Temperature Sensitivity of Topsoil Organic Matter Decomposition Does Not Depend on Vegetation Types in Mountains
Abstract
:1. Introduction
2. Results
2.1. Environmental Characteristics and Q10 Variation across Mountain Forests and Meadows
2.2. Relationships between Q10 Value and Environmental Characteristics
3. Discussion
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cox, P.M.; Betts, R.A.; Jones, C.D.; Spall, S.A.; Totterdell, I.J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 2000, 408, 184–187. [Google Scholar] [CrossRef] [PubMed]
- Friedlingstein, P.; Cox, P.; Betts, R.; Bopp, L.; von Bloh, W.; Brovkin, V.; Cadule, P.; Doney, S.; Eby, M.; Fung, I.; et al. Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Clim. 2006, 19, 3337–3353. [Google Scholar] [CrossRef] [Green Version]
- Mu, C.; Zhang, T.; Wu, Q.; Peng, X.; Cao, B.; Zhang, X.; Cheng, G. Organic carbon pools in permafrost regions on the Qinghai-Xizang (Tibetan) Plateau. Cryosphere 2015, 9, 479–486. [Google Scholar] [CrossRef] [Green Version]
- Sheikh, M.A.; Kumar, M.; Bussmann, R.W. Altitudinal variation in soil organic carbon stock in coniferous subtropical and broadleaf temperate forests in Garhwal Himalaya. Carbon Balance Manag. 2009, 4, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmermann, M.; Meir, P.; Silman, M.R.; Fedders, A.; Gibbon, A.; Malhi, Y.; Urrego, D.H.; Bush, M.B.; Feeley, K.J.; Garcia, K.C.; et al. No differences in soil carbon stocks across the tree line in the Peruvian Andes. Ecosystems 2010, 13, 62–74. [Google Scholar] [CrossRef]
- Djukic, I.; Zehetner, F.; Tatzber, M.; Gerzabek, M.H. Soil organic-matter stocks and characteristics along an Alpine elevation gradient. J. Plant Nutr. Soil Sci. 2010, 173, 30–38. [Google Scholar] [CrossRef]
- Dad, J.M. Organic carbon stocks in mountain grassland soils of northwestern Kashmir Himalaya: Spatial distribution and effects of altitude, plant diversity and land use. Carbon Manag. 2019, 10, 149–162. [Google Scholar] [CrossRef]
- Canedoli, C.; Ferre, C.; Khair, D.A.E.; Comolli, R.; Liga, C.; Mazzucchelli, F.; Proietto, A.; Rota, N.; Colombo, G.; Bassano, B.; et al. Evaluation of ecosystem services in a protected mountain area: Soil organic carbon stock and biodiversity in alpine forests and grasslands. Ecosyst. Serv. 2020, 44, 101135. [Google Scholar] [CrossRef]
- Pascual, D.; Kuhry, P.; Raudina, T. Soil organic carbon storage in a mountain permafrost area of Central Asia (High Altai, Russia). Ambio 2021, 50, 2022–2037. [Google Scholar] [CrossRef]
- Leifeld, J.; Zimmermann, M.; Fuhrer, J. Storage and turnover of carbon in grassland soils along an elevation gradient in the Swiss Alps. Glob. Chang. Biol. 2009, 15, 668–679. [Google Scholar] [CrossRef]
- Saenger, A.; Cecillon, L.; Poulenard, J.; Bureau, F.; Danieli, S.D.; Gonzalez, J.-M.; Brun, J.-J. Surveying the carbon pools of mountain soils: A comparison of physical fractionation and Rock-Eval pyrolysis. Geoderma 2015, 241–242, 279–288. [Google Scholar] [CrossRef]
- Global Temperature Projections with Increasing and Decreasing Greenhouse Gas Emissions. Available online: https://www.climate.gov (accessed on 20 July 2022).
