Improvement of Photosynthesis by Biochar and Vermicompost to Enhance Tomato (Solanum lycopersicum L.) Yield under Greenhouse Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Soil, Biochar, and Vermicompost Preparation
2.3. Greenhouse Experimental Setup
2.4. Measurement Items and Methods
2.4.1. Determination of Photosynthetic Parameters
2.4.2. Determination of Chlorophyll Fluorescence Traits
2.4.3. Determination of Tomato Yield and WUE
2.5. Data Processing and Analysis
3. Results and Analysis
3.1. Net Photosynthetic Rate and Photosynthetic Parameters
3.2. Chlorophyll Fluorescence Traits
3.3. Yield and WUE of Tomato
3.4. Correlation Analysis of Plant Physiological Indicators and Tomato Yield
4. Discussion
4.1. BA and VA Rates Improved Photosynthesis and Chlorophyll Fluorescence Traits
4.2. Yield and WUE in Response to BA and VA Rates
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, J.B.; Zhai, B.N.; Chen, Z.J.; Ma, A.S.; Shang, H.B. Spatial accumulation and potential environmental effects of soil nutrients in protected vegetable fields. J. Agric. Environ. Sci. 2004, 2, 332–335. [Google Scholar]
- Han, P.; Bayram, Y.; Shaltiel-Harpaz, L.; Sohrabi, F.; Saji, A.; Esenali, U.T.; Jalilov, A.; Ali, A.; Shashank, P.R.; Ismoilov, K. Tuta absoluta continues to disperse in Asia: Damage, ongoing management and future challenges. J. Pest. Sci. 2019, 92, 1317–1327. [Google Scholar] [CrossRef]
- Jiang, L.L.; Wang, H.Y.; Zong, X.J.; Wang, X.F.; Wu, C. Effects of soil treated fungicide fluopimomide on tomato (Solanum lycopersicum L.) disease control and plant growth. Open Life Sci. 2022, 17, 800–810. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.X.; Cui, J.X.; Li, D.; Fu, L.T.; He, X.Y.; Wen, J. Effects of different improvement measures on soil fertility and tomato quality in vegetable facilities. J. Agric. Eng. 2021, 37, 58–64. [Google Scholar]
- Zhang, Y.W.; Zhao, P.T.; Li, J.M.; Zhao, X.G.; Shang, Y.; Zhang, Z.L.; Zhao, Z.P.; Li, L.H. Changes in photosynthetic characteristics of black wheat and their effects on yield. Chin. Agron. Bull. 2022, 38, 7–16. [Google Scholar]
- Fu, L.; Bai, X.M.; Yang, X.H.; Wu, Y.X.; Ai, X.Z. Photosynthetic characteristics of grafted peppers and their effects on yield and quality. J. Hortic. 2013, 40, 449–457. [Google Scholar] [CrossRef]
- Yang, G.D.; Zhou, B.L.; Fu, Y.W.; Zhang, E.P.; Li, M. Photosynthetic characteristics, dry matter distribution and their effects on yield in different population structures of aubergine. J. Hortic. 2004, 31, 603–606. [Google Scholar] [CrossRef]
- Zhu, W.J.; Zheng, M.J.; Kang, Y.G. Effects of different light intensities on photosynthesis of three lianas. Chin. Agron. Bull. 2022, 38, 27–31. [Google Scholar]
- Zhang, K.; Zhang, B.; Wang, R.Y.; Wang, H.L.; Zhao, H.; Zhao, F.N.; Qi, Y.; Chen, F. Effects of elevated CO2 concentration on photosynthesis and water physiological and ecological characteristics of spring wheat in semi-arid areas. J. Ecol. Environ. 2021, 30, 223–232. [Google Scholar] [CrossRef]
- Sun, M.; Ma, D.Y.; Ji, L.J.; Hu, H.Y.; Ding, X.L.; Wang, Z.P. Effects of different nutrient supply on photosynthesis and fruit growth and development of “Rose Fragrance” grapes. North. Hortic. 2017, 02, 16–22. [Google Scholar]
