Bioassay Guided Fractionation Protocol for Determining Novel Active Compounds in Selected Australian Flora
Abstract
:1. Introduction
2. Results
2.1. Total Phenolic Content (TPC) and Antioxidant Capacity
2.2. Cytotoxic Activity of Crude Extracts
2.2.1. Crude Extracts Cytotoxicity
2.2.2. Inhibitory Concentrations and Selective Index
2.3. Antibacterial Activity
2.4. HPLC Profiling and Characterization of the Crude Extracts
2.5. Cytotoxic Activity of GGL Fractions
3. Materials and Methods
3.1. Reagents
3.2. Sample Collection and Preparation
3.3. Extraction Protocol and Measurement of TPC and Antioxidant Capacity
3.4. Extraction for Cytotoxicity and Antimicrobial Bioassays
3.5. Cytotoxicity Bioassay
Flow Cytometry Analysis
3.6. Antimicrobial Activity
3.7. High Performance Liquid Chromatography (HPLC) Phenolic Profiling and Fractionation
3.8. Cytotoxicity of Gumbi Gumbi Leaves (GGL) Fractions
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdallah, M.S.; Mustafa, M.; Nallappan, M.A.; Choi, S.; Paik, J.H.; Rusea, G. Determination of Phenolics and Flavonoids of Some Useful Medicinal Plants and Bioassay-Guided Fractionation Substances of Sclerocarya birrea (A. Rich) Hochst Stem (Bark) Extract and Their Efficacy Against Salmonella typhi. Front. Chem. 2021, 9, 670530. [Google Scholar] [CrossRef]
- Akter, S.; Netzel, M.E.; Fletcher, M.T.; Tinggi, U.; Sultanbawa, Y. Chemical and nutritional composition of Terminalia ferdinandiana (Kakadu Plum) kernels: A novel nutrition source. Foods 2018, 7, 60. [Google Scholar] [CrossRef]
- Akter, S.; Sultanbawa, Y.; Cozzolino, D. High throughput screening to determine the antibacterial activity of Terminalia ferdinandiana (Kakadu Plum): A proof of concept. J. Microbiol. Methods 2021, 182, 106169. [Google Scholar] [CrossRef]
- Bäcker, C.; Drwal, M.N.; Preissner, R.; Lindequist, U. Inhibition of DNA–Topoisomerase I by Acylated Triterpene Saponins from Pittosporum angustifolium Lodd. Nat. Prod. Bioprospecting 2016, 6, 141–147. [Google Scholar] [CrossRef]
- Bäcker, C.; Jenett-Siems, K.; Siems, K.; Niedermeyer, T.H.J.; Wurster, M.; Bodtke, A.; Lindequist, U. Taraxastane-type triterpene saponins isolated from Pittosporum angustifolium Lodd. Z. Fur Nat.-Sect. B J. Chem. Sci. 2015, 70, 403–408. [Google Scholar] [CrossRef]
- Bäcker, C.; Jenett-Siems, K.; Siems, K.; Wurster, M.; Bodtke, A.; Chamseddin, C.; Crüsemann, M.; Lindequist, U. Triterpene Glycosides from the Leaves of Pittosporum angustifolium. Planta Med. 2013, 79, 1461–1469. [Google Scholar] [CrossRef]
- Bäcker, C.; Jenett-Siems, K.; Siems, K.; Wurster, M.; Bodtke, A.; Lindequist, U. Cytotoxic saponins from the seeds of Pittosporum angustifolium. Z. Fur Nat.-Sect. C J. Biosci. 2014, 69, 191–198. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Yadav, A.; Sharma, R. Phytochemicals and antioxidant activity in Boerhavia diffusa. Int. J. Pharm. Pharm. Sci. 2014, 6, 344–348. [Google Scholar]
