The Effects of the Cultivar and Environment on the Phenolic Contents of Hazelnut Kernels
Abstract
:1. Introduction
2. Results
2.1. Identification of Phenolic Compounds
2.2. Phenolic Compounds in Hazelnut Kernels
2.2.1. Contents of Individual Phenolic Compounds
2.2.2. Contents of Different Phenolic Groups
2.2.3. Principal Component Analysis Overview and Relationships between the Variables and Working Hypotheses
2.2.4. Effects of Environmental Factors on Phenolic Contents
3. Discussion
3.1. Identification of Phenolic Compounds
3.2. Phenolic Compounds in Hazelnut Kernels
4. Materials and Methods
4.1. Plant Material
4.2. Chemicals
4.3. Extraction of Phenolic Compounds from Hazelnut Kernels
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (FAO). FAOSTAT Database. 2022. Available online: https://www.fao.org/faostat/en/#home (accessed on 14 March 2022).
- Reis, S.; Yomralioglu, T. Detection of current and potential hazelnut plantation areas in Tabzon, North East Turkey using GIS and RS. J. Environ. Biol. 2006, 27, 653–659. [Google Scholar] [PubMed]
- Król, K.; Gantner, M. Morphological traits and chemical composition of hazelnut from different geographical origins: A review. Agriculture 2020, 10, 375. [Google Scholar] [CrossRef]
- Silvestri, C.; Bacchetta, L.; Bellincontro, A.; Cristofori, V. Advances in cultivar choice, hazelnut orchard management and nuts storage for enhancing product quality and safety: An overview. J. Sci. Food Agric. 2021, 101, 27–43. [Google Scholar] [CrossRef] [PubMed]
- Bolling, B.W.; Chen, C.Y.O.; McKay, D.L.; Blumberg, J.B. Tree nut phytochemicals: Composition, antioxidant capacity, bioactivity, impact factors. A systematic review of almonds, Brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios and walnuts. Nutr. Res. Rev. 2011, 24, 244–275. [Google Scholar] [CrossRef] [Green Version]
- Di Renzo, L.; Merra, G.; Botta, R.; Gualtieri, P.; Manzo, A.; Perrone, M.A.; Mazza, M.; Cascapera, S.; de Lorenzo, A. Post-prandial effects of hazelnut-enriched high fat meal on LDL oxidative status, oxidative and inflammatory gene expression of healthy subjects: A randomized trial. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 1610–1626. [Google Scholar]
- Oliveira, I.; Sousa, A.; Morais, J.S.; Ferreira, I.C.F.R.; Bento, A.; Estevinho, L. Chemical composition, and antioxidant and antimicrobial activities of three hazelnut (Corylus avellana L.) cultivars. Food Chem. Toxicol. 2008, 46, 1801–1807. [Google Scholar] [CrossRef]
- Taş, N.G.; Gökmen, V. Phenolic compounds in natural and roasted nuts and their skins: A brief review. Curr. Opin. Food Sci. 2017, 14, 103–109. [Google Scholar] [CrossRef]
- Haminiuk, C.W.I.; Maciel, G.M.; Plata-Oviedo, M.S.V.; Peralta, R.M. Phenolic compounds in fruits—An overview. Int. J. Food Sci. 2012, 47, 2023–2044. [Google Scholar] [CrossRef]
- Oliveira, L.L.; Carvalho, M.V.; Melo, L. Health promoting and sensory properties of phenolic compounds in food. Food Sci. Technol. 2014, 61, 764–779. [Google Scholar] [CrossRef] [Green Version]