- Palansooriya, K.N.; Ok, Y.S.; Awad, Y.M.; Lee, S.S.; Sung, J.K.; Koutsospyros, A.; Moon, D.H. Impacts of biochar application on upland agriculture: A review. J. Environ. Manag. 2019, 234, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Hang, M.; Liu, D.; Sun, S.Q.; Yang, X.Y.; Chen, Q.Q.; Zhang, T.; Lan, J.Y. Effect of biochar on photosynthetic characteristics of cotton in different continuous cropping cotton field. Hubei Agric. Sci. 2015, 54, 6202–6206. (In Chinese) [Google Scholar]
- Gui, L.Q.; Zhang, Y.L.; Wang, Y.J. Research advance on effects of biochar on soil fertilityand crop’s yield and quality. Mod. Agric. Sci. Technol. 2020, 16, 136–139. [Google Scholar]
- Zhu, Y.J. Study on the Effect of Biochar Substrate on the Growth of Tomato and Rape. Master’s Thesis, Shandong Agricultural University, Tai’an, China, 2016. [Google Scholar]
- Cao, X.N.; Meng, J.; Yang, T.X.; Gao, X.; Chen, W.F. Effect of biochar on cherry tomato fruit quality and yield. Jiangsu Agric. Sci. 2018, 46, 101–104. [Google Scholar]
- Lu, J.J.; Gao, C.H.; Li, J.H.; Jin, D.S.; Lu, C.D.; Dong, Y.Z. Effect of straw biochar on soil nutrients and corn growth in Loess Area. Chin. Agron. Bull. 2017, 33, 92. [Google Scholar] [CrossRef]
- Zuo, Y.N.; Zhang, J.X.; Zhao, R.; Dai, H.Y.; Zhang, Z.H. Application of vermicompost improves strawberry growth and quality through increased photosynthesis rate, free radical scavenging and soil enzymatic activity. Sci. Hortic. 2018, 233, 132–140. [Google Scholar] [CrossRef]
- Hosseinzadeh, S.R.; Amiri, H.; Ismaili, A. Effect of vermicompost fertilizer on photosynthetic characteristics of chickpea (Cicer arietinum L.) under drought stress. Photosynthetica 2015, 54, 87–92. [Google Scholar] [CrossRef]
- Zhao, C.R.; Shan, S.L.; Wang, Y.M.; Luo, K.; Zhou, X.F.; Huang, M.; Zhang, H.D.; Fan, L.; Cao, F.B.; Chen, J.N.; et al. Effects of earthworm manure application on rice growth characteristics and yield under different nitrogen levels. Chin. Rice. 2017, 23, 67–70. [Google Scholar]
- Zhou, D.X.; Shen, X.Q.; Zhou, L.R.; Cui, L.J. Effect of vermicompost on agronomic characters and quality of tomato. J. Northeast Agric. Univ. 2012, 43, 28–33. [Google Scholar]
- Joshi, R.; Vig, A.P. Effect of vermicompost on growth, yield and quality of tomato (Lycopersicum esculentum L.). Afr. J. Basic Appl. Sci. 2010, 2, 117–123. [Google Scholar]
- Geng, D.; Shan, L.; Li, Y. Effect of soil water stress on chlorophyll fluorescence and antioxidant enzyme activity in reaumuria soongorica seedling. Chin. Bull. Bot. 2014, 49, 282–291. (In Chinese) [Google Scholar]
- Mauro, R.P.; Agnello, M.; Distefano, M.; Sabatino, L.; Primo, A.S.; Leonardi, C.; Giuffrida, F. Chlorophyll Fluorescence, Photosynthesis and Growth of Tomato Plants as Affected by Long-Term Oxygen Root Zone Deprivation and Grafting. Agronomy 2020, 10, 137. [Google Scholar] [CrossRef]
- Groher, T.; Schmittgen, S.; Fiebig, A.; Noga, G.; Hunsche, M. Suitability of fluorescence indices for the estimation of fruit maturity compounds in tomato fruits. J. Sci. Food Agric. 2018, 98, 5656–5665. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.X.; Li, R.J.; Mu, J.; Yang, Z.L.; Sun, S.; Yan, Y.; Wang, G.Y. Effects of biochar on physiological characteristics of cucumber seedlings in diethyl hexyl phthalate contaminated soil. Plant Physiol. J. 2020, 56, 73–82. [Google Scholar]
- Cheng, H.T.; Li, Q.L.; Liu, J.K.; Yan, T.L.; Zhang, Q.Y.; Wang, J.C. Effects of earthworm dung soil composite matrix on the growth and chlorophyll fluorescence characteristics of Leonurus japonicus seedlings. J. Trop. Crops 2017, 38, 2266–2272. [Google Scholar]
