Soil Microbiome Influences on Seedling Establishment and Growth of Prosopis chilensis and Prosopis tamarugo from Northern Chile
Abstract
:1. Introduction
2. Results
2.1. Soil Characterization
2.2. Seedling Establishment and Growth
2.3. Soil Microbial Community
2.4. Root-Associated Microbial Community
3. Discussion
4. Materials and Methods
4.1. Plant Description and Seed Sampling
4.2. Soil Sampling and Characterization
4.3. Greenhouse Experiment
4.4. Genomic DNA Extraction, PCR Amplification and Sequencing
4.5. Sequence Analysis
4.6. Statistics
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- INE. Compendio Estadístico; Instituto Nacional de Estadísticas: Santiago de Chile, Chile, 2006. [Google Scholar]
- Bull, A.T.; Asenjo, J.A.; Goodfellow, M.; Gómez-Silva, B. The Atacama Desert: Technical Resources and the Growing Importance of Novel Microbial Diversity. Annu. Rev. Microbiol. 2016, 70, 215–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conley, C.A.; Ishkhanova, G.; Mckay, C.P.; Cullings, K. A Preliminary Survey of Non-Lichenized Fungi Cultured from the Hyperarid Atacama Desert of Chile. Astrobiology 2006, 6, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Piubeli, F.; de Lourdes Moreno, M.; Kishi, L.T.; Henrique-Silva, F.; García, M.T.; Mellado, E. Phylogenetic Profiling and Diversity of Bacterial Communities in the Death Valley, an Extreme Habitat in the Atacama Desert. Indian J. Microbiol. 2015, 55, 392–399. [Google Scholar] [CrossRef] [Green Version]
- Santibañez, F. Atlas de Cambio Climático de la Zona Semiárida de Chile; Ministerio del Medio Ambiente: Santiago de Chile, Chile, 2014. [Google Scholar]
- Lester, E.D.; Satomi, M.; Ponce, A. Microflora of extreme arid Atacama Desert soils. Soil Biol. Biochem. 2007, 39, 704–708. [Google Scholar] [CrossRef]
- Santiago, I.F.; Gonçalves, V.N.; Gómez-Silva, B.; Galetovic, A.; Rosa, L.H. Fungal diversity in the Atacama Desert. Antonie Van Leeuwenhoek 2018, 111, 1345–1360. [Google Scholar] [CrossRef]
- Stivaletta, N.; Barbieri, R.; Billi, D. Microbial Colonization of the Salt Deposits in the Driest Place of the Atacama Desert (Chile). Orig. Life Evol. Biosph. 2012, 42, 187–200. [Google Scholar] [CrossRef]
- Rampelotto, P. Extremophiles and Extreme Environments. Life 2013, 3, 482–485. [Google Scholar] [CrossRef] [Green Version]
- Orellana, R.; Macaya, C.; Bravo, G.; Dorochesi, F.; Cumsille, A.; Valencia, R.; Rojas, C.; Seeger, M. Living at the Frontiers of Life: Extremophiles in Chile and Their Potential for Bioremediation. Front. Microbiol. 2018, 9, 2309. [Google Scholar] [CrossRef]
- Ray, A.E.; Zhang, E.; Terauds, A.; Ji, M.; Kong, W.; Ferrari, B.C. Soil Microbiomes With the Genetic Capacity for Atmospheric Chemosynthesis Are Widespread Across the Poles and Are Associated With Moisture, Carbon, and Nitrogen Limitation. Front. Microbiol. 2020, 11, 1936. [Google Scholar] [CrossRef]
- Yu, H.; Leadbetter, J.R. Bacterial chemolithoautotrophy via manganese oxidation. Nature 2020, 583, 453–458. [Google Scholar] [CrossRef]