- Lattanzio, V.; Lattanzio, V.M.; Cardinali, A. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. J. Adv. Res. 2006, 661, 23–67. [Google Scholar]
- Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J. Brazil nuts and associated health benefits: A review. LWT Food Sci. Technol. 2009, 42, 1573–1580. [Google Scholar] [CrossRef]
- Slatnar, A.; Mikulic-Petkovsek, M.; Stampar, F.; Veberic, R.; Solar, A. HPLC-MSn identification and quantification of phenolic compounds in hazelnut kernels, oil and bagasse pellets. Int. Food Res. J. 2014, 64, 783–789. [Google Scholar] [CrossRef] [PubMed]
- Bacchetta, L.; Procacci, S.; Benassi, B. Advances in understanding health benefits of hazelnuts. In Achieving Sustainable Cultivation of Tree Nuts, 1st ed.; Serdar, Ü., Fulbright, D., Eds.; Burleigh Dodds Science Publishing: Cambridge, UK, 2019; Volume 3, pp. 33–68. [Google Scholar]
- Benassi, B.; Santangeli, S.; Bacchetta, L.; Pacchierotti, F. Amplification of the Hazelnut-Induced Epigenetic Modulation of LDLR Gene Expression in THLE-2 Human Primary Hepatocytes Compared to HepG2 Hepatocarcinoma Cells. Austin J. Nutr. Metab. 2021, 8, 1103. [Google Scholar]
- Santi, C.; Giorni, A.; Toriani Terenzi, C.; Altavista, P.; Bacchetta, L. Daily Hazelnut Intake Exerts Multiple Reversible Effects on Plasma Profile of Healthy Subjects. Food Sci. Nutr. 2017, 8, 633–646. [Google Scholar] [CrossRef] [Green Version]
- Adriano Costa, C.; Renan da Silva, L. A perspective on phenolic compounds, their potential health benefits, and international regulations: The revised Brazilian normative on food supplements. J. Food Bioact. 2019, 7, 7–17. [Google Scholar]
- Lorenzo, J.M.; Munekata, P.E.S. Phenolic compounds of green tea: Health benefits and technological application in food. Asian Pac. J. Trop. Biomed. 2016, 6, 709–719. [Google Scholar] [CrossRef] [Green Version]
- Martins, S.; Mussatto, S.I.; Martínez-Avila, G.; Montañez-Saenz, J.; Aguilar, C.N.; Teixeira, J.A. Bioactive phenolic compounds: Production and extraction by solid-state fermentation. A review. Biotechnol. Adv. 2011, 29, 365–373. [Google Scholar] [CrossRef] [Green Version]
- Vu, D.C.; Vo, P.H.; Coggeshall, M.V.; Lin, C.-H. Identification and Characterization of Phenolic Compounds in Black Walnut Kernels. J. Agric. Food Chem. 2018, 66, 4503–4511. [Google Scholar] [CrossRef]
- Bacchetta, L.; Aramini, M.; Zini, A.; di Giammatteo, V.; Spera, D.; Drogoudi, P.; Rovira, M.; Silva, A.P.; Solar, A.; Botta, R. Fatty acids and alpha-tocopherol composition in hazelnut (Corylus avellana L.): A chemometric approach to emphasize the quality of European germplasm. Euphytica 2013, 191, 57–73. [Google Scholar] [CrossRef]
- Gargouri, B.; Ammar, S.; Zribi, A.; Mansour, A.B.; Bouaziz, M. Effect of growing region on quality characteristics and phenolic compounds of chemlali extra-virgin olive oils. Acta Physiol. Plant. 2013, 35, 2801–2812. [Google Scholar] [CrossRef]