- Blonk, B.; Cock, I.E. Interactive antimicrobial and toxicity profiles of Pittosporum angustifolium Lodd. extracts with conventional antimicrobials. J. Integr. Med. 2019, 17, 261–272. [Google Scholar] [CrossRef]
- Delgado, C.; Mendez-Callejas, G.; Celis, C. Caryophyllene oxide, the active compound isolated from leaves of Hymenaea courbaril L. (Fabaceae) with antiproliferative and apoptotic effects on pc-3 androgen-independent prostate cancer cell line. Molecules 2021, 26, 6142. [Google Scholar] [CrossRef]
- Demirgan, R.; Karagöz, A.; Pekmez, M.; Önay-uçar, E.; Artun, F.T.; Mat, A. In vitro anticancer activity and cytotoxicity of some papaver alkaloids on cancer and normal cell lines. Afr. J. Tradit. Complementary Altern. Med. 2016, 13, 22–26. [Google Scholar] [CrossRef]
- Deo, P.; Hewawasam, E.; Karakoulakis, A.; Claudie, D.J.; Nelson, R.; Simpson, B.S.; Smith, N.M.; Semple, S.J. In Vitro Inhibitory Activities of Selected Australian Medicinal Plant Extracts against Protein Glycation, Angiotensin Converting Enzyme (ACE) and Digestive Enzymes Linked to Type II Diabetes. BMC Complement. Altern. Med. 2016, 16, 435. [Google Scholar] [CrossRef]
- Fidrianny, I.; Octaviani, G.D.; Kusmardiyani, S. Study of antioxidant profile and phytochemical content of different organs extracts of Morinda citrifolia L. J. Pharm. Sci. Res. 2018, 10, 2102–2105. [Google Scholar]
- Johnson, J.; Collins, T.; Mani, J.; Naiker, M. Nutritional Quality and Bioactive Constituents of Six Australian Plum Varieties. Int. J. Fruit Sci. 2021, 21, 115–132. [Google Scholar] [CrossRef]
- Johnson, J.; Collins, T.; Power, A.; Chandra, S.; Skylas, D.; Portman, D.; Panozzo, J.; Blanchard, C.; Naiker, M. Antioxidative properties and macrochemical composition of five commercial mungbean varieties in Australia. Legume Sci. 2020, 2, 1–11. [Google Scholar] [CrossRef]
- Johnson, J.; Mani, J.; Naiker, M. Within-Canopy Variation in the Ascorbic Acid Content of Tuckeroo (Cupaniopsis anacardioides) Fruits. Biol. Life Sci. Forum 2022, 11, 15. [Google Scholar] [CrossRef]
- Johnson, J.; Mani, J.S.; Broszczak, D.; Prasad, S.S.; Ekanayake, C.P.; Strappe, P.; Valeris, P.; Naiker, M. Hitting the sweet spot: A systematic review of the bioactivity and health benefits of phenolic glycosides from medicinally used plants. Phytother. Res. 2021, 35, 3484–3508. [Google Scholar] [CrossRef]
- Koche, D.; Shirsat, R.; Kawale, M. An overview of major classes of phytochemicals: Their type and role in disease prevention. Hislopia J. 2016, 9, 2016. [Google Scholar]
- Konczak, I.; Maillot, F.; Dalar, A. Phytochemical divergence in 45 accessions of Terminalia ferdinandiana (Kakadu plum). Food Chem. 2014, 151, 248–256. [Google Scholar] [CrossRef]
- Konczak, I.; Zabaras, D.; Dunstan, M.; Aguas, P. Antioxidant capacity and hydrophilic phytochemicals in commercially grown native Australian fruits. Food Chem. 2010, 123, 1048–1054. [Google Scholar] [CrossRef]
