Waterlogging Stress Induces Antioxidant Defense Responses, Aerenchyma Formation and Alters Metabolisms of Banana Plants
Abstract
:1. Introduction
2. Results
2.1. Waterlogging Stress Influences Banana Growth
2.2. Waterlogging Induces Adventitious Roots and Aerenchyma Formation
2.3. Malondialdehyde, Proline and Hydrogen Peroxide Contents Changed under Waterlogging Stress
2.4. Waterlogging Stress Enhances Antioxidant Defense Systems
2.5. Waterlogging Stress Altered Gene Transcription in Roots
2.6. Hormone Signaling Pathways Are Differentially Regulated in Waterlogged Bananas
2.7. Hypoxia-Related Genes Showed Transcriptional Responses in Waterlogged Bananas
2.8. Expression of Transcription Factors (TF) Affected in Waterlogged Bananas
2.9. qPCR Validation of DEGs from the RNA-Sequencing
3. Discussion
3.1. Morphological Responses of Bananas Subjected to Waterlogging
3.2. Oxidative Stress and Antioxidant Changes in Roots of Waterlogged Bananas
3.3. Oxygen Sensing of Banana under Waterlogging Stress
3.4. Expression in Genes Involved in ABA Pathways of Bananas under Waterlogging Stress
3.5. Carbon Metabolism Is Essential for Energy Supply during Waterlogging
3.6. A Model for the Response of Banana Plants to Waterlogging
4. Materials and Methods
4.1. Plant Material and Waterlogging Treatment
4.2. Morphological Analysis
- FW = Fresh weight (g)
- DW = Dry weight (g)
- TW = Turgid weight (g)
4.3. Adventitious Root and Aerenchyma Formation
4.4. Malondialdehyde, Proline, and Hydrogen Peroxide
4.5. Antioxidant Enzyme Assays
- ∆A = Difference in absorbance between blank and sample
- FW = Sample fresh weight (g)
- ∆A = Difference in absorbance of mixture
- VTR = Volume of reaction (mL)
- Ve = Volume of enzyme extract (mL)
- ∆t = Difference in time of absorbance (min)
- ϵ = extinction coefficient
- FW = Sample fresh weight (g)
4.6. RNA Extraction
4.7. Quantitative Real-Time PCR
4.8. RNA Sequencing
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAOUN. The Future of Food and Agriculture: Trends and Challenges; FAO: Rome, Italy, 2017; p. 180. [Google Scholar]
- Wang, X.; Xia, J.; Dong, B.; Zhou, M.; Deng, S. Spatiotemporal distribution of flood disasters in Asia and influencing factors in 1980–2019. Nat. Hazards 2021, 108, 2721–2738. [Google Scholar] [CrossRef]
- Müller, M.; Dembélé, S.; Zougmoré, R.B.; Gaiser, T.; Partey, S.T. Performance of three sorghum cultivars under excessive rainfall and waterlogged conditions in the Sudano-Sahelian Zone of West Africa: A case study at the climate-smart village of Cinzana in Mali. Water 2020, 12, 2655. [Google Scholar] [CrossRef]
- Alam, A.S.A.F.; Begum, H.; Masud, M.M.; Al-Amin, A.Q.; Filho, W.L. Agriculture insurance for disaster risk reduction: A case study of Malaysia. Int. J. Disaster Risk Reduct. 2020, 47, 9. [Google Scholar] [CrossRef]
- National Centers for Environmental Information. U.S. Billion-Dollar Weather and Climate Disasters; NCEI: Asheville, NC, USA, 2022.