- Bräutigam, A.; Schlüter, U.; Eisenhut, M.; Gowik, U. On the Evolutionary Origin of CAM Photosynthesis. Plant Physiol. 2017, 174, 473–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mantri, N.; Patade, V.; Penna, S.; Ford, R.; Pang, E. Abiotic Stress Responses in Plants: Present and Future. In Abiotic Stress Responses in Plants; Springer: New York, NY, USA, 2012; pp. 1–19. [Google Scholar]
- Cedeño-García, G.A.; Gerding, M.; Moraga, G.; Inostroza, L.; Fischer, S.; Sepúlveda-Caamaño, M.; Oyarzúa, P. Plant growth promoting rhizobacteria with ACC deaminase activity isolated from Mediterranean dryland areas in Chile: Effects on early nodulation in alfalfa. Chil. J. Agric. Res. 2018, 78, 360–369. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.-M.; Khan, A.L.; Waqas, M.; You, Y.-H.; Kim, J.-H.; Kim, J.-G.; Hamayun, M.; Lee, I.-J. Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J. Plant Interact. 2014, 9, 673–682. [Google Scholar] [CrossRef] [Green Version]
- Artursson, V.; Finlay, R.D.; Jansson, J.K. Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ. Microbiol. 2006, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Bakker, M.G.; Schlatter, D.C.; Otto-Hanson, L.; Kinkel, L.L. Diffuse symbioses: Roles of plant-plant, plant-microbe and microbe-microbe interactions in structuring the soil microbiome. Mol. Ecol. 2014, 23, 1571–1583. [Google Scholar] [CrossRef] [PubMed]
- Bonfante, P.; Anca, I.-A. Plants, Mycorrhizal Fungi, and Bacteria: A Network of Interactions. Annu. Rev. Microbiol. 2009, 63, 363–383. [Google Scholar] [CrossRef] [Green Version]
- Buée, M.; De Boer, W.; Martin, F.; van Overbeek, L.; Jurkevitch, E. The rhizosphere zoo: An overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 2009, 321, 189–212. [Google Scholar] [CrossRef]
- Zolla, G.; Badri, D.V.; Bakker, M.G.; Manter, D.K.; Vivanco, J.M. Soil microbiomes vary in their ability to confer drought tolerance to Arabidopsis. Appl. Soil Ecol. 2013, 68, 1–9. [Google Scholar] [CrossRef]
- Porcel, R.; Aroca, R.; Ruiz-Lozano, J.M. Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron. Sustain. Dev. 2012, 32, 181–200. [Google Scholar] [CrossRef]
- Luo, J.; Zhou, J.; Li, H.; Shi, W.; Polle, A.; Lu, M.; Sun, X.; Luo, Z.-B. Global poplar root and leaf transcriptomes reveal links between growth and stress responses under nitrogen starvation and excess. Tree Physiol. 2015, 35, 1283–1302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teste, F.P.; Jones, M.D.; Dickie, I.A. Dual-mycorrhizal plants: Their ecology and relevance. New Phytol. 2020, 225, 1835–1851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catalano, S.A.; VILARDI, J.C.; Tosto, D.; SAIDMAN, B.O. Molecular phylogeny and diversification history of Prosopis (Fabaceae: Mimosoideae). Biol. J. Linn. Soc. 2008, 93, 621–640. [Google Scholar] [CrossRef] [Green Version]
- Ajiboye, A.A.; Ajiboye, M.D.; Agboola, D.A.; Iwuala, E.N. Effect of Ecto and Endomycorrhizae on Seedling Growth of Four Savanna Tree Seeds in Nigeria (Tamarindus Indica (L), Albezia lebbeck (benth), Prosopis africana (L) and Parkia biglobossa (Jacq.B)). Int. J. Plant Res. 2016, 6, 25–33. [Google Scholar] [CrossRef]
- Dixon, R.K.; Garg, V.K.; Rao, M.V. Inoculation of Leucaena and Prosopis seedlings with Glomus and Rhizobium species in saline soil: Rhizosphere relations and seedling growth. Arid L. Res. Manag. 1993, 7, 133–144. [Google Scholar] [CrossRef]
