ZmDREB2.9 Gene in Maize (Zea mays L.): Genome-Wide Identification, Characterization, Expression, and Stress Response
Abstract
:1. Introduction
2. Results
2.1. Characterization of A2-Type DREB Genes in Z. mays B73 and Identification and Analysis of a New A2-Type ZmDREB2.9 Gene
2.2. ZmDREB2.1–2.9 Promoter Analysis
2.3. ZmDREB2.9 Expression in Various Organs of Maize cv. B73
2.4. ZmDREB2.1–2.9 Expression in Maize Seedlings in Response to Stresses
3. Discussion
4. Materials and Methods
4.1. In Silico Identification and Structural Characterization of ZmDREB2 Genes
4.2. RNA Extraction and qRT-PCR
4.3. Promoter and 5′-UTR Analysis
4.4. Plant Material and Stress Assays
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matsuoka, Y.; Vigouroux, Y.; Goodman, M.; Sanchez, G.; Buckler, E.; Doebley, J. A single domestication for maize shown by multilocus microsatellite genotyping. Proc. Natl. Acad. Sci. USA 2002, 99, 6080–6084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnable, P.; Ware, D.; Fulton, R.; Stein, J.; Wei, F.; Pasternak, S.; Liang, C.; Zhang, J.; Fulton, L.; Graves, T.; et al. The B73 maize genome: Complexity, diversity, and dynamics. Science 2009, 326, 1112–1115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diaw, Y.; Tollon-Cordet, C.; Charcosset, A.; Nicolas, S.D.; Madur, D.; Ronfort, J.; David, J.; Gouesnard, B. Genetic diversity of maize landraces from the South-West of France. PLoS ONE 2021, 16, e0238334. [Google Scholar] [CrossRef] [PubMed]
- Josia, C.; Mashingaidze, K.; Amelework, A.B.; Kondwakwenda, A.; Musvosvi, C.; Sibiya, J. SNP-based assessment of genetic purity and diversity in maize hybrid breeding. PLoS ONE 2021, 16, e0249505. [Google Scholar] [CrossRef]
- Doebley, J. The genetics of maize evolution. Annu. Rev. Genet. 2004, 38, 37–59. [Google Scholar] [CrossRef] [Green Version]
- Marand, A.P.; Chen, Z.; Gallavotti, A.; Schmitz, R.J. A cis-regulatory atlas in maize at single-cell resolution. Cell 2021, 184, 3041–3055.e21. [Google Scholar] [CrossRef] [PubMed]
- Stitzer, M.C.; Anderson, S.N.; Springer, N.M.; Ross-Ibarra, J. The genomic ecosystem of transposable elements in maize. PLoS Genet. 2021, 17, e1009768. [Google Scholar] [CrossRef]
- Xiao, Y.; Jiang, S.; Cheng, Q.; Wang, X.; Yan, J.; Zhang, R.; Qiao, F.; Ma, C.; Luo, J.; Li, W.; et al. The genetic mechanism of heterosis utilization in maize improvement. Genome Biol. 2021, 22, 148. [Google Scholar] [CrossRef]
- Majeran, W.; van Wijk, K.J. Cell-type-specific differentiation of chloroplasts in C4 plants. Trends Plant Sci. 2009, 14, 100–109. [Google Scholar] [CrossRef]
- Wurzinger, B.; Mair, A.; Pfister, B.; Teige, M. Cross-talk of calcium-dependent protein kinase and MAP kinase signaling. Plant Signal. Behav. 2011, 6, 8–12. [Google Scholar] [CrossRef]
- Erpen, L.; Devi, H.S.; Grosser, J.W.; Dutt, M. Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants. Plant Cell Tissue Organ Cult. 2018, 132, 1–25. [Google Scholar] [CrossRef]
- Wang, J.; Song, L.; Gong, X.; Xu, J.; Li, M. Functions of jasmonic acid in plant regulation and response to abiotic stress. Int. J. Mol. Sci. 2020, 21, 1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baillo, E.H.; Kimotho, R.N.; Zhang, Z.; Xu, P. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes 2019, 10, 771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakuma, Y.; Liu, Q.; Dubouzet, J.G.; Abe, H.; Yamaguchi-Shinozaki, K.; Shinozaki, K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem. Biophys. Res. Commun. 2002, 290, 998–1009. [Google Scholar] [CrossRef]
