Establishing an Efficient Regeneration System for Tissue Culture in Bougainvillea buttiana ‘Miss Manila’
Abstract
:1. Introduction
2. Results
2.1. Disinfestation of Explants
2.2. Induction Culture
2.3. Proliferation Culture
2.4. Rooting Culture
2.5. Plantlet Acclimatization and Transplanting
3. Discussion
3.1. Effects of Different Disinfestant Treatment on Explants
3.2. Effects of Different Plant Growth Regulator Treatments on Induction Culture
3.3. Effects of Different Plant Growth Regulator Combinations on Proliferation Culture
3.4. Effects of Different Plant Growth Regulator Combination Combinations on Rooting Culture
4. Conclusions
5. Materials and Methods
5.1. Experimental Materials
5.2. Experimental Design
5.2.1. Explant Disinfestation
5.2.2. Culture Initiation
5.2.3. Proliferation Culture
- (I)
- Different concentrations of cytokinins were added to MS medium, and the effects of different cytokinins, including different concentrations of 6-BA, KT and ZT, on the proliferation and growth of shoots in test tubes were analysed and compared. A total of 12 combinations, four concentrations of each of the three cytokinins were treated separately, including6-BA (0.5, 1.0, 1.5, 2.0 mg/L), KT (0.5, 1.0, 1.5, 2.0 mg/L), and ZT (0.5, 1.0, 1.5, 2.0 mg/L), were selected. Thus, the optimal type and concentration of cytokinin in proliferation culture were selected.
- (II)
- Based on the optimal treatment of the cytokinin in (I), MS was used as the basic medium to analyse and compare the effects of auxin combinations on the proliferation and growth of test tube shoots. NAA, IBA and IAA were added at different concentrations, four concentrations of each of the three auxins were treated separately, including NAA (0.05, 0.1, 0.5, 1.0 mg/L), IBA (0.05, 0.1, 0.5, 1.0 mg/L), and IAA (0.05, 0.1, 0.5, 1.0 mg/L), to select the most suitable plant growth regulator type and concentration in proliferation culture.
5.2.4. Rooting Culture
5.2.5. Plantlet Acclimatization and Transplanting
5.3. Determination of Morphological Indices
5.4. Statistical Analysis
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Douglas, N.A.; Manos, P.S. Molecular phylogeny of Nyctaginaceae: Taxonomy, biogeography, and characters associated with a radiation of xerophytic genera in North America. Am. J. Bot. 2007, 94, 856–872. [Google Scholar] [CrossRef]
- Ahmed, A.H. New Flavone from the Aerial Parts of Bougainvillea glabra. Int. J. Comput. Eng. Res. 2014, 4, 1–5. [Google Scholar]
- Chang, S.X.; Yang, G.S.; Chen, J.H.; Huang, S.R. Development History and Tendency of Bougainvillea lndustry all over the world. Chin. J. Trop. Agric. 2018, 38, 71–77. [Google Scholar]
- Zhou, Q.; Huang, K.F.; Ding, Y.L.; Guo, H.Z. Investigation and Taxonomic Identification on Introduced Ornamental Varieties in Bougainvillea in China. Acta Agric. Jiangxi 2011, 23, 53–56. [Google Scholar] [CrossRef]
- Srivastava, R.; Shukla, S.; Soni, A.; Kumar, A. RAPD-based genetic relationships in different Bougainvillea cultivars. Crop Breed. Appl. Biotechnol. 2009, 9, 154–163. [Google Scholar] [CrossRef]
- Kumar, P.P.; Janakiram, T.; Bhat, K.V. Microsatellite based DNA fingerprinting and assessment of genetic diversity in Bougainvillea cultivars. Gene 2020, 753, 144794. [Google Scholar] [CrossRef]