- Mezni, F.; Slama, A.; Ksouri, R.; Hamdaoui, G.; Khouja, M.L.; Khaldi, A. Phenolic profile and effect of growing area on Pistacia lentiscus seed oil. Food Chem. 2018, 257, 206–210. [Google Scholar] [CrossRef]
- Abreu, I.; Mazzafera, P. Effect of water and temperature stress on the content of active constituents of Hypericum brasiliense Choisy. Plant Physiol. Biochem. 2005, 43, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Del Valle, J.C.; Buide, M.L.; Whittall, J.B.; Valladares, F.; Narbona, E. UV radiation increases phenolic compound protection but decreases reproduction in Silene littorea. PLoS ONE 2020, 15, e0231611. [Google Scholar] [CrossRef] [PubMed]
- Naczk, M.; Shahidi, F. Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. J. Pharm. Biomed. Anal. 2006, 41, 1523–1542. [Google Scholar] [CrossRef] [PubMed]
- Jakopic, J.; Petkovsek, M.M.; Likozar, A.; Solar, A.; Stampar, F.; Veberic, R. HPLC–MS identification of phenols in hazelnut (Corylus avellana L.) kernels. Food Chem. 2011, 124, 1100–1106. [Google Scholar] [CrossRef]
- Solar, A.; Stampar, F. Characterisation of selected hazelnut cultivars: Phenology, growing and yielding capacity, market quality and nutraceutical value. J. Sci. Food Agric. 2011, 91, 1205–1212. [Google Scholar] [CrossRef]
- Jakopic, J.; Stampar, F.; Veberic, R. The influence of exposure to light on the phenolic content of “Fuji” apple. Sci. Hortic. 2009, 123, 234–239. [Google Scholar] [CrossRef]
- Jaakola, L.; Hohtola, A. Effect of latitude on flavonoid biosynthesis in plants. Plant Cell Environ. 2010, 33, 1239–1247. [Google Scholar] [CrossRef]
- Jaakola, L.; Määttä-Riihinen, K.; Kärenlampi, S.; Hohtola, A. Activation of flavonoid biosynthesis by solar radiation in bilberry (Vaccinium myrtillus L.) leaves. Planta 2004, 218, 721–728. [Google Scholar]
- Senica, M.; Stampar, F.; Veberic, R.; Mikulic-Petkovsek, M. The higher the better? Differences in phenolics and cyanogenic glycosides in Sambucus nigra leaves, flowers and berries from different altitudes. J. Sci. Food Agric. 2017, 97, 2623–2632. [Google Scholar] [CrossRef] [PubMed]
- Bars-Cortina, D.; Macià, A.; Iglesias, I.; Garanto, X.; Badiella, L.; Motilva, M.-J. Seasonal variability of the phytochemical composition of new red-fleshed apple varieties compared with traditional and new white-fleshed varieties. J. Agric. Food Chem. 2018, 66, 10011–10025. [Google Scholar] [CrossRef] [PubMed]
- Mikulic-Petkovsek, M.; Stampar, F.; Veberic, R. Increased phenolic content in apple leaves infected with the apple scab pathogen. J. Plant. Pathol. 2008, 90, 49–55. [Google Scholar]
- Pirisi, F.M.; Cabras, P.; Falqui Cao, C.; Migliorini, M.; Muggelli, M. Phenolic Compounds in Virgin Olive Oil. 2. Reappraisal of the Extraction, HPLC Separation, and Quantification Procedures. J. Agric. Food Chem. 2000, 48, 1191–1196. [Google Scholar] [CrossRef]