- Yamaguchi-Shinozaki, K.; Shinozaki, K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 1994, 6, 251–264. [Google Scholar] [CrossRef] [Green Version]
- Finkelstein, R.R.; Wang, M.L.; Lynch, T.J.; Rao, S.; Goodman, H.M. The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. Plant Cell 1998, 10, 1043–1054. [Google Scholar] [CrossRef] [Green Version]
- Niu, X.; Helentjaris, T.; Bate, N.J. Maize ABI4 binds coupling element1 in abscisic acid and sugar response genes. Plant Cell 2002, 14, 2565–2575. [Google Scholar] [CrossRef] [Green Version]
- Söderman, E.M.; Brocard, I.M.; Lynch, T.J.; Finkelstein, R.R. Regulation and function of the Arabidopsis ABA-insensitive 4 gene in seed and abscisic acid response signaling networks. Plant Physiol. 2000, 124, 1752–1765. [Google Scholar] [CrossRef] [Green Version]
- Wilson, K.; Long, D.; Swinburne, J.; Coupland, G. A Dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETALA2. Plant Cell 1996, 8, 659–671. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Liu, J.Y. Cloning and functional analysis of the novel gene GhDBP3 encoding a DRE-binding transcription factor from Gossypium hirsutum. Biochim. Biophys. Acta 2006, 1759, 263–269. [Google Scholar] [CrossRef]
- Huang, B.; Jin, L.; Liu, J.Y. Identification and characterization of the novel gene GhDBP2 encoding a DRE-binding protein from cotton (Gossypium hirsutum). J. Plant Physiol. 2008, 165, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Bouaziz, D.; Pirrello, J.; Ben Amor, H.; Hammami, A.; Charfeddine, M.; Dhieb, A.; Bouzayen, M.; Gargouri-Bouzid, R. Ectopic expression of dehydration responsive element binding proteins (StDREB2) confers higher tolerance to salt stress in potato. Plant Physiol. Biochem. 2012, 60, 98–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Zhao, Q.; Zhu, D.; Yu, J. A DREB-Like transcription factor from maize (Zea mays), ZmDREB4.1, plays a negative role in plant growth and development. Front. Plant Sci. 2018, 9, 395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hrmova, M.; Hussain, S.S. Plant transcription factors involved in drought and associated stresses. Int. J. Mol. Sci. 2021, 22, 5662. [Google Scholar] [CrossRef]
- Lakhwani, D.; Pandey, A.; Dhar, Y.V.; Bag, S.K.; Trivedi, P.K.; Asif, M.H. Genome-wide analysis of the AP2/ERF family in Musa species reveals divergence and neofunctionalisation during evolution. Sci. Rep. 2016, 6, 18878. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Yuan, G.; Liu, S.; Jia, J.; Cheng, L.; Qi, D.; Shen, S.; Peng, X.; Liu, G. Identified of a novel cis-element regulating the alternative splicing of LcDREB2. Sci. Rep. 2017, 7, 46106. [Google Scholar] [CrossRef] [Green Version]
- Mizoi, J.; Shinozaki, K.; Yamaguchi-Shinozaki, K. AP2/ERF family transcription factors in plant abiotic stress responses. Biochim. Biophys. Acta 2012, 1819, 86–96. [Google Scholar] [CrossRef]
- Shi, Y.; Ding, Y.; Yang, S. Molecular Regulation of CBF Signaling in Cold Acclimation. Trends Plant Sci. 2018, 23, 623–637. [Google Scholar] [CrossRef]
- Jaglo-Ottosen, K.R.; Gilmour, S.J.; Zarka, D.G.; Schabenberger, O.; Thomashow, M.F. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 1998, 280, 104–106. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Kasuga, M.; Sakuma, Y.; Abe, H.; Miura, S.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 1998, 10, 1391–1406. [Google Scholar] [CrossRef]