- Phukan, U.J.; Jeena, G.S.; Tripathi, V.; Shukla, R.K. MaRAP2-4, a waterlogging-responsive ERF from Mentha, regulates bidirectional sugar transporter AtSWEET10 to modulate stress response in Arabidopsis. Plant Biotech. J. 2018, 16, 221–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasidharan, R.; Hartman, S.; Liu, Z.; Martopawiro, S.; Sajeev, N.; van Veen, H.; Yeung, E.; Voesenek, L. Signal dynamics and interactions during flooding stress. Plant Physiol. 2018, 176, 1106–1117. [Google Scholar] [CrossRef] [Green Version]
- Paul, P.L.C.; Bell, R.W.; Barrett-Lennard, E.G.; Kabir, E.; Mainuddin, M.; Sarker, K.K. Short-term waterlogging depresses early growth of sunflower (Helianthus annuus L.) on saline soils with a shallow water table in the coastal zone of Bangladesh. Soil Syst. 2021, 5, 68. [Google Scholar] [CrossRef]
- Ide, R.; Ichiki, A.; Suzuki, T.; Jitsuyama, Y. Analysis of yield reduction factors in processing tomatoes under waterlogging conditions. Sci. Hortic. 2022, 295, 14. [Google Scholar] [CrossRef]
- Kaur, G.; Zurweller, B.A.; Nelson, K.A.; Motavalli, P.P.; Dudenhoeffer, C.J. Soil waterlogging and nitrogen fertilizer management effects on corn and soybean yields. J. Agron. 2017, 109, 97–106. [Google Scholar] [CrossRef]
- Lau, S.E.; Hamdan, M.F.; Pua, T.L.; Saidi, N.B.; Tan, B.C. Plant nitric oxide signaling under drought stress. Plants 2021, 10, 360. [Google Scholar] [CrossRef]
- Wang, J.; Lv, X.L.; Wang, H.W.; Zhong, X.M.; Shi, Z.S.; Zhu, M.; Li, F.H. Morpho-anatomical and physiological characteristics responses of a paried near-isogenic lines of waxy corn to waterlogging. Emir. J. Food Agric. 2019, 31, 951–957. [Google Scholar] [CrossRef]
- Pedersen, O.; Nakayama, Y.; Yasue, H.; Kurokawa, Y.; Takahashi, H.; Floytrup, A.H.; Omori, F.; Mano, Y.; Colmer, T.D.; Nakazono, M. Lateral roots, in addition to adventitious roots, form a barrier to radial oxygen loss in Zea nicaraguensis and a chromosome segment introgression line in maize. New Phytol. 2021, 229, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Luan, H.; Guo, B.; Pan, Y.; Lv, C.; Shen, H.; Xu, R. Morpho-anatomical and physiological responses to waterlogging stress in different barley (Hordeum vulgare L.) genotypes. Plant Growth Regul. 2018, 85, 399–409. [Google Scholar] [CrossRef]
- Amnan, M.A.M.; Pua, T.L.; Lau, S.E.; Tan, B.C.; Yamaguchi, H.; Hitachi, K.; Tsuchida, K.; Komatsu, S. Osmotic stress in banana is relieved by exogenous nitric oxide. PeerJ 2021, 9, 26. [Google Scholar] [CrossRef]
- Pan, R.; Jiang, W.; Wang, Q.; Xu, L.; Shabala, S.; Zhang, W.Y. Differential response of growth and photosynthesis in diverse cotton genotypes under hypoxia stress. Photosynthetica 2019, 57, 772–779. [Google Scholar] [CrossRef] [Green Version]
- Qi, X.H.; Li, Q.Q.; Ma, X.T.; Qian, C.L.; Wang, H.H.; Ren, N.N.; Shen, C.X.; Huang, S.M.; Xu, X.W.; Xu, Q.; et al. Waterlogging-induced adventitious root formation in cucumber is regulated by ethylene and auxin through reactive oxygen species signalling. Plant Cell Environ. 2019, 42, 1458–1470. [Google Scholar] [CrossRef]
- Pan, J.W.; Sharif, R.; Xu, X.W.; Chen, X.H. Mechanisms of waterlogging tolerance in plants: Research progress and prospects. Front. Plant Sci. 2021, 11, 627331. [Google Scholar] [CrossRef]
- Liang, K.; Tang, K.; Fang, T.; Qiu, F. Waterlogging tolerance in maize: Genetic and molecular basis. Mol. Breed. 2020, 40, 111. [Google Scholar] [CrossRef]
- Chin, W.Y.W.; Annuar, M.S.M.; Tan, B.C.; Khalid, N. Evaluation of a laboratory scale conventional shake flask and a bioreactor on cell growth and regeneration of banana cell suspension cultures. Sci. Hortic. 2014, 172, 39–46. [Google Scholar] [CrossRef]
- FAOUN. FAOSTAT Statistical Database. 2021. Available online: https://www.fao.org/faostat/en/#home (accessed on 24 June 2022).