- Frioni, L.; Minasian, H.; Volfovicz, R. Arbuscular mycorrhizae and ectomycorrhizae in native tree legumes in Uruguay. For. Ecol. Manag. 1999, 115, 41–47. [Google Scholar] [CrossRef]
- Benata, H.; Mohammed, O.; Noureddine, B.; Abdelbasset, B.; Abdelmoumen, H.; Muresu, R.; Squartini, A.; Idrissi, M.M. El Diversity of bacteria that nodulate Prosopis juliflora in the eastern area of Morocco. Syst. Appl. Microbiol. 2008, 31, 378–386. [Google Scholar] [CrossRef]
- Castro, D. Respuesta Fisiológica, Bioquímica y Molecular de Plántulas de Algarrobo (Prosopis chilensis (Mol) Stuntz) frente a Estrés Hídrico; Universidad de La Serena: La Serena, Chile, 2015. [Google Scholar]
- Silva, M.P.; Martinez, M.J.; Coirini, R.; Brunetti, M.A.; Balzarini, M.; Karlin, U. Valoración Nutritiva Del Fruto Del Algarrobo Blanco (Prosopis Chilensis) Bajo Distintos Tipos De Almacenamiento. Multequina 2000, 9, 65–74. [Google Scholar]
- Escobar, B.; Estévez, A.A.M.; Fuentes, G.C.; Venegas, F.D.; Estévez, A.M.; Fuentes, C.; Venegas, D. Uso de harina de cotiledón de algarrobo (Prosopis chilensis (Mol) Stuntz) como fuente de proteína y fibra dietética en la elaboración de galletas y hojuelas fritas. Arch. Latinoam. Nutr. 2009, 59, 191–198. [Google Scholar]
- Westphal, C.; Gachón, P.; Bravo, J.; Navarrete, C.; Salas, C.; Ibáñez, C. The Potential of Algarrobo (Prosopis chilensis (Mol.) Stuntz) for Regeneration of Desertified Soils: Assessing Seed Germination Under Saline Conditions. Environ. Manag. 2015, 56, 209–220. [Google Scholar] [CrossRef]
- Pasiecznik, N.M.; Felker, P.; Harris, P.J.C.; Harsh, L.N.; Cruz, G.; Tewari, J.C.; Cadoret, K.; Maldonado, L.J. The Prosopis juliflora—Prosopis pallida Complex: A Monograph; HDRA—The Organic Organisation: Coventry, UK, 2001; ISBN 0905343301. [Google Scholar]
- Valdivia, C.E.; Romero, C.R. EN LA SENDA DE LA EXTINCIÓN: EL CASO DEL ALGARROBO PROSOPIS CHILENSIS (FABACEAE) Y EL BOSQUE ESPINOSO EN LA REGIÓN METROPOLITANA DE CHILE CENTRAL. Gayana. Botánica 2013, 70, 57–65. [Google Scholar] [CrossRef] [Green Version]
- León, M.F.; Silva, S.I.; Sandoval, A.; Aracena, I.; Quiñones, F.; León-Lobos, P. Management saline soil using sand affects growth of roots and increases seedling survival prosopis tamarugo phil. (Fabaceae). Gayana-Bot. 2017, 74, 158–166. [Google Scholar]
- Felker, P.; Clark, P.R.; Laag, A.E.; Pratt, P.F. Salinity tolerance of the tree legumes: Mesquite (Prosopis glandulosa var.torreyana, P. velutina and P. articulata) Algarrobo (P. chilensis), Kiawe (P. pallida) and Tamarugo (P. tamarugo) grown in sand culture on nitrogen-free media. Plant Soil 1981, 61, 311–317. [Google Scholar] [CrossRef]
- Sohrabi, S.; Gherekhloo, J. Effect of drought stress on seed germination of effect of drought stress on seed germination of prosopis farcta. In Proceedings of the International Symposium on Current Trends in Plant Protection, Belgrade, Serbia, 25–28 September 2012; pp. 137–140. [Google Scholar]