- Kooch, Y.; Bayranvand, M. Labile soil organic matter changes related to forest floor quality of tree species mixtures in Oriental beech forests. Ecol. Indic. 2019, 107, 105598. [Google Scholar] [CrossRef]
- Ovsepyan, L.; Kurganova, I.; Lopes de Gerenyu, V.; Kuzyakov, Y. Conversion of cropland to natural vegetation boosts microbial and enzyme activities in soil. Sci. Total Environ. 2020, 743, 140829. [Google Scholar] [CrossRef] [PubMed]
- Gavrichkova, O.; Pretto, G.; Brugnoli, E.; Chiti, T.; Ivashchenko, K.V.; Mattioni, M.; Moscatelli, M.C.; Scartazza, A.; Calfapietra, C. Consequences of grazing cessation for soil environment and vegetation in a subalpine grassland ecosystem. Plants 2022, 11, 2121. [Google Scholar] [CrossRef]
- Bu, X.; Ruan, H.; Wang, L.; Ma, W.; Ding, J.; Yu, X. Soil organic matter in density fractions as related to vegetation changes along an altitude gradient in the Wuyi Mountains, southeastern China. Appl. Soil Ecol. 2012, 52, 42–47. [Google Scholar] [CrossRef]
- Ivashchenko, K.; Sushko, S.; Selezneva, A.; Ananyeva, N.; Zhuravleva, A.; Kudeyarov, V.; Makarov, M.; Blagodatsky, S. Soil microbial activity along an altitudinal gradient: Vegetation as a main driver beyond topographic and edaphic factors. Appl. Soil Ecol. 2021, 168, 104197. [Google Scholar] [CrossRef]
- Wan, Q.; Zhu, G.; Guo, H.; Zhang, Y.; Pan, H.; Yong, L.; Ma, H. Influence of vegetation coverage and climate environment on soil organic carbon in the Qilian Mountains. Sci. Rep. 2019, 9, 17623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Zhao, X.; Chen, L.; Yang, Q.; Chen, S.; Zhang, W. Global synthesis of temperature sensitivity of soil organic carbon decomposition: Latitudinal patterns and mechanisms. Funct. Ecol. 2019, 33, 514–523. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, Y.; Ruan, H.; Luo, Y.; Wang, J. Temperature sensitivity increases with soil organic carbon recalcitrance along an elevational gradient in the Wuyi Mountains, China. Soil Biol. Biochem. 2010, 42, 1811–1815. [Google Scholar] [CrossRef]
- Wang, G.; Zhou, Y.; Xu, X.; Ruan, H.; Wang, J. Temperature sensitivity of soil organic carbon mineralization along an elevation gradient in the Wuyi Mountains, China. PLoS ONE 2013, 8, e53914. [Google Scholar] [CrossRef]
- Gutierrez-Giron, A.; Diaz-Pines, E.; Rubio, A.; Gavilan, R.G. Both altitude and vegetation affect temperature sensitivity of soil organic matter decomposition in Mediterranean high mountain soils. Geoderma 2015, 237–238, 1–8. [Google Scholar] [CrossRef]
- Kong, J.; He, Z.; Chen, L.; Zhang, S.; Yang, R.; Du, J. Elevational variability in and controls on the temperature sensitivity of soil organic matter decomposition in Alpine forests. Ecosphere 2022, 13, e4010. [Google Scholar] [CrossRef]
- Schindlbacher, A.; de Gonzalo, C.; Díaz-Pinés, E.; Gorría, P.; Matthews, B.; Inclán, R.; Zechmeister-Boltenstern, S.; Rubio, A.; Jandl, R. Temperature sensitivity of forest soil organic matter decomposition along two elevation gradients. J. Geophys. Res. 2010, 115, G03018. [Google Scholar] [CrossRef]
- Klimek, B.; Jelonkiewicz, Ł.; Niklinska, M. Drivers of temperature sensitivity of decomposition of soil organic matter along a mountain altitudinal gradient in the Western Carpathians. Ecol. Res. 2016, 31, 609–615. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; He, N.; Wang, Q.; Lü, Y.; Wang, Q.; Xu, Z.; Zhu, J. Effects of temperature and moisture on soil organic matter decomposition along elevation gradients on the Changbai Mountains, Northeast China. Pedosphere 2016, 26, 399–407. [Google Scholar] [CrossRef]