- Chan, K.W.; Ismail, M. Supercritical carbon dioxide fluid extraction of Hibiscus cannabinus L. seed oil: A potential solvent-free and high antioxidative edible oil. Food Chem. 2009, 114, 970–975. [Google Scholar] [CrossRef]
- Marks, S.C.; Mullen, W.; Crozier, A. Flavonoid and chlorogenic acid profiles of English cider apples. J. Sci. Food Agric. 2007, 87, 719–728. [Google Scholar] [CrossRef]
Tentative Identification | Λ (nm) | [M-H]− (m/z) | MS2 (m/z) |
Flavanols | |||
Catechin | 234,279 | 289 | 245 |
Epicatechin | 234,279 | 289 | 245 |
Procyanidin dimer 1 | 235,28 | 577 | 425,407,289 |
Procyanidin dimer 2 | 234,279 | 577 | 425,407,289 |
Procyanidin trimer 1 | 234,278 | 865 | 577,451,425,407,289 |
Procyanidin trimer 2 | 234,278 | 865 | 577,451,425,407,289 |
Procyanidin trimer 3 | 234,28 | 865 | 577,425,407,289 |
Hydroxybenzoic acids | |||
Gallic acid | 271 | 169 | 125 |
Protocatechuic acid | 259,264 | 153 | 109 |
Flavonols | |||
Quercetin pentoside | 256,356 | 433 | 301 |
Quercetin-3-rhamnoside | 255,358 | 447 | 301 |
Myricetin-3-rhamnoside | 255,349 | 463 | 317 |
Dihydrochalcones | |||
Phloridzin (Phloretin-2-glucoside) | 230,285 | 435 | 273 |
Cultivar | Compound | Phenolic Compounds Content in Relation to the Cultivation Area in mg/kg Fresh Weight | |||||
---|---|---|---|---|---|---|---|
‘Barcelona’ | FRA | ITS | ITN | SLO | SPA | PTG | |
Quercetine penthoside | 0.38 ± 0.03 b | 0.25 ± 0.01 a | nd | 0.26 ± 0.02 a | 0.36 ± 0.02 b | 0.27 ± 0.01 a | |
Quercetine rhamnoside | 13.14 ± 1.40 a | 14.14 ± 1.23 a | nd | 12.68 ± 0.36 a | 19.51 ± 1.69 b | 15.4 ± 0.81 a | |
Myricetin-3-rhamnoside | 4.68 ± 0.47 b | 7.58 ± 0.38 c | nd | 2.26 ± 0.75 a | 7.66 ± 0.54 c | 8.19 ± 0.37 c | |
Gallic acid | 12.98 ± 1.35 cd | 15.47 ± 1.10 d | nd | 10.07 ± 0.60 c | 3.9 ± 0.95 a | 7.68 ± 0.29 b | |
Protocatechuic acid | 12.08 ± 0.58 a | 27.14 ± 4.70 b | nd | 10.25 ± 2.75 a | 13.62 ± 2.47 a | 8.02 ± 2.40 a | |
Catechin | 29.39 ± 2.66 a | 36.66 ± 5.70 a | nd | 31.91 ± 2.12 a | 63.81 ± 4.55 b | 26.19 ± 3.61 a | |
Epicatechin | 10.96 ± 2.99 ab | 13.31 ± 1.89 b | nd | 8.56 ± 2.44 a | 18.89 ± 1.28 c | 8.00 ± 0.49 a | |
Procyanidin dimer 1 | 9.04 ± 0.11 ab | 16.42 ± 3.49 c | nd | 7.65 ± 0.84 ab | 3.92 ± 0.51 a | 9.07 ± 2.95 ab | |
Procyanidin dimer 2 | 20.58 ± 2.80 b | 33.32 ± 4.68 c | nd | 14.85 ± 0.54 a | 30.42 ± 0.21 c | 9.59 ± 2.61 a | |
Procyanidin trimer 1 | 13.80 ± 0.26 b | 14.96 ± 3.00 b | nd | 6.54 ± 0.80 a | 20.91 ± 1.80 c | 9.79 ± 0.44 a | |
Procyanidin trimer 2 | 13.10 ± 0.89 b | 19.46 ± 2.87 c | nd | 11.63 ± 1.76 ab | 11.62 ± 0.95 ab | 8.49 ± 3.11 a | |
Procyanidin trimer 3 | 9.71 ± 0.46 a | 23.67 ± 2.77 c | nd | 3.77 ± 0.33 a | 16.65 ± 1.22 b | 5.93 ± 1.39 a | |
Phloridzin | 10.18 ± 1.62 ab | 18.99 ± 1.64 c | nd | 8.53 ± 2.12 a | 12.31 ± 3.29 ab | 11.95 ± 0.86 ab | |
‘Pauetet’ | |||||||
Quercetine penthoside | 0.83 ± 0.01 c | nd | 0.96 ± 0.10 c | 0.64 ± 0.05 b | 0.32 ± 0.01 a | 0.38 ± 0.02 a | |