- Agarwal, P.K.; Agarwal, P.; Reddy, M.K.; Sopory, S.K. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep. 2006, 25, 1263–1274. [Google Scholar] [CrossRef] [PubMed]
- Dubouzet, J.G.; Sakuma, Y.; Ito, Y.; Kasuga, M.; Dubouzet, E.G.; Miura, S.; Seki, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J. 2003, 33, 751–763. [Google Scholar] [CrossRef] [PubMed]
- Fowler, S.; Thomashow, M.F. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 2002, 14, 1675–1690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maruyama, K.; Sakuma, Y.; Kasuga, M.; Ito, Y.; Seki, M.; Goda, H.; Shimada, Y.; Yoshida, S.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J. 2004, 38, 982–993. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Lee, C.M.; Doherty, C.J.; Gilmour, S.J.; Kim, Y.; Thomashow, M.F. Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network. Plant J. 2015, 82, 193–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, Y.; Ding, Y.; Shi, Y.; Zhang, X.; Gong, Z.; Yang, S. The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis. New Phytol. 2016, 212, 345–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, F.; Sakuma, Y.; Li, J.; Liu, Q.; Li, Y.Q.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol. 2004, 45, 1042–1052. [Google Scholar] [CrossRef] [Green Version]
- Ito, Y.; Katsura, K.; Maruyama, K.; Taji, T.; Kobayashi, M.; Seki, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol. 2006, 47, 141–153. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Fowler, S.G.; Cheng, H.; Lou, Y.; Rhee, S.Y.; Stockinger, E.J.; Thomashow, M.F. Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. Plant J. 2004, 39, 905–919. [Google Scholar] [CrossRef]
- Phukan, U.J.; Jeena, G.S.; Tripathi, V.; Shukla, R.K. Regulation of Apetala2/ethylene response factors in plants. Front. Plant Sci. 2017, 8, 150. [Google Scholar] [CrossRef]
- Sun, J.; Peng, X.; Fan, W.; Tang, M.; Liu, J.; Shen, S. Functional analysis of BpDREB2 gene involved in salt and drought response from a woody plant Broussonetia papyrifera. Gene 2014, 535, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Jangale, B.L.; Chaudhari, R.S.; Azeez, A.; Sane, P.V.; Sane, A.P.; Krishna, B. Independent and combined abiotic stresses affect the physiology and expression patterns of DREB genes differently in stress-susceptible and resistant genotypes of banana. Physiol. Plant. 2019, 165, 303–318. [Google Scholar] [CrossRef] [PubMed]
- Akbudak, M.A.; Filiz, E.; Kontbay, K. DREB2 (dehydration-responsive element-binding protein 2) type transcription factor in sorghum (Sorghum bicolor): Genome-wide identification, characterization and expression profiles under cadmium and salt stresses. BioTech 2018, 8, 426. [Google Scholar] [CrossRef] [PubMed]
- Bihani, P.; Char, B.; Bhargava, S. Transgenic expression of sorghum DREB2 in rice improves tolerance and yield under water limitation. J. Agric. Sci. 2011, 149, 95–101. [Google Scholar] [CrossRef]
- Shen, Y.G.; Zhang, W.K.; He, S.J.; Zhang, J.S.; Liu, Q.; Chen, S.Y. An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor. Appl. Genet. 2003, 106, 923–930. [Google Scholar] [CrossRef]
- Xue, G.P.; Loveridge, C.W. HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant J. 2004, 37, 326–339. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, K.; Ito, Y.; Yamaguchi-Shinozaki, K. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol. 2009, 149, 88–95. [Google Scholar] [CrossRef] [Green Version]