- Aljasmi, M.; El-Keblawy, A.; Mosa, K.A. Abiotic factors controlling germination of the multipurpose invasive Prosopis pallida: Towards afforestation of salt-affected lands in the subtropical arid Arabian desert. Trop. Ecol. 2021, 62, 116–125. [Google Scholar] [CrossRef]
- Urzúa, J. Efecto de la Inoculación con Rizobacterias Provenientes de Copiapoa coquimbana sobre la Biomasa de Plántulas Prosopis chilensis sometidas a Estrés por NaCl; Universidad de La Serena: La Serena, Chile, 2015. [Google Scholar]
- Orwa, C.; Mutua, A.; Kindt, R.; Jamnadass, R.; Simons, A. Agroforestree Database: A Tree Reference and Selection Guide Version 4.0; World Agroforestry Centre: Nairobi, Kenya, 2009. [Google Scholar]
- Kaushik, N.; Kumar, V. Khejri (Prosopis cineraria)-based agroforestry system for arid Haryana, India. J. Arid Environ. 2003, 55, 433–440. [Google Scholar] [CrossRef]
- Lam, E.J.; Cánovas, M.; Gálvez, M.E.; Montofré, Í.L.; Keith, B.F.; Faz, Á. Evaluation of the phytoremediation potential of native plants growing on a copper mine tailing in northern Chile. J. Geochemical Explor. 2017, 182, 210–217. [Google Scholar] [CrossRef]
- Casanova, M.; Salazar, O.; Seguel, O.; Luzio, W. Management of Soil Properties in Chile. In The Soils of Chile; Hartemink, A.E., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 99–119. ISBN 9789400759497. [Google Scholar]
- Shackleton, R.T.; Le Maitre, D.C.; Pasiecznik, N.M.; Richardson, D.M. Prosopis: A global assessment of the biogeography, benefits, impacts and management of one of the world’s worst woody invasive plant taxa. AoB Plants 2014, 6, plu027. [Google Scholar] [CrossRef]
- Sadzawka, R.A.; Carrasco, R.M.A.; Grez, Z.R.; de la Luz Mora, M.; Flores, P.H.; Neaman, A. Métodos de Análisis Recomendados Para los Suelos de Chile. Revisión 2006; Instituto de Investigaciones Agropecuarias: Santiago, Chile, 2006. [Google Scholar]
- Brown, J.R. (Ed.) Recommended Chemical Soil Test Procedures for the North Central Region; University of Missouri: Columbia, MI, USA, 1998. [Google Scholar]
- Minca, K.K.; Basta, N.T.; Scheckel, K.G. Using the Mehlich-3 Soil Test as an Inexpensive Screening Tool to Estimate Total and Bioaccessible Lead in Urban Soils. J. Environ. Qual. 2013, 42, 1518–1526. [Google Scholar] [CrossRef]
- FAO (Ed.) Procedimiento Operativo Estándar Para el Análisis de Carbonato de Calcio Equivalente en Suelo; FAO: Rome, Italy, 2021. [Google Scholar]
- Mckean, S.J. Manual de Analisis de Suelos y Tejido Vegetal. Una gría Teórica y Práctica de Metodologías; Centro Internacional de Agricultura Tropical: Cali, Colombia, 1993. [Google Scholar]
- Chen, R.-W.; He, Y.-Q.; Cui, L.-Q.; Li, C.; Shi, S.-B.; Long, L.-J.; Tian, X.-P. Diversity and Distribution of Uncultured and Cultured Gaiellales and Rubrobacterales in South China Sea Sediments. Front. Microbiol. 2021, 12, 1213. [Google Scholar] [CrossRef]
- Rosenberg, E. The Family Chitinophagaceae. In The Prokaryotes; Springer: Berlin/Heidelberg, Germany, 2014; Volume 9783642389, pp. 493–495. ISBN 9783642301230. [Google Scholar]
- Hu, D.; Zang, Y.; Mao, Y.; Gao, B. Identification of Molecular Markers That Are Specific to the Class Thermoleophilia. Front. Microbiol. 2019, 10, 1185. [Google Scholar] [CrossRef]