- Sharma, S.C.; Srivastava, R.; Roy, R.K. Role of Bougainvilleas in mitigation of environmental pollution. J. Environ. Sci. Eng. 2005, 47, 131–134. [Google Scholar]
- Nazir, H.; Salman, M.; Athar, M.; Farooq, U.; Wahab, A.; Akram, M. Citric acid functionalized Bougainvillea spectabilis:a novel, sustainable, and cost-effective biosorbent for removal of heavy metal (Pb2+) from waste water. Water Air Soil Pollut. 2019, 230, 303. [Google Scholar] [CrossRef]
- Zhang, M.Z.; Liu, J.N.; Wang, W.J.; Bao, Y.Y. Responses of Bougainvillea spectabilis to elevated atmospheric CO2 under galaxolide (HHCB) pollution and the mechanisms of its rhizosphere metabolism. J. Soils Sediments 2019, 19, 159–170. [Google Scholar] [CrossRef]
- Kumar, S.N.A.; Ritesh, S.K.; Sharmila, G.; Muthukumaran, C. Extraction optimization and characterization of water soluble red purple pigment from floral bracts of Bougainvillea glabra. Arab. J. Chem. 2017, 10, 2145–2150. [Google Scholar] [CrossRef]
- Kugler, F.; Stintzing, F.C.; Carle, R. Characterisation of betalain patterns of differently coloured inflorescences from Gomphrena globosa L. and Bougainvillea sp. by HPLC–DAD–ESI–MSn. Anal. Bioanal. Chem. 2007, 387, 637–648. [Google Scholar] [CrossRef]
- Mahendran, G.B.; Ramalingam, S.J.; Rayappan, J.B.B.; Kesavan, S.; Periathambi, T.; Nesakumar, N. Green preparation of reduced graphene oxide by Bougainvillea glabra flower extract and sensing application. J. Mater. Sci. Mater. Electron. 2020, 31, 14345–14356. [Google Scholar] [CrossRef]
- Yogesh, G.K.; Shuaib, E.P.; Roopmani, P.; Gumpu, M.B.; Krishnan, U.M.; Sastikumar, D. Fluorescent carbon nanoparticles from laser-ablated Bougainvillea alba flower extract for bioimaging applications. Appl. Phys. A 2019, 125, 379. [Google Scholar] [CrossRef]
- Abarca-Vargas, R.; Petricevich, V.L. Bougainvillea Genus: A Review on Phytochemistry, Pharmacology, and Toxicology. Evid. Based Complement. Altern. Med. 2018, 2018, 9070927. [Google Scholar] [CrossRef]
- Hernandez-Martinez, A.R.; Estevez, M.; Vargas, S.; Quintanilla, F.; Rodriguez, R. New dye-sensitized solar cells obtained from extracted bracts of Bougainvillea glabra and spectabilis betalain pigments by different purification processes. Int. J. Mol. Sci. 2011, 12, 5565–5576. [Google Scholar] [CrossRef]
- Christopher, B.C.; James, L.G. Influence of Indolebutyric Acid Potassium Salt on Propagation of Semi-hardwood Stem Cuttings of Bougainvillea. HortScience 2006, 41, 983. [Google Scholar]
- Lai, R.Y.; Zhong, Z.H.; Zhang, X.Q.; Lin, L.X.; Su, M.H.; Xie, Z.N. Effects of Remaining Leaf Combining with IBA on Rooting. Physiological and Biochemical Indicators of Leaves from Bougainvillea spectabilis Cuttings. Agric. Sci. Technol. 2010, 11, 120–123. [Google Scholar] [CrossRef]
- Espinosa-Leal, C.A.; Puente-Garza, C.A.; García-Lara, S. In vitro plant tissue culture: Means for production of biological active compounds. Planta 2018, 248, 1–18. [Google Scholar] [CrossRef]
- Que, M.J. Preliminary study on the treatment of twiggery cuttage of Bougainvillea spectabilis by indole butyrate. J. Guangxi Agric. 2019, 34, 19–22. [Google Scholar]
- Sharma, A.K.; Prasad, R.N.; Chaturvedi, H.C. Clonal propagation of Bougainvillea glabra ‘Magnifica’ through shoot apex culture. Plant Cell Tissue Organ Cult. 1981, 1, 33–38. [Google Scholar] [CrossRef]