- Morimoto, K.; Mizoi, J.; Qin, F.; Kim, J.S.; Sato, H.; Osakabe, Y.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Stabilization of Arabidopsis DREB2A is required but not sufficient for the induction of target genes under conditions of stress. PLoS ONE 2013, 8, e80457. [Google Scholar] [CrossRef]
- Liu, S.; Wang, X.; Wang, H.; Xin, H.; Yang, X.; Yan, J.; Li, J.; Tran, L.S.; Shinozaki, K.; Yamaguchi-Shinozaki, K.; et al. Genome-wide analysis of ZmDREB genes and their association with natural variation in drought tolerance at seedling stage of Zea mays L. PLoS Genet. 2013, 9, e1003790. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Liao, J.; Ling, Q.; Xi, Y.; Qian, Y. Genome-wide identification and expression profiling analysis of maize AP2/ERF superfamily genes reveal essential roles in abiotic stress tolerance. BMC Genom. 2022, 23, 125. [Google Scholar] [CrossRef]
- Qin, F.; Kakimoto, M.; Sakuma, Y.; Maruyama, K.; Osakabe, Y.; Tran, L.S.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J. 2007, 50, 54–69. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, P.; Yan, S.; Gao, F.; Li, H.; Hou, H.; Zhang, Q.; Tan, J.; Li, L. Promoter-associated histone acetylation is involved in the osmotic stress-induced transcriptional regulation of the maize ZmDREB2A gene. Physiol. Plant. 2014, 151, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Manna, M.; Thakur, T.; Chirom, O.; Mandlik, R.; Deshmukh, R.; Salvi, P. Transcription factors as key molecular target to strengthen the drought stress tolerance in plants. Physiol. Plant. 2021, 172, 847–868. [Google Scholar] [CrossRef] [PubMed]
- Ruelland, V.; Vaultier, M.N.; Zachowski, A.; Hurry, V. Cold signalling and cold acclimation in plants. Adv. Bot. Res. 2009, 49, 35–150. [Google Scholar] [CrossRef]
- Pearce, R.S. Plant freezing and damage. Ann. Bot. 2001, 87, 417–424. [Google Scholar] [CrossRef]
- Dias, M.C.; Oliveira, H.; Costa, A.; Santos, C. Improving elms performance under drought stress: The pretreatment with abscisic acid. Environ. Exp. Bot. 2014, 100, 64–73. [Google Scholar] [CrossRef]
- Mwando, E.; Angessa, T.T.; Han, Y.; Li, C. Salinity tolerance in barley during germination- homologs and potential genes. J. Zhejiang Univ. Sci. B 2020, 21, 93–121. [Google Scholar] [CrossRef]
- Sakuma, Y.; Maruyama, K.; Osakabe, Y.; Qin, F.; Seki, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 2006, 18, 1292–1309. [Google Scholar] [CrossRef] [Green Version]
- Sakuma, Y.; Maruyama, K.; Qin, F.; Osakabe, Y.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc. Natl. Acad. Sci. USA 2006, 103, 18822–18827. [Google Scholar] [CrossRef] [Green Version]
- Reis, R.R.; da Cunha, B.A.; Martins, P.K.; Martins, M.T.; Alekcevetch, J.C.; Chalfun, A., Jr.; Andrade, A.C.; Ribeiro, A.P.; Qin, F.; Mizoi, J.; et al. Induced over-expression of AtDREB2A CA improves drought tolerance in sugarcane. Plant Sci. 2014, 221–222, 59–68. [Google Scholar] [CrossRef]
- Liu, H.; Lyu, H.M.; Zhu, K.; Van de Peer, Y.; Max Cheng, Z.M. The emergence and evolution of intron-poor and intronless genes in intron-rich plant gene families. Plant J. 2021, 105, 1072–1082. [Google Scholar] [CrossRef]
- Huang, H.; Xie, S.; Xiao, Q.; Wei, B.; Zheng, L.; Wang, Y.; Cao, Y.; Zhang, X.; Long, T.; Li, Y.; et al. Sucrose and ABA regulate starch biosynthesis in maize through a novel transcription factor, ZmEREB156. Sci. Rep. 2016, 6, 27590. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Shi, J.; Dong, S.; Liu, P.; Zhao, B.; Zhang, J. Grain development and endogenous hormones in summer maize (Zea mays L.) submitted to different light conditions. Int. J. Biometeorol. 2018, 62, 2131–2138. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrs, H.D.; Weatherley, P.E. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust. J. Biol. Sci. 1962, 15, 413–428. [Google Scholar] [CrossRef]