- Shahzad, T.; Chenu, C.; Repinçay, C.; Mougin, C.; Ollier, J.-L.; Fontaine, S. Plant clipping decelerates the mineralization of recalcitrant soil organic matter under multiple grassland species. Soil Biol. Biochem. 2012, 51, 73–80. [Google Scholar] [CrossRef]
- Ghorbani, N.; Raiesi, F.; Ghorbani, S. Bulk soil and particle size-associated C and N under grazed and ungrazed regimes in Mountainous arid and semi-arid rangelands. Nutr. Cycl. Agroecosyst. 2012, 93, 15–34. [Google Scholar] [CrossRef]
- Sun, G.; Zhu-Barker, X.; Chen, D.; Liu, L.; Zhang, N.; Shi, C.; He, L.; Lei, Y. Responses of root exudation and nutrient cycling to grazing intensities and recovery practices in an alpine meadow: An implication for pasture management. Plant Soil 2017, 416, 515–525. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charro, E.; Gallardo, J.F.; Moyano, A. Degradability of soils under oak and pine in Central Spain. Eur. J. For. Res. 2010, 129, 83–91. [Google Scholar] [CrossRef]
- Kurganova, I.N.; Lopes de Gerenyu, V.O.; Gallardo Lancho, J.F.; Oehm, C.T. Evaluation of the rates of soil organic matter mineralization in forest ecosystems of temperate continental, Mediterranean, and tropical monsoon climates. Eurasian Soil Sci. 2012, 45, 68–79. [Google Scholar] [CrossRef]
- Xu, X.F.; Schimel, J.P.; Thornton, P.E.; Song, X.; Yuan, F.M.; Goswami, S. Substrate and environmental controls on microbial assimilation of soil organic carbon: A framework for Earth system models. Ecol. Lett. 2014, 17, 547–555. [Google Scholar] [CrossRef]
- Kurganova, I.; Merino, A.; Lopes de Gerenyu, V.O.; Barros, N.; Kalinina, O.; Giani, L.; Kuzyakov, Y. Mechanisms of carbon sequestration and stabilization by restoration of arable soils after abandonment: A chronosequence study on Phaeozems and Chernozems. Geoderma 2019, 15, 113882. [Google Scholar] [CrossRef]
- Lavallee, J.M.; Soong, J.L.; Cotrufo, M.F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Glob. Chang. Biol. 2020, 26, 261–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pietri, J.C.A.; Brookes, P.C. Relationships between soil pH and microbial properties in a UK arable soil. Soil Biol. Biochem. 2008, 40, 1856–1861. [Google Scholar] [CrossRef]
- Rousk, J.; Brookes, P.C.; Baath, E. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl. Environ. Microbiol. 2009, 75, 1589–1596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, N.; Welp, G.; Amelung, W. The temperature sensitivity (Q10) of soil respiration: Controlling factors and spatial prediction at regional scale based on environmental soil classes. Glob. Biogeochem. Cycles 2018, 32, 306–323. [Google Scholar] [CrossRef]
- Xu, Z.; Yu, G.; Zhang, X.; He, N.; Wang, Q.; Wang, S.; Wang, R.; Zhao, N.; Jia, Y.; Wang, C. Soil enzyme activity and stoichiometry in forest ecosystems along the North–South Transect in eastern China (NSTEC). Soil Biol. Biochem. 2017, 104, 152–163. [Google Scholar] [CrossRef]
- Bueis, T.; Turrion, M.B.; Bravo, F.; Pando, V.; Muscolo, A. Factors determining enzyme activities in soils under Pinus halepensis and Pinus sylvestris plantations in Spain: A basis for establishing sustainable forest management strategies. Ann. For. Sci. 2018, 75, 34. [Google Scholar] [CrossRef] [Green Version]
- Puissant, J.; Jones, B.; Goodall, T.; Mang, D.; Blaud, A.; Gweon, H.S.; Malik, A.; Jones, D.L.; Clark, I.M.; Hirsch, P.R.; et al. The pH optimum of soil exoenzymes adapt to long term changes in soil pH. Soil Biol. Biochem. 2019, 138, 107601. [Google Scholar] [CrossRef]
- FAO. Understanding Mountain Soils: A Contribution from Mountain Areas to the International Year of Soils 2015; FAO: Rome, Italy, 2015. [Google Scholar]