- Ye, D.Y. Study on Technique System of the Tissue Culture in Bougainvillea glabraz. Master’s Thesis, Sichuan Agricultural University, Yaan, China, 2004. [Google Scholar]
- Li, Z.Y. Comparation on Culture Propogation of Three Varieties of Bougainvillea spectabilis. Master’s Thesis, Guangxi University, Nanning, China, 2017. [Google Scholar]
- Wang, R.; Song, Q.L.; Kong, L.L.; Zhang, Y. Browning Treatment in Tissue Culture of ‘Miliang 1’ Delicious Kiwifruit. IOP Conf. Ser. Mater. Sci. Eng. 2020, 740, 012194. [Google Scholar] [CrossRef]
- Jain, R.; Janakiram, T.; Swaroop, K.; Kumar, S.; Kumawat, G.L. Standardization of protocol for in vitro multiplication of Bougainvillea. Indian J. Agric. Sci. 2016, 86, 516–521. [Google Scholar]
- Ostry, M.; Hackett, W.; Michler, C.; Serres, R.; McCown, B. Influence of regeneration method and tissue source on the frequency of somatic variation in Populus to infection by Septoria musiva. Plant Sci. 1994, 97, 209–215. [Google Scholar] [CrossRef]
- Zhang, X.H.; Chang, M.H.; Zhang, J.H. Research on Tissue Culture and Seedling Raising Technology of Bougainvillea glabra. J. Zhangjiakou Agric. Coll. 2000, 2, 29–30. [Google Scholar]
- Du, T.K.; Xu, Q. Tissue Culture of Bougainvillea spectabilis. J. Ningxia Univ. (Nat. Sci. Ed.) 2004, 25, 69–71. [Google Scholar]
- Datta, S.K.; Mandal, A.K.A. Standardization of in vitro Multiplication of Two Difficult-to-root Bougainvillea Cultivars for Commercial Exploitation. Sci. Cult. 2012, 78, 251–254. [Google Scholar]
- Sun, L.N.; Long, D.J.; Wang, H.X.; Tang, Q.M. Study on the Disinfection and Callus Induction of the Explants of Bougainvillea glabra. J. Anhui Agric. Sci. 2011, 39, 12024–12025+12055. [Google Scholar] [CrossRef]
- Fehér, A. Callus, Dedifferentiation, Totipotency, Somatic Embryogenesis: What These Terms Mean in the Era of Molecular Plant Biology? Front. Plant Sci. 2019, 10, 536. [Google Scholar] [CrossRef]
- Gong, W.; Hu, T.X.; Gong, Y.B.; Xiong, Q.E.; Wang, J.Y.; Zhang, J.; Li, J. Callus Induction and Plant Regeneration from Stem Segment of Bougainvillea glabra Choisy. Acta Hortic. Sin. 2005, 36, 1125–1128. [Google Scholar] [CrossRef]
- Tashmatova, L.V.; Matsneva, O.V.; Khromova, T.M.; Shakhov, V.V. Influence of different concentrations of 6-benzylaminopurine and thidiazuron on the proliferative activity of apple varieties in in vitro culture. BIO Web Conf. 2021, 36, 03012. [Google Scholar] [CrossRef]
- Zarnadze, N.; Dolidze, K.; Manjgaladze, S.; Turmanidze, N.; Chitanava, J.; Bolkvadze, G.; Jakeli, E. Microclonal Propagation of Crataegus monogyna Jacq. In Vitro. CBU Int. Conf. Proc. 2019, 7, 1020–1025. [Google Scholar] [CrossRef]
- Shah, S.T.; Zamir, R.; Muhammad, T.; Ali, H. Mass Propagation of Bougainvillea spectabilis through Shoot Tip Culture. Pak. J. Bot. 2006, 38, 953–959. [Google Scholar]
- González-Hernández, D.; Hernández-Díaz, E.K.; Capote, A.; Pérez, A.; Rivero, L.; Chong-Pérez, B.; Pérez-Alonso, N. Micropropagation of Stevia rebaudiana Bertoni plants from ex vitro explants. Biotecnol. Veg. 2019, 19, 53–63. [Google Scholar]
- Tereso, S.; Migue, C.M.; Mascarenhas, M.; Roque, A.; Trindade, H.; Maroco, J.; Oliveira, M.M. Improved in vitro rooting of Prunus dulcis Mill. Cultivars. Biol. Plant. 2008, 52, 437–444. [Google Scholar] [CrossRef]
- Ford, Y.Y.; Bonham, E.C.; Cameron, R.W.F.; Blake, P.S.; Judd, H.L.; Harrison-Murray, R.S. Adventitious rooting: Examining the role of auxin in an easy- and a difficult-to-root plant. Plant Growth Regul. 2002, 36, 149–159. [Google Scholar] [CrossRef]