- Tumin, S.A.; Shaharudin, A.A. Banana: The World’s Most Popular Fruit. 2019. Available online: https://www.krinstitute.org/Views-@-Banana-;_The_Worlds_Most_Popular_Fruit.aspx (accessed on 20 July 2022).
- Varma, V.; Bebber, D.P. Climate change impacts on banana yields around the world. Nat. Clim. Chang. 2019, 9, 752–757. [Google Scholar] [CrossRef] [Green Version]
- Ali, H.; Modi, P.; Mishra, V. Increased flood risk in Indian sub-continent under the warming climate. Weather Clim. Extremes 2019, 25, 9. [Google Scholar] [CrossRef]
- Arnell, N.W.; Gosling, S.N. The impacts of climate change on river flood risk at the global scale. Clim. Change 2016, 134, 387–401. [Google Scholar] [CrossRef] [Green Version]
- Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016, 44, D457–D462. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.H.; Lin, K.H.; Huang, M.Y.; Su, Y.R. Use of non-destructive measurements to identify Cucurbit species (Cucurbita maxima and Cucurbita moschata) tolerant to waterlogged conditions. Plants 2020, 9, 1226. [Google Scholar] [CrossRef] [PubMed]
- Tavares, E.Q.P.; Grandis, A.; Lembke, C.G.; Souza, G.M.; Purgatto, E.; De Souza, A.P.; Buckeridge, M.S. Roles of auxin and ethylene in aerenchyma formation in sugarcane roots. Plant Signal. Behav. 2018, 13, 3. [Google Scholar] [CrossRef]
- Yamauchi, T.; Tanaka, A.; Tsutsumi, N.; Inukai, Y.; Nakazono, M. A role for auxin in ethylene-dependent inducible aerenchyma formation in rice roots. Plants 2020, 9, 610. [Google Scholar] [CrossRef] [PubMed]
- Ploschuk, R.A.; Miralles, D.J.; Colmer, T.D.; Ploschuk, E.L.; Striker, G.G. Waterlogging of winter crops at early and late stages: Impacts on leaf physiology, growth and yield. Front. Plant Sci. 2018, 9, 1863. [Google Scholar] [CrossRef] [Green Version]
- Mhimdi, M.; Perez-Perez, J.M. Understanding of adventitious root formation: What can we learn from comparative genetics? Front. Plant Sci. 2020, 11, 582020. [Google Scholar] [CrossRef]
- Mahmood, U.; Hussain, S.; Hussain, S.; Ali, B.; Ashraf, U.; Zamir, S.; Al-Robai, S.A.; Alzahrani, F.O.; Hano, C.; El-Esawi, M.A. Morpho-physio-biochemical and molecular responses of maize hybrids to salinity and waterlogging during stress and recovery phase. Plants 2021, 10, 1345. [Google Scholar] [CrossRef]
- Men, S.; Chen, H.; Chen, S.; Zheng, S.; Shen, X.; Wang, C.; Yang, Z.; Liu, D. Effects of supplemental nitrogen application on physiological characteristics, dry matter and nitrogen accumulation of winter rapeseed (Brassica napus L.) under waterlogging stress. Sci. Rep. 2020, 10, 10201. [Google Scholar] [CrossRef]
- Amnan, M.A.M.; Aizat, W.M.; Khaidizar, F.D.; Tan, B.C. Drought stress induces morpho-physiological and proteome changes of Pandanus amaryllifolius. Plants 2022, 11, 221. [Google Scholar] [CrossRef]
- Sharif, R.; Xie, C.; Zhang, H.Q.; Arnao, M.B.; Ali, M.; Ali, Q.; Muhammad, I.; Shalmani, A.; Nawaz, M.A.; Chen, P.; et al. Melatonin and its effects on plant systems. Molecules 2018, 23, 2352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, L.T.; Qin, X.; Lyu, D.G.; Qin, S.J.; Zhang, P. ROS production and scavenging in three cherry rootstocks under short-term waterlogging conditions. Sci. Hortic. 2019, 257, 7. [Google Scholar] [CrossRef]