- Gong, Z.N.; Fan, Y.B.; Liu, H.; Zhao, W. Chlorophyll fluorescence response characteristics of typical emergent plants under different total nitrogen gradient. Chin. Bull. Bot. 2016, 51, 631–638. (In Chinese) [Google Scholar]
- Liu, M.L.; Liu, X.Y.; Pan, G.X. Advance in effect of biochar on plant phenotype and gene expression. Plant Nutr. Fert. Sci. 2017, 23, 789–798, (In Chinese with English Abstract). [Google Scholar]
- Gong, Z. Chinese Soil Taxonomy; Science Press: Beijing, China, 2001. [Google Scholar]
- Tandon, H. Methods of Analysis of Soils, Plants, Waters and Fertilizers; Fertilizers Development and Consultation Organization: New Delhi, India, 1993; pp. 58–60. [Google Scholar]
- Sims, J.R.; Jackson, G.D. Rapid analysis of soil nitrate with chromotropic acid 1. Soil Sci. Soc. Am. J. 1971, 35, 603–606. [Google Scholar] [CrossRef]
- Henriksen, A.; Selmer-Olsen, A. Automatic methods for determining nitrate and nitrite in water and soil extracts. Analyst 1970, 95, 514–518. [Google Scholar] [CrossRef]
- Jaiswal, P. Soil, Plant and Water Analysis; Kalyani Publishers: New Delhi, India, 2011. [Google Scholar]
- Sommers, D.W.; Nelson, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis; Soil Science Society of America and American Society of Agronomy: Madison, WI, USA, 1996. [Google Scholar]
- Marx, E.; Hart, J.; Stevens, R. Soil Test Interpretation Guide EC 1478 Extension & Station Communications; Oregon State University: Corvallis, OR, USA, 1999. [Google Scholar]
- Li, J.M.; Wang, P.; Li, J. Effects of irrigation amount on physiology, biochemistry and quality of greenhouse tomato under sub-low temperature. Agric. Eng. 2010, 26, 129–134. (In Chinese) [Google Scholar]
- Farouhar, G.D.; Sharkey, T.D. Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol. 1982, 33, 317–345. [Google Scholar] [CrossRef]
- Strasser, R.J.; Tsimillimichael, M.; Qiang, S.; Goltsev, V. Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochim. Biophys. Acta 2010, 1797, 1313–1326. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Zhang, Z.; Gao, H.; Liu, M.; Fan, X. Mechanisms by which the infection of Sclerotinia sclerotiorum (Lib.) de Bary affects the photosynthetic performance in tobacco leaves. BMC Plant Biol. 2014, 14, 240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.Q.; Ma, S.B.; Feng, X.H.; Sun, Y.; Yi, Y.J.; Liu, W.X. Effects of grafting on the dynamic characteristics of rapid chlorophyll fluorescence induction of Pepper Seedlings under high and low temperature stress. Acta Hortic. Sin. 2016, 43, 885–896. [Google Scholar]
- Ouda, S.; El-Mesiry, T.; Gaballah, M. Increasing water use efficiency for wheat grown under water stress conditions. J. Appl. Sci. Res. 2007, 3, 1766–1773. [Google Scholar]
- Zhang, Y.W.; Zhao, X.G.; Guan, Z.B.; Hou, J.L.; Wang, X.F.; Dong, Y.H.; Tian, J.H.; Li, D.R.; Wang, Z.Y. Research progress on the screening of high light efficiency germplasm of crops. Chin. Agron. Bull. 2019, 35, 1–11. [Google Scholar]
- Liu, H.M.; Zhang, S.Y.; Guo, H.G.; Lin, J.J.; Li, Z.T.; Yan, F.C.; Zhu, G.S.; Xu, J.Y.; Zhao, C.J. Effects of biochar on Millet seedling growth and photosynthetic characteristics. Agric. Res. Arid. Areas 2020, 38, 86–91. [Google Scholar]