Quercetine rhamnoside | 8.25 ± 0.43 a | nd | 12.61 ± 1.00 b | 7.79 ± 0.10 a | 9.46 ± 1.16 a | 8.61 ± 0.21 a | |
Myricetin-3-rhamnoside | 13.53 ± 0.80 d | nd | 10.17 ± 0.80 c | 2.20 ± 0.08 a | 8.37 ± 0.76 bc | 6.58 ± 0.30 b | |
Gallic acid | 15.74 ± 0.94 d | nd | 14.85 ± 1.33 cd | 8.34 ± 0.75 b | 2.54 ± 0.20 a | 12.83 ± 0.49 c | |
Protocatechuic acid | 22.67 ± 1.25 b | nd | 38.64 ± 2.15 c | 20.39 ± 5.28 b | 11.06 ± 1.75 a | 7.43 ± 0.43 a | |
Catechin | 43.21 ± 2.55 b | nd | 67.87 ± 5.70 c | 40.20 ± 5.65 b | 31.82 ± 1.67 a | 33.32 ± 2.68 a | |
Epicatechin | 9.89 ± 0.42 a | nd | 15.22 ± 1.87 b | 14.10 ± 1.26 b | 11.11 ± 0.79 a | 14.78 ± 0.66 b | |
Procyanidin dimer 1 | 12.01 ± 0.72 bc | nd | 21.28 ± 4.64 d | 5.86 ± 0.95 ab | 1.99 ± 0.27 a | 14.70 ± 0.34 cd | |
Procyanidin dimer 2 | 10.22 ± 0.57 a | nd | 23.04 ± 5.03 b | 18.57 ± 2.92 ab | 16.38 ± 3.35 ab | 8.46 ± 1.49 a | |
Procyanidin trimer 1 | 4.04 ± 0.17 a | nd | 15.90 ± 1.36 c | 14.18 ± 1.76 c | 11.38 ± 1.99 b | 9.12 ± 1.78 b | |
Procyanidin trimer 2 | 7.43 ± 0.56 a | nd | 32.01 ± 5.52 b | 12.24 ± 3.13 a | 6.91 ± 0.79 a | 11.78 ± 0.29 a | |
Procyanidin trimer 3 | 24.63 ± 2.11 c | nd | 15.20 ± 0.36 b | 10.41 ± 1.79 ab | 7.23 ± 1.40 a | 13.63 ± 0.60 ab | |
Phloridzin | 7.99 ± 1.02 a | nd | 17.53 ± 1.57 b | 10.49 ± 1.89 a | 12.14 ± 2.32 a | 21.18 ± 3.18 c | |
‘Merveille de Bollwiller’ | |||||||
Quercetine penthoside | 0.49 ± 0.04 a | nd | 0.35 ± 0.04 a | 0.83 ± 0.08 b | 0.21 ± 0.01 a | 0.77 ± 0.03 b | |
Quercetine rhamnoside | 6.97 ± 0.50 a | nd | 7.35 ± 0.74 ab | 6.44 ± 0.57 a | 8.92 ± 0.52 b | 11.94 ± 0.53 c | |
Myricetin-3-rhamnoside | 2.71 ± 0.18 a | nd | 3.89 ± 0.52 b | 2.50 ± 0.38 a | 4.69 ± 0.38 b | 7.46 ± 0.19 c | |
Gallic acid | 3.88 ± 0.20 a | nd | 16.80 ± 1.65 c | 9.32 ± 0.66 b | 3.01 ± 0.09 a | 4.64 ± 0.12 a | |
Protocatechuic acid | 10.06 ± 0.54 b | nd | 6.10 ± 0.81 a | 11.15 ± 0.85 b | 5.12 ± 0.49 a | 9.91 ± 1.60 b | |
Catechin | 11.66 ± 1.96 ab | nd | 9.75 ± 0.84 a | 14.44 ± 1.75 c | 13.41 ± 0.53 bc | 11.15 ± 0.55 ab | |
Epicatechin | 1.55 ± 0.04 a | nd | 5.52 ± 1.67 bc | 1.55 ± 0.07 a | 3.40 ± 0.13 ab | 6.49 ± 0.43 c | |
Procyanidin dimer 1 | 3.60 ± 0.62 b | nd | 1.55 ± 0.42 a | 1.93 ± 0.30 a | 1.34 ± 0.07 a | 7.43 ± 0.14 c | |
Procyanidin dimer 2 | 3.58 ± 0.48 a | nd | 3.35 ± 1.52 a | 8.94 ± 0.91 b | 8.01 ± 0.45 b | 15.95 ± 0.46 c | |
Procyanidin trimer 1 | 3.93 ± 0.20 b | nd | 4.33 ± 1.22 b | 1.33 ± 0.15 a | 2.50 ± 0.13 ab | 2.81 ± 0.64 ab | |
Procyanidin trimer 2 | 2.16 ± 0.28 a | nd | 3.35 ± 0.56 b | 1.75 ± 0.21 a | 2.52 ± 0.13 ab | 4.61 ± 0.08 c | |
Procyanidin trimer 3 | 6.51 ± 0.16 d | nd | 3.95 ± 0.33 c | 2.62 ± 0.33 a | 3.02 ± 0.06 ab | 3.63 ± 0.19 bc | |
Phloridzin | 1.08 ± 0.12 a | nd | 5.20 ± 0.75 b | 5.56 ± 0.27 b | 2.24 ± 0.08 a | 9.29 ± 0.42 c | |
‘Tonda di Giffoni’ | |||||||
Quercetine penthoside | 0.43 ± 0.01 b | 0.37 ± 0.01 ab | 0.78 ± 0.10 c | 0.34 ± 0.03 ab | 0.35 ± 0.02 ab | 0.27 ± 0.03 a | |
Quercetine rhamnoside | 2.52 ± 0.17 a | 3.81 ± 0.09 bc | 5.71 ± 0.40 d | 3.12 ± 0.22 ab | 3.92 ± 0.20 c | 4.49 ± 0.22 c | |