- Gómez-Lama Cabanás, C.; Ruano-Rosa, D.; Legarda, G.; Pizarro-Tobías, P.; Valverde-Corredor, A.; Triviño, J.; Roca, A.; Mercado-Blanco, J. Bacillales Members from the Olive Rhizosphere Are Effective Biological Control Agents against the Defoliating Pathotype of Verticillium dahliae. Agriculture 2018, 8, 90. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Kuipers, O.P. Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species. BMC Genom. 2016, 17, 882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albuquerque, L.; da Costa, M.S. The Family Gaiellaceae. In The Prokaryotes; Springer: Berlin/Heidelberg, Germany, 2014; pp. 357–360. ISBN 9783642301384. [Google Scholar]
- Yurkov, A.M. Yeasts of the soil—Obscure but precious. Yeast 2018, 35, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Ariyawansa, H.A.; Thambugala, K.M.; Manamgoda, D.S.; Jayawardena, R.; Camporesi, E.; Boonmee, S.; Wanasinghe, D.N.; Phookamsak, R.; Hongsanan, S.; Singtripop, C.; et al. Towards a natural classification and backbone tree for Pleosporaceae. Fungal Divers. 2015, 71, 85–139. [Google Scholar] [CrossRef]
- Mayrberger, J.M. Studies of Genera Cytophaga-Flavobacterium in Context of The Soil Carbon Cycle; Michigan State University: East Lansing, MI, USA, 2011. [Google Scholar]
- Coenye, T. The Family Burkholderiaceae. In The Prokaryotes; Springer: Berlin/Heidelberg, Germany, 2014; Volume 9783642301, pp. 759–776. ISBN 9783642301971. [Google Scholar]
- Shao, J.; Miao, Y.; Liu, K.; Ren, Y.; Xu, Z.; Zhang, N.; Feng, H.; Shen, Q.; Zhang, R.; Xun, W. Rhizosphere microbiome assembly involves seed-borne bacteria in compensatory phosphate solubilization. Soil Biol. Biochem. 2021, 159, 108273. [Google Scholar] [CrossRef]
- Savary, R.; Masclaux, F.G.; Wyss, T.; Droh, G.; Cruz Corella, J.; Machado, A.P.; Morton, J.B.; Sanders, I.R. A population genomics approach shows widespread geographical distribution of cryptic genomic forms of the symbiotic fungus Rhizophagus irregularis. ISME J. 2018, 12, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Senwanna, C.; Wanasinghe, D.; Bulgakov, T.; Wang, Y.; Bhat, D.; Tang, A.; Mortimer, P.; Xu, J.; Hyde, K.; Phookamsak, R. Towards a natural classification of Dothidotthia and Thyrostroma in Dothidotthiaceae (Pleosporineae, Pleosporales). Mycosphere 2019, 10, 701–738. [Google Scholar] [CrossRef]
- Peiris, P.U.S.; Li, Y.; Brown, P.; Xu, C. Fungal biocontrol against Meloidogyne spp. in agricultural crops: A systematic review and meta-analysis. Biol. Control 2020, 144, 104235. [Google Scholar] [CrossRef]
- Gomes, A.; Vasconcellos, R.; Ramos, M.; Guimarães, M.; Yatsuda, A.; Vieira-Bressan, M. In vitro interaction of Brazilian strains of the Nematode-trapping fungi Arthrobotrys spp. on Panagrellus sp. and Cooperia punctata. Mem. Inst. Oswaldo Cruz 2001, 96, 861–864. [Google Scholar] [CrossRef] [Green Version]