- Alfadil, A.A.; Xia, J.H.; Shaghaleh, H.; Hamoud, Y.A.; Ibrahim, J.N.; Hamad, A.A.A.; Rahim, S.F.; Sheteiwy, M.S.; Wu, T.N. Wheat straw biochar application improves the morphological, physiological, and yield attributes of maize and the physicochemical properties of soil under deficit irrigation and salinity stress. J. Plant Nutr. 2021, 44, 2399–2420. [Google Scholar] [CrossRef]
- Cui, Q.; Xia, J.B.; Liu, J.; Yang, H.; Peng, L. Effects of biochar and EM bacteria on the growth and photosynthetic characteristics of Sesbania in saline alkali soil of the Yellow River Delta. J. Appl. Ecol. 2020, 31, 3101–3110. [Google Scholar] [CrossRef]
- Shi, J.W.; Wang, Y.D.; Guan, Z.H.; Yao, L.; Lu, Y.Q.; Zhang, Y.Q.; Yang, L.J. Regulation of Vermicompost on Photosynthetic Characteristics and yield of greenhouse tomato leaves. China Soil Fertil. 2020, 04, 165–171. [Google Scholar]
- Xia, L.; Zhao, R.; Wang, Y.Q.; Jin, H.Y.; Wu, X.D.; Ge, J.Z.; Zang, F.Y.; Li, Z.F.; Wang, J.L. Effects of drought stress on photosynthesis and chlorophyll fluorescence characteristics of summer maize Effects of drought stress on photosynthesis and chlorophyll fluorescence characteristics of summer maize. J. North China Agric. 2019, 34, 106–114. [Google Scholar]
- Hu, W.H.; Yu, J.Q. Effect of low temperature and low light on photosynthesis and chlorophyll fluorescence parameters of tomato leaves. J. Hortic. 2001, 28, 41–46. [Google Scholar]
- Luo, J.; Zhang, M.Q. Effects of water stress on chlorophyll a fluorescence kinetics of different sugarcane varieties. J. Fujian Agric. Univ. 2000, 29, 18–22. [Google Scholar]
- Zhao, L.Y.; Deng, X.P.; Shan, L. The osmotic stress on chlorophyll fluorescence parameters of wheat seedlings Effects of osmotic stress on chlorophyll fluorescence parameters of wheat seedlings. J. Appl. Ecol. 2005, 16, 1261–1264. [Google Scholar]
- Zhang, J.H.; Wu, B.W.R.; Wang, G.L.; Jia, C.L.; Zhang, Q.P. Effect of biochar application on PS II photochemical characteristics of alfalfa leaves. Shandong Agric. Sci. 2018, 50, 66–71. [Google Scholar] [CrossRef]
- Fan, L.L.; Muhammad, w.K.T.; Zhang, Y.; Wu, X.; Rong, J.; Zheng, Y. Effects of different biochar treatments on Photosynthetic fluorescence characteristics of Fujian cypress. J. Cent. South Univ. For. Technol. 2021, 41, 37–44. [Google Scholar] [CrossRef]
- Yang, C.; Du, S.M.; Zhang, D.Q.; Li, X.D.; Shi, Y.H.; Shao, Y.H. A method for estimating the relative chlorophyll content of wheat leaves based on chlorophyll fluorescence parameters for estimating the relative chlorophyll content of wheat leaves. J. Appl. Ecol. 2021, 32, 175–181. [Google Scholar]
- Xu, L.; Gao, Z.Q.; An, W.; Li, Y.L.; Jiao, X.F.; Wang, C.Y. The Photosynthetic characteristics of flag leaf under spring sowing conditions in winter wheat Changes in photosynthetic characteristics and chlorophyll fluorescence parameters of flag leaves under spring sowing conditions and their relationship with yield. J. Appl. Ecol. 2016, 27, 133–142. [Google Scholar]
- Wang, J.Q.; Li, H.; Liu, Q.; Zeng, L.S. Effects of exogenous plant hormone spraying on physiological characteristics and yield of sweet potato under drought stress. J. Appl. Ecol. 2020, 31, 189–198. [Google Scholar]
- Wang, M.Y.; Jing, D.W.; Zhang, H.; Li, S.P.; Zheng, F. Effects of earthworm manure on active organic carbon and microbial activity of cowpea soil. J. Nucl. Agric. 2016, 30, 1404–1410. (In Chinese) [Google Scholar]