- Maen, A.; Cock, I.E. Inhibitory activity of Australian culinary herb extracts against the bacterial triggers of selected autoimmune diseases. Pharmacogn. Commun. 2015, 5, 130–139. [Google Scholar] [CrossRef]
- Mahbub, S.B.; Nguyen, L.T.; Habibalahi, A.; Campbell, J.M.; Anwer, A.G.; Qadri, U.M.; Gill, A.; Chou, A.; Wong, M.G.; Gosnell, M.E.; et al. Non-invasive assessment of exfoliated kidney cells extracted from urine using multispectral autofluorescence features. Sci. Rep. 2021, 11, e27. [Google Scholar] [CrossRef]
- Malviya, N.; Malviya, S. Bioassay guided fractionation-an emerging technique influence the isolation, identification and characterization of lead phytomolecules. Int. J. Hosp. Pharm. 2017, 2, 5. [Google Scholar] [CrossRef]
- Mani, J.; Johnson, J.B.; Hosking, H.; Ashwath, N.; Walsh, K.B.; Neilsen, P.M.; Broszczak, D.A.; Naiker, M. Antioxidative and therapeutic potential of selected Australian plants: A review. J. Ethnopharmacol. 2021, 268, 113580. [Google Scholar] [CrossRef]
- Mani, J.; Johnson, J.; Hosking, H.; Walsh, K.; Neilsen, P.; Naiker, M. In vitro Cytotoxic Properties of Crude Polar Extracts of Plants Sourced from Australia. Clin. Complementary Med. Pharmacol. 2022, 2, 100022. [Google Scholar] [CrossRef]
- Miller, D.D.; Li, T.; Liu, R.H. Antioxidants and Phytochemicals. Reference Module in Biomedical Sciences 2014. [CrossRef]
- Mostafa, A.A.; Al-Askar, A.A.; Almaary, K.S.; Dawoud, T.M.; Sholkamy, E.N.; Bakri, M.M. Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi J. Biol. Sci. 2018, 25, 361–366. [Google Scholar] [CrossRef]
- Mridusmita, C.; David, W.; David, E.; Sharon, P.; Heather, S.; Yasmina, S. Bioactive rich extracts from Terminalia ferdinandiana by enzyme-assisted extraction: A simple food safe extraction method. J. Med. Plants Res. 2017, 11, 96–106. [Google Scholar] [CrossRef]
- Netzel, M.; Netzel, G.; Tian, Q.; Schwartz, S.; Konczak, I. Native Australian fruits—A novel source of antioxidants for food. Innov. Food Sci. Emerg. Technol. 2007, 8, 339–346. [Google Scholar] [CrossRef]
- Pham, N.; Chalmers, A.; Vuong, Q.; Bowyer, M.; Scarlett, C. Characterising the Physical, Phytochemical and Antioxidant Properties of the Tuckeroo (Cupaniopsis anacardioides) Fruit. Technologies 2017, 5, 57. [Google Scholar] [CrossRef]
- Pham, N.M.Q.; Vuong, Q.V.; Sakoff, J.A.; Bowyer, M.C.; Le, V.A.; Scarlett, C.J. Determination of bioactive compounds, antioxidant and anticancer activities of Tuckeroo (Cupaniopsis anacardioides) fruits. 3 Biotech 2022, 12, 257. [Google Scholar] [CrossRef]
- Simić, A.Z.; Verbić, T.Ž.; Sentić, M.N.; Vojić, M.P.; Juranić, I.O.; Manojlović, D.D. Study of ellagic acid electro-oxidation mechanism. Mon. Fur Chem. 2013, 144, 121–128. [Google Scholar] [CrossRef]
- Srivastava, A.; Raghuwanshi, R. Landscape of natural product diversity in land-plants as source for anticancer molecules. In Evolutionary Diversity as a Source for Anticancer Molecules; Elsevier Inc.: Amsterdam, The Netherlands, 2021; Volume 2050. [Google Scholar] [CrossRef]