- Attanayake, R.N.; Glawe, D.A.; Dugan, F.M.; Chen, W. Erysiphe trifolii Causing Powdery Mildew of Lentil (Lens culinaris). Plant Dis. 2009, 93, 797–803. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Spadaro, D.; Valente, S.; Garibaldi, A.; Gullino, M.L. Cloning, characterization, expression and antifungal activity of an alkaline serine protease of Aureobasidium pullulans PL5 involved in the biological control of postharvest pathogens. Int. J. Food Microbiol. 2012, 153, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Pinto, M.M.; Moura-Guedes, M.C.; Barreiro, M.G.; Pais, I.; Santos, M.R.; Silva, M.J. Aureobasidium pullulansas a biocontrol agent of blue mold in “Rocha” pear. Commun. Agric. Appl. Biol. Sci. 2006, 71, 973–978. [Google Scholar] [PubMed]
- Hui, F.; Ren, Y.; Chen, L.; Li, Y.; Zhang, L.; Niu, Q. Molecular Phylogenetic Analysis Reveals the New Genus Hemisphaericaspora of the Family Debaryomycetaceae. PLoS ONE 2014, 9, e103737. [Google Scholar] [CrossRef]
- Coleine, C.; Selbmann, L.; Guirado, E.; Singh, B.K.; Delgado-Baquerizo, M. Humidity and low pH boost occurrence of Onygenales fungi in soil at global scale. Soil Biol. Biochem. 2022, 167, 108617. [Google Scholar] [CrossRef]
- Sun, X.; Chen, W.; Ivanov, S.; MacLean, A.M.; Wight, H.; Ramaraj, T.; Mudge, J.; Harrison, M.J.; Fei, Z. Genome and evolution of the arbuscular mycorrhizal fungus Diversispora epigaea (formerly Glomus versiforme ) and its bacterial endosymbionts. New Phytol. 2019, 221, 1556–1573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beauregard, F.; de Blois, S. Beyond a Climate-Centric View of Plant Distribution: Edaphic Variables Add Value to Distribution Models. PLoS ONE 2014, 9, e92642. [Google Scholar] [CrossRef]
- Nadeau, M.B.; Khasa, D.P. Edaphic Selection Pressures as Drivers of Contrasting White Spruce Ectomycorrhizal Fungal Community Structure and Diversity in the Canadian Boreal Forest of Abitibi-Témiscamingue Region. PLoS ONE 2016, 11, e0166420. [Google Scholar] [CrossRef]
- McRostie, V.B.; Gayo, E.M.; Santoro, C.M.; De Pol-Holz, R.; Latorre, C. The pre-Columbian introduction and dispersal of Algarrobo (Prosopis, Section Algarobia) in the Atacama Desert of northern Chile. PLoS ONE 2017, 12, e0181759. [Google Scholar] [CrossRef] [Green Version]
- Shen, C.; Wang, J.; He, J.-Z.; Yu, F.-H.; Ge, Y. Plant Diversity Enhances Soil Fungal Diversity and Microbial Resistance to Plant Invasion. Appl. Environ. Microbiol. 2021, 87, 1–15. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Brunel, C.; van Kleunen, M. Soil-microorganism-mediated invasional meltdown in plants. Nat. Ecol. Evol. 2020, 4, 1612–1621. [Google Scholar] [CrossRef]
- Egerton-Warburton, L.M.; Querejeta, J.I.; Allen, M.F.; Finkelman, S.L. Mycorrhizal fungi. In Encyclopedia of Soils in the Environment; Elsevier: Amsterdam, The Netherlands, 2005; pp. 533–542. ISBN 9780080547954. [Google Scholar]
- Crous, P.W.; Schoch, C.L.; Hyde, K.D.; Wood, A.R.; Gueidan, C.; de Hoog, G.S.; Groenewald, J.Z. Phylogenetic lineages in the Capnodiales. Stud. Mycol. 2009, 64, 17–47. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, R.; Pandit, M.K.; Meyerson, L.A.; Chaudhari, D.S.; Sharma, M.; Dhotre, D.; Shouche, Y.S. Contrasting Composition, Diversity and Predictive Metabolic Potential of the Rhizobacterial Microbiomes Associated with Native and Invasive Prosopis Congeners. Curr. Microbiol. 2021, 78, 2051–2060. [Google Scholar] [CrossRef] [PubMed]
- FAO. Problem Posed by the Introduction of Prosopis spp. in Selected Countries; FAO: Rome, Italy, 2006.