Gene Name * | Gene/Locus ID | Genomic Localization (NCBI) | Gene, bp | CDS, bp | Protein, aa | MW, kDa | pI | AP2 Domain Localization, aa | Annotation in Zm-B73-REFERENCE-NAM-5.0 |
---|---|---|---|---|---|---|---|---|---|
ZmDREB2.1/no | Gene ID: 732788 LOC732788/Zm00001d010048/GRMZM2G006745 | chr8:96775353–96778297 [NC_050103.1 (96775198..96778545)] | 2945 | 1107 (X1) | 368 XP_008655447.1 | 39.65 | 5.08 | 134–190 | DRE-binding protein 1c, also known as DBP1a; DBP1b; DBP1c; DREB2; DREB2A; TIDP2952; ZmDREB2A; GRMZM2G006745 |
ZmDREB2.1/ZmERF135 | 1104 (X2) | 367 XP_008655449.1 | 39.58 | 5.08 | 133–189 | ||||
ZmDREB2.1/no | 1101 (X3) | 366 XP_035817469.1 | 39.51 | 5.02 | 132–188 | ||||
ZmDREB2.1/ZmERF134 | 963 (X4) | 320 XP_023156565.1 | 34.7 | 4.94 | 86–142 | ||||
ZmDREB2.1/ZmERF136 | 747 (X5) | 248 XP_020397925.1 | 26.55 | 4.3 | 14–70 | ||||
ZmDREB2.1/no | 1104 (iso1) | 367 NP_001292873.1 | 39.58 | 5.02 | 133–189 | ||||
ZmDREB2.1/no | 960 (iso3) | 319 NP_001105876.2 | 34.62 | 4.94 | 85–141 | ||||
ZmDREB2.2/no | Gene ID: 103630470 LOC103630470 | chr6:164425309–164427359 [NC_050101.1 (164425038..164427713)] | 2051 | 618 | 205 XP_008649742.1 | 22.01 | 6.35 | 61–118 | Dehydration-responsive element-binding protein 2D |
ZmDREB2.3/ZmERF104 | Gene ID: 100384333 LOC100384333/Zm00001d038001/GRMZM2G093595 | chr6:151835642–151836388 [NC_050101.1 (151835246..151836529, complement)] | 747 | 747 | 248 XP_008649551.1 | 26.8 | 7.99 | 41–103 | Ethylene-responsive transcription factor ABI4 |
ZmDREB2.4/no | Gene ID: 103631782 LOC103631782/Zm00001eb005650/GRMZM2G419901 | chr1:15900859–15901824 [NC_024459.2 (16005938..16006903) B73 RefGen_v4 (GCF_000005005.2)] | 966 | 966 | 321 XP_008651496.1 | 34.08 | 5.99 | 28–89 | Dehydration-responsive element-binding protein 2E Gene ID: 103631782, This record represents a gene not currently annotated in the NCBI. |
ZmDREB2.5/ZmERF154 | Gene ID: 103639528 LOC103639528/Zm00001d048296/GRMZM2G376255 | chr9:157327869–157328792 [NC_050104.1 (157327689..157328926, complement)] | 924 | 924 | 307 XP_008660491.1 | 32.72 | 5.65 | 28–90 | Dehydration-responsive element-binding protein 2E |
ZmDREB2.6/ZmERF155 | Gene ID: 103639531 LOC103639531/Zm00001d048297/GRMZM2G399098 | chr9:157365710–157366678 [NC_050104.1 (157365710..157366678, complement)] | 969 | 969 | 322 XP_008660493.1 | 34.3 | 6.89 | 28–87 | Dehydration-responsive element-binding protein 2E |
ZmDREB2.7/ZmERF18 | Gene ID: 103643169 LOC103643169/Zm00001d031861/GRMZM2G028386 | chr1:206336830–206338050 [NC_050096.1 (206336803..206338449)] | 1221 | 1221 | 406 XP_008664551.2 | 43.65 | 6.88 | 132–188 | Ethylene-responsive transcription factor ABI4 (A3 subgroup) |
ZmDREB2.8/ZmERF57 | Gene ID: 103653247 LOC103653247/Zm00001d049889/GRMZM2G156737 | chr4:51083167–51084225 [NC_050099.1 (51082881..51084560)] | 1059 | 1059 | 352 XP_008678419.1 | 37.88 | 7.7 | 78–139 | Dehydration-responsive element-binding protein 2C |
ZmDREB2.9/no | Gene ID: 100286109 LOC100286109/ Zm00001d008665 | chr8:16438393–16439714 [NC_050103.1 (16437969..16440069)] | 1322 | 786 (iso1—L) | 261 (L) NP_001359320.1 | 28.7 | 5.18 | 81–142 | Dehydration-responsive element-binding protein 2A |
771 (X1—S) | 256 (S) XP_020397779.1 | 28.65 | 5.26 | 76–137 |