Myricetin-3-rhamnoside | 1.06 ± 0.09 a | 2.44 ± 0.14 c | 4.51 ± 0.28 e | 1.71 ± 0.08 b | 3.01 ± 0.35 cd | 3.18 ± 0.16 d | |
Gallic acid | 3.93 ± 0.12 a | 8.51 ± 0.06 b | 21.63 ± 1.80 d | 14.96 ± 1.52 c | 3.39 ± 0.63 a | 7.85 ± 1.88 b | |
Protocatechuic acid | 11.81 ± 0.24 b | 9.80 ± 0.65 a | 10.16 ± 1.39 b | 6.38 ± 0.43 a | 9.87 ± 0.85 b | 12.94 ± 1.75 b | |
Catechin | 8.06 ± 0.05 a | 17.48 ± 1.64 b | 47.35 ± 2.05 d | 10.63 ± 0.60 a | 25.42 ± 1.31 c | 18.53 ± 1.83 b | |
Epicatechin | 5.01 ± 0.34 a | 4.32 ± 0.99 a | 7.93 ± 0.99 b | 4.45 ± 0.35 a | 5.23 ± 0.83 a | 3.77 ± 0.51 a | |
Procyanidin dimer 1 | 3.27 ± 1.14 ab | 4.91 ± 0.11 b | 5.13 ± 1.19 b | 4.31 ± 0.18 b | 1.99 ± 0.20 a | 4.36 ± 0.21 b | |
Procyanidin dimer 2 | 3.72 ± 0.20 a | 4.00 ± 0.17 a | 8.08 ± 0.84 bc | 4.76 ± 0.60 ab | 13.96 ± 2.44 d | 9.76 ± 1.15 c | |
Procyanidin trimer 1 | 3.12 ± 0.17 ab | 3.97 ± 0.38 ab | 5.58 ± 0.83 bc | 2.62 ± 0.35 a | 5.85 ± 0.60 bc | 3.09 ± 0.47 ab | |
Procyanidin trimer 2 | 1.77 ± 0.47 a | 2.96 ± 0.48 ab | 4.75 ± 0.33 c | 4.44 ± 0.18 bc | 3.13 ± 0.32 abc | 3.97 ± 0.26 bc | |
Procyanidin trimer 3 | 3.52 ± 0.10 a | 3.36 ± 0.23 a | 9.62 ± 0.56 b | 3.78 ± 0.60 a | 4.54 ± 0.76 a | 4.45 ± 0.31 a | |
Phloridzin | 5.39 ± 2.46 a | 3.12 ± 0.99 a | 6.72 ± 2.34 a | 3.43 ± 0.35 a | 15.88 ± 1.49 b | 5.71 ± 1.74 a | |
‘Tonda gentile delle Langhe’ | |||||||
Quercetine penthoside | 0.33 ± 0.01 ab | 0.54 ± 0.06 d | 0.45 ± 0.03 cd | 0.27 ± 0.02 a | 0.40 ± 0.02 bc | 0.41 ± 0.02 bc | |
Quercetine rhamnoside | 5.81 ± 0.19 a | 9.82 ± 0.82 c | 9.35 ± 0.52 bc | 4.62 ± 0.10 a | 8.71 ± 0.85 bc | 7.69 ± 0.20 b | |
Myricetin-3-rhamnoside | 4.48 ± 0.12 a | 7.87 ± 0.58 bc | 9.02 ± 0.26 c | 4.48 ± 0.38 a | 11.30 ± 1.19 d | 6.78 ± 0.13 b | |
Gallic acid | 8.01 ± 1.48 b | 15.83 ± 0.62 d | 10.67 ± 0.41 c | 9.76 ± 0.22 c | 3.35 ± 0.10 a | 9.75 ± 1.38 bc | |
Protocatechuic acid | 8.31 ± 0.57 b | 12.50 ± 1.32 c | 9.19 ± 0.59 b | 5.04 ± 0.47 a | 11.15 ± 1.79 bc | 10.69 ± 0.03 bc | |
Catechin | 21.48 ± 2.70 a | 35.44 ± 3.73 bc | 30.00 ± 4.27 ab | 18.16 ± 1.34 a | 37.52 ± 6.22 bc | 43.97 ± 5.17 c | |
Epicatechin | 5.34 ± 1.66 a | 16.19 ± 2.05 c | 16.21 ± 1.07 c | 1.40 ± 0.28 a | 15.97 ± 1.37 c | 11.00 ± 2.65 b | |
Procyanidin dimer 1 | 9.52 ± 0.70 b | 11.36 ± 2.14 b | 8.87 ± 1.24 b | 3.21 ± 0.32 a | 2.69 ± 0.27 a | 10.55 ± 2.70 b | |
Procyanidin dimer 2 | 9.26 ± 1.98 bc | 17.88 ± 1.29 de | 8.64 ± 1.83 b | 3.70 ± 0.33 a | 15.83 ± 1.56 d | 13.61 ± 1.65 cd | |
Procyanidin trimer 1 | 6.98 ± 2.24 b | 10.90 ± 0.94 bc | 7.62 ± 0.96 b | 1.58 ± 0.50 a | 8.02 ± 1.88 b | 13.61 ± 1.56 c | |
Procyanidin trimer 2 | 7.36 ± 1.27 b | 17.51 ± 1.04 c | 8.27 ± 0.98 b | 3.30 ± 0.39 a | 9.74 ± 1.15 b | 9.07 ± 0.90 b | |
Procyanidin trimer 3 | 6.32 ± 1.41 a | 12.20 ± 1.97 b | 9.45 ± 0.58 ab | 6.67 ± 0.11 a | 9.87 ± 1.29 ab | 10.78 ± 2.21 ab | |
Phloridzin | 8.94 ± 0.24 b | 8.73 ± 0.86 b | 12.94 ± 1.29 c | 5.41 ± 0.76 a | 7.81 ± 1.40 ab | 12.59 ± 0.75 c |
