Polyphenolic Contents, Free Radical Scavenging and Cholinesterase Inhibitory Activities of Dalbergiella welwitschii Leaf Extracts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Polyphenolic Contents
2.2. Free Radical Scavenging Activity
2.3. Cholinesterase Inhibitory Activity
3. Materials and Methods
3.1. Chemicals, Reagents, Solvents and Equipment
3.2. Plant Material
3.3. Extraction and Fractionation
3.4. Determination of Polyphenolic Contents
3.4.1. The Total Phenolic Content
3.4.2. The Total Flavonoid Content
3.4.3. The total Proanthocyanidin Content
3.5. Free Radical Scavenging Tests
3.5.1. Determination of Ferric Reducing Antioxidant Power
3.5.2. 2,2-Diphenyl-1-picrylhydrazyl Radical Scavenging Assay
3.5.3. Nitric Oxide Inhibitory Assay
3.5.4. Lipid Peroxidation Assay
3.6. Cholinesterase Inhibitory Tests
3.6.1. Acetylcholinesterase (AChE) Inhibitory Assay
3.6.2. Butyrylcholinesterase (BuChE) Inhibitory Assay
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zuo, C.; Zhuang, X.; Heckermann, R.A.; Peng, F. Radiopharmaceuticals, imaging techniques, and clinical applications in neurodegenerative diseases. Front. Neurol. 2019, 10, 962. [Google Scholar] [CrossRef] [PubMed]
- Przedborski, S.; Vila, M.; Jackson-Lewis, V. Series introduction: Neurodegeneration: What is it and where are we? J. Clin. Investig. 2003, 111, 3–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selkoe, D.J. Alzheimer’s disease: Genes, proteins and therapy. Physiol. Rev. 2001, 18, 741–766. [Google Scholar] [CrossRef]
- Johnston, B.; Narayanasamy, M. Exploring psychosocial interventions for people with dementia that enhance personhood and relate to legacy—An integrative review. BMC Geriatr. 2016, 16, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grantham, C.; Geerts, H. The rationale behind cholinergic drug treatment for dementia related to cerebrovascular disease. J. Neurol. Sci. 2002, 203, 131–136. [Google Scholar] [CrossRef]
- Teleanu, D.M.; Niculescu, A.-G.; Lungu, I.I.; Radu, C.I.; Vladâcenco, O.; Roza, E.; Costăchescu, B.; Grumezescu, A.M.; Teleanu, R.I. An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. Int. J. Mol. Sci. 2022, 23, 5938. [Google Scholar] [CrossRef]
- dela Torre, J.C. Is Alzheimer’s disease a neurodegenerative or a vascular disorder? Data, dogma, and dialectics. Lancet Neurol. 2004, 3, 184–190. [Google Scholar] [CrossRef]
- Wilkinson, D.G.; Francis, P.T.; Schwam, E.; Payne-Parrish, J. Cholinesterase inhibitors used in the treatment of Alzheimer’s disease. Drugs Aging 2004, 21, 453–478. [Google Scholar] [CrossRef]
- Chen, X.; Guo, C.; Kong, J. Oxidative stress in neurodegenerative diseases. Neural Regen. Res. 2012, 7, 376. [Google Scholar]
- Tuppo, E.E.; Forman, L.J. Free radical oxidative damage and Alzheimer’s disease. JAOA 2001, 12, 11–15. [Google Scholar]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants, and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elufioye, T.O.; Obuotor, E.M.; Agbedahunsi, J.M.; Adesanya, S.A. Anticholinesterase constituents from the leaves of Spondias mombin L. (Anacardiaceae). Biol. Targets Ther. 2017, 11, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saha, S.; Shilpi, J.A.; Mondal, H.; Hossain, F.; Anisuzzman, M.; Hasan, M.M.; Cordell, G.A. Ethnomedicinal, phytochemical, and pharmacological profile of the genus Dalbergia L. (Fabaceae). Phytopharmacology 2013, 4, 291–346. [Google Scholar]
- Vasudeva, N.; Vats, M.; Sharma, S.K.; Sardana, S. Chemistry and biological activities of the Genus Dalbergia—A Review. Phcog Rev. 2009, 3, 307–319. [Google Scholar]
- Mutai, P.; Heydenreich, M.; Thoithi, G.; Mugumbate, G.; Chibale, K.; Yenesew, A. 3-Hydroxyisoflavanones from the stem bark of Dalbergia melanoxylon: Isolation, antimycobacterial evaluation and molecular docking studies. Phytochem. Lett. 2013, 6, 671–675. [Google Scholar] [CrossRef]
- Odugbemi, T.O. Outlines and Pictures of Medicinal Plants from Nigeria; University of Lagos Press: Lagos, Nigeria, 2006. [Google Scholar]
- Prasad, P.D.; Suba, V. Pharmacological Evidence for the Antiamnesic Effect of Dalbergia latifolia Roxb in Mice. World International Patent Organization, WIPO, 2020. Available online: https://patentscope.wipo.int/search/en/detail.jsf?docId=IN294774926&docAn=201841041747 (accessed on 9 July 2022).