- Tan, A.C.; Konczak, I.; Ramzan, I.; Sze, D.M.Y. Native Australian fruit polyphenols inhibit cell viability and induce apoptosis in human cancer cell lines. Nutr. Cancer 2011, 63, 444–455. [Google Scholar] [CrossRef]
- Trugo, L.C.; von Baer, D.; von Baer, E. LUPIN. In Encyclopedia of Food Sciences and Nutrition; Academic Press: Cambridge, MA, USA, 2003; pp. 3623–3629. [Google Scholar] [CrossRef]
- Vuong, Q.V.; Hirun, S.; Phillips, P.A.; Chuen, T.L.K.; Bowyer, M.C.; Goldsmith, C.D.; Scarlett, C.J. Fruit-derived phenolic compounds and pancreatic cancer: Perspectives from Australian native fruits. J. Ethnopharmacol. 2014, 152, 227–242. [Google Scholar] [CrossRef]
- Xu, Q.N.; Zhu, D.; Wang, G.H.; Lin, T.; Sun, C.L.; Ding, R.; Tian, W.J.; Chen, H.F. Phenolic glycosides and flavonoids with antioxidant and anticancer activities from Desmodium caudatum. Nat. Prod. Res. 2021, 35, 4534–4541. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, D.; Jiang, R.; Li, H.; Wan, J.; Li, H. Ferulic acid exerts antitumor activity and inhibits metastasis in breast cancer cells by regulating epithelial to mesenchymal transition. Oncol. Rep. 2016, 36, 271–278. [Google Scholar] [CrossRef]
Plant Samples | Avg TPC (mg GAE/100g) | Avg FRAP (mg TXE/100 g) |
---|---|---|
TKF | 9085 ± 393 b | 12,351 ± 1905 d |
TKS | 2686 ± 15 c | 1181 ± 56 bcd |
BPF | 12,442 ± 1355 b | 16,670 ± 2275 bc |
BPS | 2647 ± 38 c | 4484 ± 308 cd |
IPF | 4193 ± 20 c | 5705 ± 247 cd |
IPS | 2764 ± 690 c | 1966 ± 311 d |
KPF | 20,847 ± 2322 a | 100,494 ± 9487 a |
KPS | 2927 ± 208 c | 23,511 ± 1192 b |
GGL | 4169 ± 57 c | 6742 ± 923 cd |
GGL | ||||
---|---|---|---|---|
HeLa | HT29 | Huh7 | PH5CH8 (Normal Cell) | |
IC50 * (µg/mL) | 472.15 | 687.64 | ND | 344.83 |
Log IC50 | 2.67 | 2.84 | ND | 2.54 |
MOE ** | −0.24 | −0.29 | ND | −0.28 |
95% CI *** of Log IC50 | 2.44–2.91 | 2.55–3.13 | ND | 2.26–2.82 |
SI | 0.73 | 0.5 | ND | |
KPS | ||||
HeLa | HT29 | Huh7 | PH5CH8 (Normal Cell) | |
IC50 * (µg/mL) | 420.07 | 296.81 | 363.38 | 302.19 |
Log IC50 | 2.62 | 2.47 | 2.56 | 2.48 |
MOE ** | −0.23 | −0.20 | −0.20 | −0.20 |
95% CI *** of Log IC50 | 2.39–2.85 | 2.27–2.68 | 2.36–2.76 | 2.57–2.97 |
SI | 0.72 | 1.02 | 0.83 |
Plant Extracts | Bacterial Strain Zone of Inhibition (mm) | |||
---|---|---|---|---|
Gram Positive | Gram Negative | |||
S. aureus | E. coli | P. aeruginosa | Sal. typhimurium | |
TKF | 8.5 ± 0.71 | 0.00 | 0.00 | 0.00 |
TKS | 9.25 ± 0.35 | 0.00 | 0.00 | 0.00 |
BPF | 0.00 | 0.00 | 0.00 | 0.00 |
BPS | 0.00 | 0.00 | 0.00 | 0.00 |
IPF | 0.00 | 0.00 | 0.00 | 0.00 |
IPS | 0.00 | 0.00 | 0.00 | 0.00 |
KPF | 13.40 ± 1.13 | 15.70 ± 0.42 | 0.00 | 11.85 ± 2.05 |
KPS | 0.00 | 0.00 | 0.00 | 0.00 |
GGL | 0.00 | 0.00 | 0.00 | 0.00 |
Positive control (gentamicin) | 27.75 ± 0.35 | 22.75 ± 0.35 | 26.75 ± 0.35 | 22.25 ± 0.35 |
GGLX Fractions | F1 | F2 | F3 | F4 | F5 |
---|---|---|---|---|---|
HeLa Inhibitory Conc. (mg/mL) | 19.1 | 4.07 | 14.12 | 8.77 | 6.4026 |
Log IC50 | 1.28 | 0.61 | 1.15 | 0.94 | 0.81 |