- Barickman, T.C.; Simpson, C.R.; Sams, C.E. Waterlogging causes early modification in the physiological performance, carotenoids, chlorophylls, proline, and soluble sugars of cucumber plants. Plants 2019, 8, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, Y.S.; Wu, X.L.; Sun, M.X.; Peng, F.T. Hydrogen sulfide alleviates waterlogging-induced damage in peach seedlings via enhancing antioxidative system and inhibiting ethylene synthesis. Front. Plant Sci. 2020, 11, 696. [Google Scholar] [CrossRef] [PubMed]
- Xie, R.J.; Zheng, L.; Jiao, Y.; Huang, X. Understanding physiological and molecular mechanisms of citrus rootstock seedlings in response to root zone hypoxia by RNA-Seq. Environ. Exp. Bot. 2021, 192, 14. [Google Scholar] [CrossRef]
- Da-Silva, C.J.; do Amarante, L. Time-course biochemical analyses of soybean plants during waterlogging and reoxygenation. Environ. Exp. Bot. 2020, 180, 11. [Google Scholar] [CrossRef]
- Aziz, A.F.; Yusuf, N.A.; Tan, B.C.; Khalid, N. Prolonged culture of Boesenbergia rotunda cells reveals decreased growth and shoot regeneration capacity. Plant Cell Tissue Organ Cult. 2017, 130, 25–36. [Google Scholar] [CrossRef]
- Anee, T.I.; Nahar, K.; Rahman, A.; Al Mahmud, J.; Bhuiyan, T.F.; Ul Alam, M.; Fujita, M.; Hasanuzzaman, M. Oxidative damage and antioxidant defense in Sesamum indicum after different waterlogging durations. Plants 2019, 8, 196. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Wang, H.; Wen, W.J.; Yang, G.W. The antioxidant system in Suaeda salsaunder salt stress. Plant Signal. Behav. 2020, 15, 6. [Google Scholar] [CrossRef]
- Azahar, I.; Ghosh, S.; Adhikari, A.; Adhikari, S.; Roy, D.; Shaw, A.K.; Singh, K.; Hossain, Z. Comparative analysis of maize root sRNA transcriptome unveils the regulatory roles of miRNAs in submergence stress response mechanism. Environ. Exp. Bot. 2020, 171, 20. [Google Scholar] [CrossRef]
- Khan, M.I.R.; Trivellini, A.; Chhillar, H.; Chopra, P.; Ferrante, A.; Khan, N.A.; Ismail, A.M. The significance and functions of ethylene in flooding stress tolerance in plants. Environ. Exp. Bot. 2020, 179, 13. [Google Scholar] [CrossRef]
- Perata, P. Ethylene signaling controls fast oxygen sensing in plants. Trends Plant Sci. 2020, 25, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Loreti, E.; Poggi, A.; Novi, G.; Alpi, A.; Perata, P. A genome-wide analysis of the effects of sucrose on gene expression in Arabidopsis seedlings under anoxia. Plant Physiol. 2005, 137, 1130–1138. [Google Scholar] [CrossRef] [Green Version]
- Hartman, S.; van Dongen, N.; Renneberg, D.; Welschen-Evertman, R.A.M.; Kociemba, J.; Sasidharan, R.; Voesenek, L. Ethylene differentially modulates hypoxia responses and tolerance across Solanum species. Plants 2020, 9, 1022. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, Y.; Nakamura, T.; Izumi, Y.; Okazaki, K.; Shinano, T.; Kubo, Y.; Katsuhara, M.; Sasaki, T.; Yamamoto, Y. Physiological role of aerobic fermentation constitutively expressed in an aluminum-tolerant cell line of tobacco (Nicotiana tabacum). Plant Cell Physiol. 2021, 62, 1460–1477. [Google Scholar] [CrossRef] [PubMed]