‘Tonda di Giffoni’ | Plants Per Ha | Soil pH | Rainfall/Year | Solar Irrad./Year | Solar Irrad./Month | Abs. Min Winter T | Abs. Max Summer T | Mean Annual T | Elevation | All Phenolics | Dihydrochalchones | Flavanols | Hydroxybenzoic Acids | Flavonols |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Flavonols | −0.514 | −0.045 | 0.107 | 0.385 | 0.386 | 0.096 | 0.191 | −0.102 | 0.658 | 0.952 * | 0.228 | 0.950 * | 0.729 | - |
Hydroxybenz. acids | −0.900 * | −0.507 | 0.492 | −0.329 | −0.328 | −0.205 | 0.334 | −0.733 | 0.668 | 0.697 | −0.364 | 0.673 | - | |
Flavanols | −0.358 | 0.195 | −0.124 | 0.335 | 0.336 | 0.010 | 0.134 | −0.083 | 0.435 | 0.998 * | 0.402 | - | ||
Dihydrochalchones | 0.701 | 0.909 * | −0.827 * | 0.659 | 0.658 | 0.187 | −0.188 | 0.653 | −0.457 | 0.384 | - | |||
All phenolics | −0.380 | 0.170 | −0.104 | 0.303 | 0.304 | 0.000 | 0.153 | −0.122 | 0.436 | - | ||||
Elevation | −0.813 * | −0.682 | 0.754 | 0.115 | 0.117 | 0.302 | 0.015 | −0.289 | - | |||||
Mean annual T | 0.759 | 0.657 | 0.612 | 0.865 * | 0.864 * | 0.235 | −0.167 | - | ||||||
Abs. Max Summer T | −0.281 | −0.145 | −0.113 | −0.060 | −0.061 | −0.829 * | - | |||||||
Abs. Min Winter T | 0.115 | −0.065 | 0.308 | 0.338 | 0.338 | - | ||||||||
Solar irrad./month | 0.415 | 0.486 | −0.416 | 1.000 * | - | |||||||||
Solar irrad./year | 0.416 | 0.486 | −0.416 | - | ||||||||||
Rainfall/year | −0.791 | −0.960 * | - | |||||||||||
Soil pH | 0.815 * | - | ||||||||||||
Plants per ha | - |
‘Tonda Gentile Delle Langhe’ | Plants Per ha | Soil pH | Rainfall/Year | Solar irrad./Year | Solar irrad./Month | Abs. Min Winter T | Abs. Max Summer T | Mean Annual T | Elevation | All Phenolics | Dihydrochalchones | Flavanols | Hydroxybenzoic Acids | Flavonols |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Flavonols | 0.078 | 0.555 | −0.179 | 0.832 * | 0.833 * | 0.322 | −0.202 | 0.506 | 0.197 | 0.791 | 0.407 | 0.773 | 0.373 | - |
Hydroxybenz. acids | −0.471 | −0.459 | 0.557 | 0.273 | 0.275 | 0.195 | −0.045 | 0.089 | 0.838 * | 0.740 | 0.354 | 0.699 | - | |
Flavanols | 0.005 | 0.144 | 0.040 | 0.865 * | 0.866 * | 0.261 | 0.052 | 0.617 | 0.460 | 0.994 * | 0.558 | - | ||
Dihydrochalchones | −0.482 | −0.162 | 0.062 | 0.369 | 0.369 | −0.444 | 0.750 | −0.007 | 0.626 | 0.597 | - | |||
All phenolics | −0.083 | 0.104 | 0.087 | 0.828 * | 0.829 * | 0.232 | 0.066 | 0.547 | 0.533 | - | ||||
Elevation | −0849 * | −0.685 | 0.696 | −0.010 | −0.008 | −0.111 | 0.299 | −0.353 | - | |||||
Mean annual T | 0.780 | 0.653 | −0.622 | 0.804 | 0.804 | 0.199 | −0.121 | - | ||||||
Abs. Max Summer T | −0.284 | −0.280 | −0.173 | −0.087 | −0.087 | −0.848 * | - | |||||||
Abs. Min Winter T | 0.174 | 0.156 | 0.369 | 0.370 | 0.370 | - | ||||||||
Solar irrad./month | 0.388 | 0.568 | −0.305 | 1.000 * | - | |||||||||
Solar irrad./year | 0.389 | 0.569 | −0.306 | - | ||||||||||
Rainfall/year | −0.780 | −0.812 * | - | |||||||||||
Soil pH | 0.757 | - | ||||||||||||