Function | Element | Annotation | ZmDREB2.1/2A | ZmDREB2.2 | ZmDREB2.3 | ZmDREB2.4 | ZmDREB2.5 | ZmDREB2.6 | ZmDREB2.7 | ZmDREB2.8 | ZmDREB2.9 |
---|---|---|---|---|---|---|---|---|---|---|---|
Hormone response | ABRE | cis-acting elements involved in ABA responsiveness | 4 | 3 | 1 | 7 | 8 | 3 | |||
CARE | |||||||||||
AuxRR-core | cis-acting regulatory elements involved in auxin responsiveness | ||||||||||
TGA element | 1 | 1 | |||||||||
CGTCA motif | cis-acting regulatory element involved in MeJA-responsiveness | 1 | 1 | 2 | 1 | 2 | 4 | 1 | 4 | ||
SARE | cis-acting elements involved in SA responsiveness | ||||||||||
TCA-element | 1 | 1 | 1 | ||||||||
P-box | gibberellin-responsive elements | ||||||||||
TATC-box | 1 | ||||||||||
GARE motif | 1 | 1 | |||||||||
ERE | ET-responsive element | ||||||||||
Stress response | ARE | cis-acting regulatory element essential for the anaerobic induction | 2 | 2 | 4 | 2 | 1 | 1 | |||
DRE1/DRE core | cis-acting regulatory element involved in drought response | 1 | 1 | 1 | |||||||
LTR | cis-acting element involved in low-temperature responsiveness | 1 | 1 | ||||||||
STRE | cis-acting element involved in heat, osmotic stress, low pH, nutrient starvation stress response | 7 | 2 | 2 | 3 | 1 | 2 | ||||
TC-rich repeats | cis-acting element involved in defense and stress responsiveness | 2 | 1 | 1 | |||||||
W-box | WRKY-binding site involved in abiotic stress and defense response | 1 | 2 | 1 | 1 | ||||||
Wun motif | cis-acting elements involved in wounding and pathogen response | 2 | |||||||||
WRE3 | 1 | 1 | 1 | 1 | 2 | ||||||
Box S | |||||||||||
GC motif | enhancer-like element involved in anoxic specific inducibility | 1 | 2 | 1 | 1 | 2 | |||||
Developmental processes | O2-site | cis-acting element involved in zein metabolism regulation | 1 | ||||||||
CCGTCC motif | cis-acting element involved in meristem specific activation | 1 | 1 | 1 | 3 | 2 | |||||
circadian | cis-acting element involved in circadian control | 1 | |||||||||
CAT-box | cis-acting regulatory element related to meristem expression | 1 | 2 | 7 | 2 | ||||||
RY-element | cis-acting regulatory element involved in seed-specific regulation | 2 | 2 | 2 | 1 | ||||||
MSA-like | cis-acting element involved in cell cycle regulation | 1 | 1 | ||||||||
Other cis-elements | CCAAT-box/MYB/MRE | MYB-binding site | 4 | 4 | 5 | 4 | 1 | 1 | 1 | 2 | 1 |
MYC | MYC-binding site | 1 | 2 | 2 | 2 | 2 | 2 | 3 | |||
5′-UTR Py-rich stretch | cis-acting element conferring high transcript levels | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filyushin, M.A.; Kochieva, E.Z.; Shchennikova, A.V. ZmDREB2.9 Gene in Maize (Zea mays L.): Genome-Wide Identification, Characterization, Expression, and Stress Response. Plants 2022, 11, 3060. https://doi.org/10.3390/plants11223060
Filyushin MA, Kochieva EZ, Shchennikova AV. ZmDREB2.9 Gene in Maize (Zea mays L.): Genome-Wide Identification, Characterization, Expression, and Stress Response. Plants. 2022; 11(22):3060. https://doi.org/10.3390/plants11223060
Chicago/Turabian StyleFilyushin, Mikhail A., Elena Z. Kochieva, and Anna V. Shchennikova. 2022. "ZmDREB2.9 Gene in Maize (Zea mays L.): Genome-Wide Identification, Characterization, Expression, and Stress Response" Plants 11, no. 22: 3060. https://doi.org/10.3390/plants11223060
APA StyleFilyushin, M. A., Kochieva, E. Z., & Shchennikova, A. V. (2022). ZmDREB2.9 Gene in Maize (Zea mays L.): Genome-Wide Identification, Characterization, Expression, and Stress Response. Plants, 11(22), 3060. https://doi.org/10.3390/plants11223060