- Licausi, F.; van Dongen, J.T.; Giuntoli, B.; Novi, G.; Santaniello, A.; Geigenberger, P.; Perata, P. HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. Plant J. 2010, 62, 302–315. [Google Scholar] [CrossRef]
- Wei, X.; Xu, H.; Rong, W.; Ye, X.; Zhang, Z. Constitutive expression of a stabilized transcription factor group VII ethylene response factor enhances waterlogging tolerance in wheat without penalizing grain yield. Plant Cell Environ. 2019, 42, 1471–1485. [Google Scholar] [CrossRef] [PubMed]
- Tamang, B.G.; Li, S.; Rajasundaram, D.; Lamichhane, S.; Fukao, T. Overlapping and stress-specific transcriptomic and hormonal responses to flooding and drought in soybean. Plant J. 2021, 107, 100–117. [Google Scholar] [CrossRef]
- Harkey, A.F.; Watkins, J.M.; Olex, A.L.; DiNapoli, K.T.; Lewis, D.R.; Fetrow, J.S.; Binder, B.M.; Muday, G.K. Identification of transcriptional and receptor networks that control root responses to ethylene. Plant Physiol. 2018, 176, 2095–2118. [Google Scholar] [CrossRef] [Green Version]
- Dawood, T.; Yang, X.P.; Visser, E.J.W.; Te Beek, T.A.H.; Kensche, P.R.; Cristescu, S.M.; Lee, S.; Flokova, K.; Nguyen, D.; Mariani, C.; et al. A co-opted hormonal cascade activates dormant adventitious root primordia upon flooding in Solanum dulcamara. Plant Physiol. 2016, 170, 2351–2364. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.-N.; Tuan, P.A.; Mukherjee, S.; Son, S.; Ayele, B.T. Hormonal regulation in adventitious roots and during their emergence under waterlogged conditions in wheat. J. Exp. Bot. 2018, 69, 4065–4082. [Google Scholar] [CrossRef]
- Shimamura, S.; Yoshioka, T.; Yamamoto, R.; Hiraga, S.; Nakamura, T.; Shimada, S.; Komatsu, S. Role of abscisic acid in flood-induced secondary aerenchyma formation in soybean (Glycine max) hypocotyls. Plant Prod. Sci. 2014, 17, 131–137. [Google Scholar] [CrossRef]
- Bashar, K.K.; Tareq, M.Z.; Islam, M.S. Unlocking the mystery of plants’ survival capability under waterlogging stress. Plant Sci. Today 2020, 7, 142–153. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Lyu, D.; Jia, L.; He, J.; Qin, S. Physiological and de novo transcriptome analysis of the fermentation mechanism of Cerasus sachalinensis roots in response to short-term waterlogging. BMC Genom. 2017, 18, 649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borrego-Benjumea, A.; Carter, A.; Tucker, J.R.; Yao, Z.; Xu, W.; Badea, A. Genome-wide analysis of gene expression provides new insights into waterlogging responses in barley (Hordeum vulgare L.). Plants 2020, 9, 240. [Google Scholar] [CrossRef] [Green Version]
- Ren, B.Z.; Dong, S.T.; Zhao, B.; Liu, P.; Zhang, J.W. Responses of nitrogen metabolism, uptake and translocation of maize to waterlogging at different growth stages. Front. Plant Sci. 2017, 8, 1216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamsen, R.; Kalapanulak, S.; Chiewchankaset, P.; Saithong, T. Transcriptome integrated metabolic modeling of carbon assimilation underlying storage root development in cassava. Sci. Rep. 2021, 11, 15. [Google Scholar] [CrossRef]