Plants per ha | - |
Geographical Data | Climatic Data | Soil Traits | Orchard Characteristics | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Country | Town | Latitude Longitude | Altitude (m S.A.l.) | Mean Annual T (°C) | Absolute Summer T (°C) | Absolute Winter T (°C) | Global Solar Irradiation | Rainfall (mm/Year) | pH | Texture | Plants/ha | Training SYSTEM | Irigation | Pest Management | |
kWh/m2/Month | kWh/m2/Year | ||||||||||||||
France (FRA 1) | Puéchoursi (81470) | N 43°51′16″ E 1.9°10′52″ | 278 | 13.8 | 40.7 | −19.2 | 137.9 | 1655.0 | 638 | slightly basic | silty clay to silty clayey-sandy | 666 | Single trunk | Yes | CON |
France (FRA 2) | Montesqieu | N 44°21′50″ E 0.4°44′41″ | 38 | 13.4 | 41.0 | −21.9 | 139.8 | 1677.9 | 712 | basic | silt-clayey-sandy | 666 | Single trunk | Yes | CON |
Italy (ITS) | Viterbo | N 42°20′52″ E 12°11′40″ | 567 | 14.1 | 38.0 | −5.1 | 153.6 | 1842.8 | 1073 | acid 6.1 | sandy clay loam | 500 | Bush | Yes | IP |
Italy (ITN) | Cravanzana | N 44°57′72″ E 8°13′39″ | 545 | 11.5 | 34.1 | −13.3 | 145.5 | 1745.7 | 922 | slightly acid 6.4 | silt loam | 333 | Bush | No | IP |
Slovenia (SLO) | Maribor | N 46°53′94″ E 15°64′50″ | 275 | 10.8 | 33.1 | −20.1 | 128.4 | 1541.1 | 1.078 | acid 6.0 | loam to silty loam | 500 | Bush | No | IP |
Spain (SPA) | Constant | N 41°10′9″ E 1°20′28″ | 110 | 15.8 | 36.2 | −6.5 | 165.1 | 1981.6 | 583 | >8 alcaline | Loam sandy | 833 | Single trunk/Bush | Yes | CON |
Portugal (PTG) | Vila Real | N 41°9′ E 8°23′ | 470 | 13.6 | 39.8 | −6.5 | 156.9 | 1883.3 | 1.000 | sub-acid | Medium to Coarse | 500 | Bush | No | CON |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solar, A.; Medic, A.; Slatnar, A.; Mikulic-Petkovsek, M.; Botta, R.; Rovira, M.; Sarraquigne, J.-P.; Silva, A.P.; Veberic, R.; Stampar, F.; et al. The Effects of the Cultivar and Environment on the Phenolic Contents of Hazelnut Kernels. Plants 2022, 11, 3051. https://doi.org/10.3390/plants11223051
Solar A, Medic A, Slatnar A, Mikulic-Petkovsek M, Botta R, Rovira M, Sarraquigne J-P, Silva AP, Veberic R, Stampar F, et al. The Effects of the Cultivar and Environment on the Phenolic Contents of Hazelnut Kernels. Plants. 2022; 11(22):3051. https://doi.org/10.3390/plants11223051
Chicago/Turabian StyleSolar, Anita, Aljaz Medic, Ana Slatnar, Maja Mikulic-Petkovsek, Roberto Botta, Mercè Rovira, Jean-Paul Sarraquigne, Ana Paula Silva, Robert Veberic, Franci Stampar, and et al. 2022. "The Effects of the Cultivar and Environment on the Phenolic Contents of Hazelnut Kernels" Plants 11, no. 22: 3051. https://doi.org/10.3390/plants11223051
APA StyleSolar, A., Medic, A., Slatnar, A., Mikulic-Petkovsek, M., Botta, R., Rovira, M., Sarraquigne, J. -P., Silva, A. P., Veberic, R., Stampar, F., Hudina, M., & Bacchetta, L. (2022). The Effects of the Cultivar and Environment on the Phenolic Contents of Hazelnut Kernels. Plants, 11(22), 3051. https://doi.org/10.3390/plants11223051