MOE | −0.34 | −0.19 | −1.47 | −0.16 | −0.91 |
95% CI of Log IC50 | 0.94–1.62 | 0.42–0.80 | −0.32–2.62 | 0.78–1.60 | 0.73–0.88 |
SI | 1.60 | 0.72 | 1.22 | 0.68 | 1.01 |
HT29 Inhibitory Conc. (mg/mL) | 16.89 | 8.25 | 9.61 | 13 | 9.84 |
Log IC50 | 1.23 | 0.92 | 0.98 | 1.11 | 0.99 |
MOE | −0.23 | −0.18 | −0.35 | −0.9 | −0.67 |
95% CI of Log IC50 | 1.00–1.46 | 0.73–1.10 | 0.63–1.34 | 0.21–2.02 | 0.32–1.66 |
SI | 1.41 | 1.46 | 0.83 | 1.00 | 1.56 |
Huh7 Inhibitory Conc. (mg/mL) | 20.03 | 3.97 | 4.97 | 15.28 | 8.27 |
Log IC50 | 1.3 | 0.6 | 0.7 | 1.18 | 0.92 |
MOE | −0.34 | −0.31 | −0.26 | −0.16 | −0.91 |
95% CI of Log IC50 | 0.96–1.64 | 0.29–0.91 | 0.44–0.95 | 0.98–1.38 | 0.00–1.83 |
SI | 1.67 | 0.70 | 0.43 | 1.18 | 1.31 |
PH5CH8 Inhibitory Conc. (mg/mL) | 11.97 | 5.67 | 11.56 | 12.97 | 6.31 |
Log IC50 | 1.08 | 0.75 | 1.06 | 1.11 | 0.8 |
MOE | −0.22 | −0.2 | −0.28 | −0.15 | −0.07 |
95% CI of Log IC50 | 0.86–1.30 | 0.55–0.95 | 0.78–1.35 | 0.96–1.27 | 0.73–0.87 |
Sample Name | Location | Traditional Use | % Recovered |
---|---|---|---|
Kakadu plum flesh (KPF) | Charles Darwin University, Northern territory. | Remedy for a cold or flu. | 37.9 |
Kakadu plum seed (KPS) | 18.3 | ||
Burdekin plum flesh (BPF) | North Rockhampton, Central Queensland. | Used in jellies, jams and as preservatives. Flavor meat or fermented into wine. | 42.9 |
Burdekin plum seed (BPS) | 10.4 | ||
Tuckeroo flesh (TKF) | Parkhurst, Rockhampton, Central Queensland. | Cure stomach-aches, diabetes and insomnia [21] | 7.3 |
Tuckeroo seed (TKS) | 21.4 | ||
Illawarra plum flesh (IPF) | Rockhampton, Central Queensland. | Regarded as one of the bush foods | 57.0 |
Illawarra plum seed (IPS) | 21.2 |
Time (min.) | % Solvent A | % Solvent B |
---|---|---|
0 | 5 | 95 |
2 | 20 | 80 |
12 | 30 | 70 |
18 | 40 | 60 |
35 | 50 | 50 |
45 | 80 | 20 |
50 | 100 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mani, J.; Johnson, J.; Hosking, H.; Hoyos, B.E.; Walsh, K.B.; Neilsen, P.; Naiker, M. Bioassay Guided Fractionation Protocol for Determining Novel Active Compounds in Selected Australian Flora. Plants 2022, 11, 2886. https://doi.org/10.3390/plants11212886
Mani J, Johnson J, Hosking H, Hoyos BE, Walsh KB, Neilsen P, Naiker M. Bioassay Guided Fractionation Protocol for Determining Novel Active Compounds in Selected Australian Flora. Plants. 2022; 11(21):2886. https://doi.org/10.3390/plants11212886
Chicago/Turabian StyleMani, Janice, Joel Johnson, Holly Hosking, Beatriz E. Hoyos, Kerry B. Walsh, Paul Neilsen, and Mani Naiker. 2022. "Bioassay Guided Fractionation Protocol for Determining Novel Active Compounds in Selected Australian Flora" Plants 11, no. 21: 2886. https://doi.org/10.3390/plants11212886
APA StyleMani, J., Johnson, J., Hosking, H., Hoyos, B. E., Walsh, K. B., Neilsen, P., & Naiker, M. (2022). Bioassay Guided Fractionation Protocol for Determining Novel Active Compounds in Selected Australian Flora. Plants, 11(21), 2886. https://doi.org/10.3390/plants11212886