- Haas, J.C.; Vergara, A.; Serrano, A.R.; Mishra, S.; Hurry, V.; Street, N.R. Candidate regulators and target genes of drought stress in needles and roots of Norway spruce. Tree Physiol. 2021, 41, 1230–1246. [Google Scholar] [CrossRef] [PubMed]
- Castro, D.; Schneider, A.N.; Holmlund, M.; Näsholm, T.; Street, N.R.; Hurry, V. Effects of Early, Small-Scale Nitrogen Addition on Germination and Early Growth of Scots Pine (Pinus sylvestris) Seedlings and on the Recruitment of the Root-Associated Fungal Community. Forests 2021, 12, 1589. [Google Scholar] [CrossRef]
- Hanania, U.; Velcheva, M.; Sahar, N.; Perl, A. An improved method for isolating high-quality DNA fromVitis vinifera nuclei. Plant Mol. Biol. Report 2004, 22, 173–177. [Google Scholar] [CrossRef]
- Beckers, B.; Op De Beeck, M.; Thijs, S.; Truyens, S.; Weyens, N.; Boerjan, W.; Vangronsveld, J. Performance of 16s rDNA Primer Pairs in the Study of Rhizosphere and Endosphere Bacterial Microbiomes in Metabarcoding Studies. Front. Microbiol. 2016, 7, 650. [Google Scholar] [CrossRef] [Green Version]
- Ihrmark, K.; Bödeker, I.T.M.; Cruz-Martinez, K.; Friberg, H.; Kubartova, A.; Schenck, J.; Strid, Y.; Stenlid, J.; Brandström-Durling, M.; Clemmensen, K.E.; et al. New primers to amplify the fungal ITS2 region—evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 2012, 82, 666–677. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal rna genes for phylogenetics. In PCR Protocols; Academic Press: New York, NY, USA, 1990; pp. 315–322. [Google Scholar]
- Bodenhausen, N.; Horton, M.W.; Bergelson, J. Bacterial Communities Associated with the Leaves and the Roots of Arabidopsis thaliana. PLoS ONE 2013, 8, e56329. [Google Scholar] [CrossRef] [Green Version]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [Green Version]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Gregory Caporaso, J. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2′s q2-feature-classifier plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef] [PubMed]
- Kõljalg, U.; Larsson, K.-H.; Abarenkov, K.; Nilsson, R.H.; Alexander, I.J.; Eberhardt, U.; Erland, S.; Høiland, K.; Kjøller, R.; Larsson, E.; et al. UNITE: A database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol. 2005, 166, 1063–1068. [Google Scholar] [CrossRef] [PubMed]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. Available online: https://CRAN.R-project.org/package=vegan (accessed on 9 October 2022).
- de Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research. Available online: https://CRAN.R-project.org/package=agricolae (accessed on 9 October 2022).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Therneau, T.M. A Package for Survival Analysis in R. Available online: https://CRAN.R-project.org/package=survival (accessed on 9 October 2022).
- McMurdie, P.J.; Holmes, S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [Green Version]
- Gentleman, R.; Carey, V.; Huber, W.; Hahne, F. Genefilter: Methods for filtering genes from high-throughput experiments. Available online: https://bioconductor.org/packages/release/bioc/html/genefilter.html (accessed on 9 October 2022).
- Kembel, S.W.; Cowan, P.D.; Helmus, M.R.; Cornwell, W.K.; Morlon, H.; Ackerly, D.D.; Blomberg, S.P.; Webb, C.O. Picante: {R} tools for integrating phylogenies and ecology. Bioinformatics 2010, 26, 1463–1464. [Google Scholar] [CrossRef] [Green Version]