- Pratiksha, K.; Kishan, S.; Janakiram, T.; Singh, S.K.; Prasad, K.V.; Ritu, J. In vitro Sterilization, Rooting and Acclimatization of Difficult-to-root Bougainvillea Cultivars. Int. J. Bio-Resour. Stress Manag. 2016, 7, 412–419. [Google Scholar]
- Pandey, N.; Tripathi, D.; Rai, S.K.; Pandey-Rai, S. Transverse thin celllayer culture for high frequency shoot germination in Boerhaavia difusa L., its conservation and assessment of genetic fidelity. Plant Arch. 2019, 19, 1093–1101. [Google Scholar]
Treatment Group | Initiation Rate (%) | Callus Induction Rate (%) | Shoot Length (cm) |
---|---|---|---|
6-BA (1.0 mg/L) + NAA (0.1 mg/L) | 32.59 ± 4.39 d | 98.00 ± 3.46 ab | 1.29 ± 0.19 ab |
6-BA (2.0 mg/L) + NAA (0.1 mg/L) | 58.19 ± 14.94 b | 1.00 ± 0.00 a | 1.33 ± 0.30 ab |
6-BA (2.0 mg/L) + NAA (0.2 mg/L) | 62.22 ± 22.34 bc | 97.67 ± 4.04 ab | 1.26 ± 0.18 a |
6-BA (2.5 mg/L) + NAA (0.2 mg/L) | 78.16 ± 8.25 ab | 1.00 ± 0.00 a | 1.52 ± 0.14 ab |
6-BA (1.0 mg/L) + IBA (0.1 mg/L) | 90.28 ± 6.78 a | 90.00 ± 5.29 bc | 1.27 ± 0.18 ab |
6-BA (2.0 mg/L) + IBA (0.1 mg/L) | 52.78 ± 2.41 c | 86.33 ± 2.89 c | 1.32 ± 0.14 ab |
6-BA (2.0 mg/L) + IBA (0.2 mg/L) | 90.14 ± 0.58 a | 62.33 ± 5.51 d | 1.20 ± 0.19 b |
6-BA (2.5 mg/L) + IBA (0.2 mg/L) | 95.14 ± 4.34 a | 92.00 ± 7.81 abc | 1.57 ± 0.03 ab |
Treatment Group | Rooting Rate (%) | Number of Roots | Root Length (cm) |
---|---|---|---|
1/2MS + NAA (0.5 mg/L) | 56.01 ± 3.48 cd | 2.68 ± 0.25 bcd | 0.91 ± 0.13 b |
1/2MS + NAA (1.0 mg/L) | 63.51 ± 9.28 bc | 2.93 ± 0.31 bcd | 0.95 ± 0.12 b |
1/2MS + NAA (1.5 mg/L) | 69.21 ± 7.86 b | 3.73 ± 0.42 b | 1.02 ± 0.14 b |
1/2MS + NAA (2.0 mg/L) | 41.03 ± 8.00 ef | 4.75 ± 0.94 a | 0.96 ± 0.10 b |
1/2MS + IBA (0.5 mg/L) | 41.54 ± 7.80 ef | 2.30 ± 0.26 cd | 2.76 ± 0.51 a |
1/2MS + IBA (1.0 mg/L) | 45.59 ± 6.87 def | 2.76 ± 0.57 bcd | 0.77 ± 0.16 b |
1/2MS + IBA (1.5 mg/L) | 54.00 ± 5.29 cd | 3.17 ± 0.16 bcd | 1.06 ± 0.54 b |
1/2MS + IBA (2.0 mg/L) | 81.97 ± 7.26 a | 3.32 ± 0.87 bc | 1.14 ± 0.35 b |
1/2MS + IAA (0.5 mg/L) | 36.59 ± 1.57 fg | 2.14 ± 0.23 d | 1.04 ± 0.37 b |
1/2MS + IAA (1.0 mg/L) | 25.79 ± 5.32 gh | 2.70 ± 0.50 bcd | 0.94 ± 0.17 b |
1/2MS + IAA (1.5 mg/L) | 52.70 ± 8.61 cde | 2.50 ± 0.17 cd | 1.12 ± 0.47 b |
1/2MS + IAA (2.0 mg/L) | 20.28 ± 5.21 h | 3.07 ± 1.10 bcd | 0.82 ± 0.41 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, T.; Zhang, H.; Zhao, R.; Zhu, Z. Establishing an Efficient Regeneration System for Tissue Culture in Bougainvillea buttiana ‘Miss Manila’. Plants 2022, 11, 2372. https://doi.org/10.3390/plants11182372
Huang T, Zhang H, Zhao R, Zhu Z. Establishing an Efficient Regeneration System for Tissue Culture in Bougainvillea buttiana ‘Miss Manila’. Plants. 2022; 11(18):2372. https://doi.org/10.3390/plants11182372
Chicago/Turabian StyleHuang, Tao, Huihui Zhang, Runan Zhao, and Zunling Zhu. 2022. "Establishing an Efficient Regeneration System for Tissue Culture in Bougainvillea buttiana ‘Miss Manila’" Plants 11, no. 18: 2372. https://doi.org/10.3390/plants11182372
APA StyleHuang, T., Zhang, H., Zhao, R., & Zhu, Z. (2022). Establishing an Efficient Regeneration System for Tissue Culture in Bougainvillea buttiana ‘Miss Manila’. Plants, 11(18), 2372. https://doi.org/10.3390/plants11182372