- Creamer, R.E.; Schulte, R.P.O.; Stone, D.; Gal, A.; Krogh, P.H.; Papa, G.L.; Murray, P.J.; Peres, G.; Foerster, B.; Rutgers, M.; et al. Measuring basal soil respiration across Europe: Do incubation temperature and incubation period matter? Ecol. Indic. 2014, 36, 409–418. [Google Scholar] [CrossRef] [Green Version]
- Fierer, N.; Colman, B.P.; Schimel, J.P.; Jackson, R.B. Predicting the temperature dependence of microbial respiration in soil: A continental-scale analysis. Glob. Biogeochem. Cycles 2006, 20, GB3026. [Google Scholar] [CrossRef] [Green Version]
- Karhu, K.; Auffret, M.D.; Dungait, J.A.; Hopkins, D.W.; Prosser, J.I.; Singh, B.K.; Subke, J.A.; Wookey, P.A.; Ågren, G.I.; Sebastia, M.T.; et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 2014, 513, 81–84. [Google Scholar] [CrossRef]
- Anderson, J.P.E.; Domsch, K.H. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol. Biochem. 1978, 10, 215–221. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
Site | ALT, m a.s.l. | SLP, ° | MATair, °C | MATsoil, °C | Plant (Grass) | Soil (0–10 cm) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
CVR, % | RCH | C, % | pH | C:N | BR:C, µg C g−1 C h−1 | MBC:C, % | |||||
Long ungrazed transect (3.6 km) | |||||||||||
MF | 1260 | 7 | 6.2 | NA | 14 ± 7 | 6 ± 1 | 5.9 ± 1.0 | 5.0 ± 0.4 | 14.7 ± 1.2 | 27.0 ± 2.6 | 2.1 ± 0.2 |
FF | 1960 | 20 | 3.6 | 4.2 | 29 ± 11 | 6 ± 1 | 8.2 ± 1.2 | 5.4 ± 0.2 | 13.7 ± 0.6 | 23.7 ± 5.9 | 3.2 ± 0.4 |
DF | 2060 | 26 | 4.3 | 3.7 | 18 ± 6 | 7 ± 0 | 7.9 ± 0.4 | 5.6 ± 0.0 | 13.5 ± 0.6 | 18.6 ± 3.3 | 2.7 ± 0.7 |
SM | 2240 | 9 | 5.0 | 4.1 | 99 ± 1 | 8 ± 1 | 13.0 ± 1.6 | 5.5 ± 0.0 | 11.6 ± 0.4 | 17.9 ± 1.9 | 4.1 ± 0.2 |
AM | 2480 | 6 | 3.6 | 3.7 | 90 ± 8 | 9 ± 1 | 21.1 ± 1.5 | 4.6 ± 0.1 | 12.4 ± 0.6 | 12.7 ± 1.4 | 2.6 ± 0.2 |
Short ungrazed transect (0.1 km) | |||||||||||
DF | 2173 | 29 | 5.2 | 5.0 | 40 ± 6 | 8 ± 1 | 9.3 ± 2.4 | 4.6 ± 0.0 | 12.4 ± 1.1 | 26.7 ± 0.2 | 4.2 ± 0.7 |
TL | 2183 | 27 | 5.1 | 4.8 | 62 ± 6 | 7 ± 1 | 11.9 ± 0.8 | 4.6 ± 0.2 | 12.3 ± 0.6 | 35.2 ± 3.1 | 3.5 ± 0.5 |
SM | 2187 | 25 | 6.4 | 5.5 | 98 ± 2 | 12 ± 1 | 14.2 ± 0.2 | 5.0 ± 0.1 | 13.4 ± 0.2 | 36.2 ± 3.1 | 4.6 ± 1.3 |
Short grazed transect (0.1 km) | |||||||||||
DF | 1884 | 29 | 7.1 | 6.4 | 53 ± 7 | 10 ± 0 | 7.7 ± 0.4 | 4.6 ± 0.1 | 11.5 ± 0.4 | 19.2 ± 6.5 | 2.9 ± 0.5 |
TL | 1904 | 28 | 7.3 | 6.6 | 75 ± 9 | 9 ± 2 | 11.9 ± 1.5 | 4.7 ± 0.1 | 11.4 ± 0.2 | 29.2 ± 9.3 | 2.5 ± 0.1 |
SM | 1912 | 29 | 8.5 | 8.4 | 93 ± 2 | 10 ± 0 | 11.9 ± 0.9 | 4.9 ± 0.1 | 11.5 ± 0.3 | 35.2 ± 7.7 | 2.7 ± 0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komarova, A.; Ivashchenko, K.; Sushko, S.; Zhuravleva, A.; Vasenev, V.; Blagodatsky, S. Temperature Sensitivity of Topsoil Organic Matter Decomposition Does Not Depend on Vegetation Types in Mountains. Plants 2022, 11, 2765. https://doi.org/10.3390/plants11202765
Komarova A, Ivashchenko K, Sushko S, Zhuravleva A, Vasenev V, Blagodatsky S. Temperature Sensitivity of Topsoil Organic Matter Decomposition Does Not Depend on Vegetation Types in Mountains. Plants. 2022; 11(20):2765. https://doi.org/10.3390/plants11202765
Chicago/Turabian StyleKomarova, Alexandra, Kristina Ivashchenko, Sofia Sushko, Anna Zhuravleva, Vyacheslav Vasenev, and Sergey Blagodatsky. 2022. "Temperature Sensitivity of Topsoil Organic Matter Decomposition Does Not Depend on Vegetation Types in Mountains" Plants 11, no. 20: 2765. https://doi.org/10.3390/plants11202765
APA StyleKomarova, A., Ivashchenko, K., Sushko, S., Zhuravleva, A., Vasenev, V., & Blagodatsky, S. (2022). Temperature Sensitivity of Topsoil Organic Matter Decomposition Does Not Depend on Vegetation Types in Mountains. Plants, 11(20), 2765. https://doi.org/10.3390/plants11202765