- Turner, N.C. Techniques and experimental approaches for the measurement of plant water status. Plant Soil 1981, 58, 339–366. [Google Scholar] [CrossRef]
- Mano, Y.; Omori, F. High-density linkage map around the root aerenchyma locus Qaer1. 06 in the backcross populations of maize Mi29× teosinte “Zea nicaraguensis”. Breed. Sci. 2009, 59, 427–433. [Google Scholar] [CrossRef] [Green Version]
- Junglee, S.; Urban, L.; Sallanon, H.; Lopez-Lauri, F. Optimized assay for hydrogen peroxide determination in plant tissue using potassium iodide. Am. J. Anal. Chem. 2014, 5, 730. [Google Scholar] [CrossRef] [Green Version]
- Bates, L.S.; Waldren, R.P.; Teare, I. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, J.Z.; Chow, W.S.; Sun, L.L.; Chen, J.W.; Chen, Y.J.; Peng, C.L. The influence of low temperature on photosynthesis and antioxidant enzymes in sensitive banana and tolerant plantain (Musa sp.) cultivars. Photosynthetica 2011, 49, 201–208. [Google Scholar] [CrossRef]
- Carlberg, I.; Mannervik, B. Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J. Biol. Chem. 1975, 250, 5475–5480. [Google Scholar] [CrossRef]
- Pütter, J. Peroxidases. In Methods of Enzymatic Analysis; Elsevier: Amsterdam, The Netherlands, 1974; pp. 685–690. [Google Scholar]
- Asif, M.H.; Dhawan, P.; Nath, P. A simple procedure for the isolation of high quality RNA from ripening banana fruit. Plant Mol. Biol. Rep. 2000, 18, 109–115. [Google Scholar] [CrossRef]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 20 July 2022).
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Droc, G.; Lariviere, D.; Guignon, V.; Yahiaoui, N.; This, D.; Garsmeur, O.; Dereeper, A.; Hamelin, C.; Argout, X.; Dufayard, J.F.; et al. The banana genome hub. Database 2013, 2013, bat035. [Google Scholar] [CrossRef]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 38. [Google Scholar] [CrossRef] [Green Version]
- Young, M.D.; Wakefield, M.J.; Smyth, G.K.; Oshlack, A. Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biol. 2010, 11, R14. [Google Scholar] [CrossRef] [Green Version]
GO ID | GO Term | p-Value | False Discovery Rate | Upregulated DEG |
GO:0045893 | Positive regulation of transcription, DNA-templated | 5.40 × 10−8 | 2.80 × 10−5 | 38 |
GO:0071555 | Cell wall organization | 3.37 × 10−5 | 6.16 × 10−3 | 38 |
GO:0009737 | Response to abscisic acid | 7.20 × 10−9 | 4.07 × 10−6 | 31 |
GO:0009873 | Ethylene-activated signaling pathway | 5.98 × 10−8 | 2.86 × 10−5 | 29 |
GO:0009651 | Response to salt stress | 4.82 × 10−4 | 4.83 × 10−2 | 26 |
GO:0006979 | Response to oxidative stress | 4.18 × 10−6 | 1.24 × 10−3 | 21 |
GO:0009409 | Response to cold | 2.61 × 10−4 | 3.12 × 10−2 | 17 |
GO:0010200 | Response to chitin | 4.45 × 10−5 | 7.28 × 10−3 | 16 |
GO:0010411 | Xyloglucan metabolic process | 9.77 × 10−6 | 2.43 × 10−3 | 16 |
GO:0042546 | Cell wall biogenesis | 4.29 × 10−5 | 7.21 × 10−3 | 16 |
GO:0009751 | Response to salicylic acid | 1.17 × 10−13 | 1.45 × 10−10 | 15 |
GO:0042744 | Hydrogen peroxide catabolic process | 1.22 × 10−6 | 3.98 × 10−4 | 14 |
GO:0030154 | Cell differentiation | 9.60 × 10−7 | 3.31 × 10−4 | 12 |
GO:0042545 | Cell wall modification | 2.81 × 10−4 | 3.29 × 10−2 | 12 |