- Clarke, K.R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
Native | Foreign | |||
---|---|---|---|---|
Desert | Inland Steppe | Coastal Steppe | Mediterranean | |
Conductivity (mS/cm) | 88.6 a | 9.1 b | 8.3 c | 0.8 d |
pH | 5.3 | 8.2 | 8.0 | 6.3 |
Organic matter (%) 1 | 11.2 ± 0.8 a | 4.7 ± 0.5 b | 0.05 ± 0.004 b | 11.4 ± 0.5 a |
Field capacity (%) | 76.6 ± 9.38 a | 74.5 ± 5.44 a | 65.4 ± 8.78 b | 58 ± 4.74 b |
Macro- and micro-nutrients | ||||
Cl− (mg/kg) 2 | 22404 ± 89 a | 351 ± 1 c | 911 ± 17 b | 298 ± 1 d |
PO43− (mg/kg) 1 | 3936 ± 645 a | 3591 ± 739 ab | 25 ± 3 c | 2653 ± 446 bc |
B (mg/kg) 1 | 313 ± 0.3 a | 9.8 ± 0.01 b | 0.08 ± 0.02 d | 1.1 ± 0.004 c |
SO42− (mg/kg) 1 | 12436 ± 1520 a | 450 ± 29 b | 153 ± 2 d | 191 ± 13 c |
CO2− (mg/kg) 4 | 0.03 ± 0.001 ab | 0.4 ± 0.02 a | 0.03 ± 0.002 b | 0.03 ± 0.0004 b |
Ca2+ (mg/kg) 1 | 367± 4 c | 507 ± 2 b | 28 ± 3 d | 554 ± 3 a |
Na (mg/kg) 1 | 24343 ± 26 a | 129 ± 6 c | 919 ± 16 b | 71 ± 2 d |
Li (mg/kg) 1 | 56 ± 1 a | 0.01 ± 0.01 d | 46 ± 2 b | 0.03 ± 0.01 c |
Mg (mg/kg) 1 | 117± 11 a | 4 ± 0.1 d | 17 ± 2 c | 59 ± 1 b |
K (mg/kg) 1 | 1685 ± 8 a | 153 ± 0.4 c | 46 ± 2 d | 159 ± 1 b |
Cu (mg/kg) 5 | 1.6 ± 0.01 a | 0.8 ± 0.002 c | 1.2 ± 0.1 b | 0.4 ± 0.01 d |
Mn (mg/kg) 5 | 108 ± 0.2 a | 76 ± 0.3 b | 13 ± 1 d | 63 ± 1 c |
Pb (mg/kg) 3 | 1.4 ± 0.1 b | 4.4 ± 0.03 a | 0.9 ± 0.04 c | 0.4 ± 0.1 d |
Fe (mg/kg) 5 | 12 ± 0.1 b | 1.8 ± 0.02 c | 124 ± 1 a | 12 ± 0.02 b |
Zn (mg/kg) 5 | 4.7 ± 0.1 a | 1.5 ± 0.1 b | 1.5 ± 0.04 b | 1.2 ± 0.2 c |
Prosopis chilensis | Prosopis tamarugo | |||||
---|---|---|---|---|---|---|
Higher in Root | Equal in Both | Higher in Soil | Higher in Root | Equal in Both | Higher in Soil | |
Bacteria | ||||||
Native within | 352 (37%) | 473 (49%) | 131 (14%) | 344 (36%) | 474 (50%) | 138 (14%) |
Foreign within | 102 (11%) | 638 (67%) | 216 (22%) | 264 (28%) | 477 (50%) | 215 (22%) |
Foreign outside | 105 (11%) | 684 (72%) | 167 (17%) | 350 (37%) | 463 (48%) | 143 (15%) |
Fungi | ||||||
Native within | 99 (38%) | 116 (44%) | 47 (18%) | 75 (29%) | 140 (53%) | 47 (18%) |
Foreign within | 29 (11%) | 163 (62%) | 70 (27%) | 13 (5%) | 178 (68%) | 71 (27%) |
Foreign outside | 40 (16%) | 150 (57%) | 72 (27%) | 39 (15%) | 156 (60%) | 67 (25%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro, D.; Concha, C.; Jamett, F.; Ibáñez, C.; Hurry, V. Soil Microbiome Influences on Seedling Establishment and Growth of Prosopis chilensis and Prosopis tamarugo from Northern Chile. Plants 2022, 11, 2717. https://doi.org/10.3390/plants11202717
Castro D, Concha C, Jamett F, Ibáñez C, Hurry V. Soil Microbiome Influences on Seedling Establishment and Growth of Prosopis chilensis and Prosopis tamarugo from Northern Chile. Plants. 2022; 11(20):2717. https://doi.org/10.3390/plants11202717
Chicago/Turabian StyleCastro, David, Christopher Concha, Fabiola Jamett, Cristian Ibáñez, and Vaughan Hurry. 2022. "Soil Microbiome Influences on Seedling Establishment and Growth of Prosopis chilensis and Prosopis tamarugo from Northern Chile" Plants 11, no. 20: 2717. https://doi.org/10.3390/plants11202717
APA StyleCastro, D., Concha, C., Jamett, F., Ibáñez, C., & Hurry, V. (2022). Soil Microbiome Influences on Seedling Establishment and Growth of Prosopis chilensis and Prosopis tamarugo from Northern Chile. Plants, 11(20), 2717. https://doi.org/10.3390/plants11202717