen, C.; Potthoff, M. The Effects of Conservation Tillage on Chemical and Microbial Soil Parameters at Four Sites across Europe. Plants 2022, 11, 1747. https://doi.org/10.3390/plants11131747
Engell I, Linsler D, Sandor M, Joergensen RG, Meinen C, Potthoff M. The Effects of Conservation Tillage on Chemical and Microbial Soil Parameters at Four Sites across Europe. Plants. 2022; 11(13):1747. https://doi.org/10.3390/plants11131747
Chicago/Turabian StyleEngell, Ilka, Deborah Linsler, Mignon Sandor, Rainer Georg Joergensen, Catharina Meinen, and Martin Potthoff. 2022. "The Effects of Conservation Tillage on Chemical and Microbial Soil Parameters at Four Sites across Europe" Plants 11, no. 13: 1747. https://doi.org/10.3390/plants11131747
APA StyleEngell, I., Linsler, D., Sandor, M., Joergensen, R. G., Meinen, C., & Potthoff, M. (2022). The Effects of Conservation Tillage on Chemical and Microbial Soil Parameters at Four Sites across Europe. Plants, 11(13), 1747. https://doi.org/10.3390/plants11131747