GO:0009611 | Response to wounding | 2.00 × 10−6 | 6.22 × 10−4 | 11 |
GO:0055114 | Oxidation-reduction process | 4.77 × 10−5 | 7.61 × 10−3 | 11 |
GO:0009753 | Response to jasmonic acid | 6.59 × 10−6 | 1.86 × 10−3 | 9 |
GO:0009693 | Ethylene biosynthetic process | 2.65 × 10−5 | 5.14 × 10−3 | 9 |
GO:0009835 | Fruit ripening | 1.59 × 10−4 | 2.30 × 10−2 | 9 |
GO:0009741 | Response to brassinosteroid | 2.09 × 10−4 | 2.74 × 10−2 | 9 |
GO ID | GO Term | p-Value | False Discovery rate | Downregulated DEG |
GO:0009737 | Response to abscisic acid | 7.20 × 10−9 | 4.07 × 10−6 | 51 |
GO:0030154 | Cell differentiation | 9.60 × 10−7 | 3.31 × 10−4 | 51 |
GO:0009651 | Response to salt stress | 4.82 × 10−4 | 4.83 × 10−2 | 46 |
GO:0009751 | Response to salicylic acid | 1.17 × 10−13 | 1.45 × 10−10 | 43 |
GO:0045893 | Positive regulation of transcription, DNA-templated | 5.40 × 10−8 | 2.80 × 10−5 | 42 |
GO:0009409 | Response to cold | 2.61 × 10−4 | 3.12 × 10−2 | 36 |
GO:0071555 | Cell wall organization | 3.37 × 10−5 | 6.16 × 10−3 | 34 |
GO:0009733 | Response to auxin | 3.92 × 10−4 | 4.06 × 10−2 | 31 |
GO:0009873 | Ethylene-activated signaling pathway | 5.98 × 10−8 | 2.86 × 10−5 | 26 |
GO:0006979 | Response to oxidative stress | 4.18 × 10−6 | 1.24 × 10−3 | 25 |
GO:0009753 | Response to jasmonic acid | 6.59 × 10−6 | 1.86 × 10−3 | 25 |
GO:0009611 | Response to wounding | 2.00 × 10−6 | 6.22 × 10−4 | 24 |
GO:0009813 | Flavonoid biosynthetic process | 1.47 × 10−5 | 3.20 × 10−3 | 20 |
GO:0055114 | Oxidation-reduction process | 4.77 × 10−5 | 7.61 × 10−3 | 18 |
GO:0042744 | Hydrogen peroxide catabolic process | 1.22 × 10−6 | 3.98 × 10−4 | 17 |
GO:0071365 | Cellular response to auxin stimulus | 2.58 × 10−7 | 1.07 × 10−4 | 15 |
GO:0031408 | Oxylipin biosynthetic process | 3.68 × 10−5 | 6.53 × 10−3 | 15 |
GO:0010200 | Response to chitin | 4.45 × 10−5 | 7.28 × 10−3 | 14 |
GO:1901332 | Negative regulation of lateral root development | 2.33 × 10−9 | 1.45 × 10−6 | 12 |
GO:0010345 | Suberin biosynthetic process | 1.34 × 10−5 | 3.20 × 10−3 | 11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teoh, E.Y.; Teo, C.H.; Baharum, N.A.; Pua, T.-L.; Tan, B.C. Waterlogging Stress Induces Antioxidant Defense Responses, Aerenchyma Formation and Alters Metabolisms of Banana Plants. Plants 2022, 11, 2052. https://doi.org/10.3390/plants11152052
Teoh EY, Teo CH, Baharum NA, Pua T-L, Tan BC. Waterlogging Stress Induces Antioxidant Defense Responses, Aerenchyma Formation and Alters Metabolisms of Banana Plants. Plants. 2022; 11(15):2052. https://doi.org/10.3390/plants11152052
Chicago/Turabian StyleTeoh, Ee Yang, Chee How Teo, Nadiya Akmal Baharum, Teen-Lee Pua, and Boon Chin Tan. 2022. "Waterlogging Stress Induces Antioxidant Defense Responses, Aerenchyma Formation and Alters Metabolisms of Banana Plants" Plants 11, no. 15: 2052. https://doi.org/10.3390/plants11152052
APA StyleTeoh, E. Y., Teo, C. H., Baharum, N. A., Pua, T. -L., & Tan, B. C. (2022). Waterlogging Stress Induces Antioxidant Defense Responses, Aerenchyma Formation and Alters Metabolisms of Banana Plants. Plants, 11(15), 2052. https://doi.org/10.3390/plants11152052