- Raheja, S.; Girdhar, A.; Kamboj, A.; Lather, V.; Pandita, D. Protective effect of Dalbergia sissoo extract against amyloid-β (1-42)-induced memory impairment, oxidative stress, and neuroinflammation in rats. Turk. J. Pharm. Sci. 2021, 18, 104–110. [Google Scholar] [CrossRef]
- Cornell University, College of Agriculture and Life Sciences. Planting Perennial Legumes and Grasses. Available online: https://cals.cornell.edu/field-crops/forages/planting-perennial-legumes-and-grasses (accessed on 28 July 2022).
- Ajeigbe, H.A.; Abdoulaye, T.; Chikoye, D. Legume and cereal seed production for improved crop yields in Nigeria. In Proceedings of the Training Workshop on Production of Legume and Cereal Seeds. International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria, 24 January–10 February 2008; ISBN 978-131-331-5. [Google Scholar]
- Burkhill, H.M. The Useful Plants of West Tropical Africa; Royal Botanic Garden: Kew, UK, 1985; Volume 3. [Google Scholar]
- Temjenmongla, T.; Yadav, A.K. Anticestodal efficacy of folklore medicinal plants of Naga tribes in North-east India. Afr. J. Tradit. Complement Altern. Med. 2005, 2, 129–133. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.S.; Huang, G.J.; Lu, Y.H.; Chang, L.W. Anti-inflammatory effects of an aqueous extract of Welsh onion green leaves in mice. Food Chem. 2013, 13, 751–756. [Google Scholar] [CrossRef]
- Fred-Jaiyesimi, A.; Oluwakemi, A. Phytochemical and anti-inflammatory activities of the methanol extract and fractions of Dalbergiella welwitschii Baker (Baker f.) leaves. Res. J. Pharm. Biol. Chem. Sci. 2013, 4, 1191–1200. [Google Scholar]
- Olusegun-Joseph, T.S.; Ofodile, N.; Oguntoke, T. In-vitro evaluation of anthelmintic activity of crude extract of the leaves of Dalbergiella welwitschii. Int. J. Pharm. Pharm. Sci. 2013, 5, 32–33. [Google Scholar]
- Zitkar, O.; Sochor, J.; Rop, O.; Skalickova, S.; Sobrova, P.; Zehnalek, J.; Beklova, M.; Krska, B.; Adam, V.; Kizek, R. Comparison of various easy-to-use procedures for extraction of phenols from Apricot fruits. Molecules 2011, 16, 2914–2936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakshmi, T.M.; Radha, R.; Jayshree, N. In vitro antioxidant activity, total phenolic and total flavonoid content in extracts from the bark of Dalbergia sissoo Roxb. Int. J. Pharma Sci. Res. 2014, 5, 226–231. [Google Scholar]
- Lianhe, Z.; Li, W.; Xing, H.; Zhengxing, C. Antioxidant activities of seeds extracts from Dalbergia odorifera T. Chen. Afr. J. Biotechnol. 2011, 10, 11658–11667. [Google Scholar]
- Nunes, D.S.; Haag, A.; Bestmann, H.-J. Two proanthocyanidins from the bark of Dalbergia monetary. Phytochemistry 1989, 28, 2183–2186. [Google Scholar] [CrossRef]
- Khoddami, A.; Wilkes, M.A.; Roberts, T.H. Techniques for analysis of plant phenolic compounds. Molecules 2013, 18, 2328–2375. [Google Scholar] [CrossRef]
- Dorman, H.J.D.; Peltoketo, A.; Hiltunen, R.; Tikkanen, M.J. Characterization of the antioxidant properties of deodorized aqueous extracts from selected Lamiaceae Herbs. Food Chem. 2003, 83, 255–262. [Google Scholar] [CrossRef]
- Soares, J.R.; Dins, T.C.P.; Cunha, A.P.; Almeida, L.M. Antioxidant activity of some extracts of Thymus zygis. Free. Radic. Res. 1997, 26, 469. [Google Scholar] [CrossRef]
- Shrestha, S.P.; Amano, Y.; Narukawa, Y.; Takeda, T. Nitric oxide production inhibitory activity of flavonoids contained in trunk exudates of Dalbergia sissoo. J. Nat. Prod. 2008, 71, 98–101. [Google Scholar] [CrossRef]
- Repetto, M.; Semprine, J.; Boveris, A. Lipid Peroxidation: Chemical Mechanism, Biological Implications and Analytical Determination. 2012. Available online: https://www.intechopen.com/chapters/38477 (accessed on 19 June 2022).
- Boveris, A.; Repetto, M.G.; Bustamante, J.; Boveris, A.D.; Valdez, L.B. The concept of oxidative stress in pathology. In Free Radical Pathophysiology; Álvarez, S., Evelson, P., Eds.; 117 Transworld Research Network: Kerala, India, 2008; ISBN 978-8-17895-311-3. [Google Scholar]
- Colovic, M.B.; Krstic, D.Z.; Lazarevic-Pasti, T.D.; Bondzic, A.M.; Vasic, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol. 2013, 11, 315–335. [Google Scholar] [CrossRef] [Green Version]
- Darvesh, A.S.; Carroll, R.T.; Bishayee, A.; Geldenhuys, W.J.; Van der Schyf, C.J. Oxidative stress and Alzheimer’s disease: Dietary polyphenols as potential therapeutic agents. Expert Rev. Neurother. 2010, 10, 729–745. [Google Scholar] [CrossRef]
- Okeleye, B.I.; Nongogo, V.; Mkwetshana, N.T.; Ndip, R.N. Polyphenolic content and in vitro antioxidant evaluation of the stem bark extract of Peltophorum africanum Sond (Fabaceae). Afr. J. Tradit. Complementary Altern. Med. 2015, 12, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Otsuka, H. Purification by solvent extraction using partition coefficient. In Natural Products Isolation; Sarker, S.D., Latif, Z., Gray, A.I., Eds.; Humana Press: Totowa, NJ, USA, 2006; Volume 20, pp. 269–273. [Google Scholar] [CrossRef]
- Wolfe, K.; Wu, X.; Liu, R.H. Antioxidant activity of apple peels. J. Agr. Food Chem. 2003, 51, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Ordonez, A.A.L.; Gomez, J.D.; Vattuone, M.A.; Isla, M.I. Antioxidant activities of Sechium edule (Jacq). Food Chem. 2006, 40, 452458. [Google Scholar]
- Mbaebie, B.O.; Edeoga, H.O.; Afolayan, A.J. Phytochemical analysis and antioxidants activities of aqueous stem bark extract of Schotia latifolia Jacq. Asian Pac. J. Trop. Biomed. 2012, 2, 118–124. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.S.; Hemalatha, S. In vitro antioxidant activity of alcoholic leaf extract and subfractions of Alangium lamarckii Thwaites. J. Chem. Pharm. Res. 2011, 3, 259–267. [Google Scholar]
- Shen, Q.; Zhang, B.; Xu, R.; Wang, Y.; Ding, X.; Li, P. Antioxidant activity in vitro of selenium-contained protein from the Se-enriched Bifidobacterium animalis. Anaerobe 2010, 16, 380–386. [Google Scholar] [CrossRef]
- Ebrahimzadeh, M.A.; Nabavi, S.M.; Nabavi, S.F.; Bahramian, F.; Bekhradnia, A.R. Antioxidant and free radical scavenging activity of H. officinalis, L. Var. angustifolius, V. odorata, B. hyrcana and C. speciosum. Pak. J. Pharm. Sci. 2010, 23, 29–34. [Google Scholar]
- Banerjee, B.D.; Seth, V.; Bhattacharya, A.; Pasha, S.T.; Chakraborty, A.K. Biochemical effects of some pesticides on lipid peroxidation and free-radical scavengers. Toxicol. Lett. 1999, 1, 33–47. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
Assay | IC50 ± SEM (mg/mL) | |||||
---|---|---|---|---|---|---|
MeOH | Hexane | EtOAc | Aqueous | Eserine | Donepezil | |
AChE | 0.45 ± 0.03 c | 5.27 ± 0.10 e | 0.94 ± 0.05 d | 7.43 ± 1.25 f | 0.002 b | 0.001 a |
BuChE | 2.64 ± 0.05 c | 11.86 ± 1.25 e | 8.48 ± 2.25 d | 21.25 ± 1.50 f | 0.002 b | 0.001 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diniso, T.; Adeyemi, J.; Oriola, A.; Elufioye, T.; Gondwe, M.; Oyedeji, A. Polyphenolic Contents, Free Radical Scavenging and Cholinesterase Inhibitory Activities of Dalbergiella welwitschii Leaf Extracts. Plants 2022, 11, 2066. https://doi.org/10.3390/plants11152066
Diniso T, Adeyemi J, Oriola A, Elufioye T, Gondwe M, Oyedeji A. Polyphenolic Contents, Free Radical Scavenging and Cholinesterase Inhibitory Activities of Dalbergiella welwitschii Leaf Extracts. Plants. 2022; 11(15):2066. https://doi.org/10.3390/plants11152066
Chicago/Turabian StyleDiniso, Tabisa, Jerry Adeyemi, Ayodeji Oriola, Taiwo Elufioye, Mavuto Gondwe, and Adebola Oyedeji. 2022. "Polyphenolic Contents, Free Radical Scavenging and Cholinesterase Inhibitory Activities of Dalbergiella welwitschii Leaf Extracts" Plants 11, no. 15: 2066. https://doi.org/10.3390/plants11152066
APA StyleDiniso, T., Adeyemi, J., Oriola, A., Elufioye, T., Gondwe, M., & Oyedeji, A. (2022). Polyphenolic Contents, Free Radical Scavenging and Cholinesterase Inhibitory Activities of Dalbergiella welwitschii Leaf Extracts. Plants, 11(15), 2066. https://doi.org/10.3390/plants11152066