- Dong, L.L.; He, J.Q.; Lu, C.Y.; Shi, L.L.; Zhou, X.W.; Tao, Y.Y.; Wang, H.H.; Shen, M.X. Effect of biomass carbon combined with earthworm manure on soil organic carbon and rice growth. China Soil Fertil. 2021, 2, 87–95. (In Chinese) [Google Scholar]
- Blouin, M.; Barrere, J.; Meyer, N.; Lartigue, S.; Barot, S.; Mathieu, J. Vermicompost significantly affects plant growth: A meta-analysis. Agron. Sustain. Dev. 2019, 39, 34. [Google Scholar] [CrossRef]
- Wang, Y.F.; Wang, C.C.; Wu, Z. Effects of sheep manure and earthworm manure on Agronomic Characters and quality of tomato. North. Hortic. 2020, 10, 51–55. [Google Scholar]
- Zhang, R.H.; Lan, C.J.; Liu, W.; Jin, Q.; Guo, Y.; Yu, J.H.; Yin, L.Y.; Li, C.J.; Huang, J.Q. Effect of biochar on growth, yield and quality of open-field cherry tomato in counter season. Mol. Plant Breed. 2019, 17, 4831–4839. (In Chinese) [Google Scholar]
- Akhtar, S.S.; Li, G.T.; Andersen, M.N.; Liu, F.L. Biochar enhances yield and quality of tomato under reduced irrigation. Agric. Water Manag. 2014, 31, 37–44. [Google Scholar] [CrossRef]
- Teng, M.J.; Wan, B.B.; Wang, D.S.; Jiao, J.G.; Liu, M.Q.; Chen, X.Y. Effects of vermicompost application modes on growth of two tomato cultivars and soil fertility. Soil 2017, 49, 712–718. [Google Scholar]
- Ding, S.P.; Zhang, G.X.; Yao, Y.T.; Sun, Y.S.; Ding, F.J. Effects of combined application of earthworm manure biochar on growth and Photosynthesis of protected tomato in saline alkali land. North. Hortic. 2021, 18, 60–67. (In Chinese) [Google Scholar] [CrossRef]
- Maccarthy, P.; Claap, C.E.; Malcolm, R.L. Humic Substances in Soil and Cropsciences; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 1990; p. 161Socie. [Google Scholar]
- Brown, G. How do earthworms affect microfloral and faunal community diversity? Plant Soil 1995, 170, 209–231. [Google Scholar] [CrossRef]
- Wu, J.; Li, J.Y.; Liu, N. Effects of earthworm manure organic fertilizer on tomato yield, quality and soil chemical properties. Shanghai J. Agric. 2018, 34, 16–19. [Google Scholar] [CrossRef]
Season | 2020 | 2021 | |||||
---|---|---|---|---|---|---|---|
Month | Jul | Aug | Sept | Oct | Nov | Dec | Jan |
Max. temp °C | 33.8 | 40.1 | 30.3 | 29.3 | 16.4 | 9.8 | 8.3 |
Min. temp °C | 23.4 | 29.2 | 17.7 | 14.8 | 8.3 | 2.1 | 1.2 |
Max. Relative humidity % | 98.6 | 85.0 | 89.5 | 76.0 | 82.3 | 82.6 | 80.2 |
Min. Relative humidity % | 69.5 | 62.4 | 68.7 | 68.9 | 70.1 | 70.8 | 69.1 |
Sunshine (h) | 10.2 | 11.4 | 9.1 | 8.3 | 6.5 | 6.1 | 5.8 |
Solar Rad. MJ m−2 day−1 | 97.8 | 113.7 | 78.2 | 73.8 | 58.7 | 56.0 | 55.4 |
Property | Soil | Biochar | Vermicompost |
---|---|---|---|
BD | 1.41 g·cm−3 | 0.42 g·cm−3 | - |
TP | 46.3% | 55.3% | - |
FC | 28.7% | - | - |
K | 101 mg·kg−1 | 58,513 mg·kg−1 | 1892 mg·kg−1 |
N | 11.1 mg·kg−1 | 390 mg·kg−1 | 564 mg·kg−1 |
P | 5.81 mg·kg−1 | 56.4 mg·kg−1 | 461 mg·kg−1 |
OMC | 1.04% | 41.1% | 44.9% |
pH | 7.07 value | 9.40 value | 8.17 value |
Fluorescence Parameters | Fo | Fv | Fm | Fv/Fm | Fv/Fo |
---|---|---|---|---|---|
CK | 3490 ± 45 a | 13,253 ± 132 c | 16,766 ± 416 b | 0.791 ± 0.013 b | 3.80 ± 0.03 d |
BA3 | 3300 ± 86 bc | 15,061 ± 316 b | 18,390 ± 358 a | 0.819 ± 0.008 a | 4.56 ± 0.09 b |
VA3 | 3278 ± 55 c | 15,523 ± 203 a | 18,816 ± 268 a | 0.825 ± 0.002 a | 4.74 ± 0.04 a |
BA5 | 3266 ± 42 c | 15,095 ± 214 b | 18,365 ± 301 a | 0.822 ± 0.002 a | 4.62 ± 0.03 b |
VA5 | 3380 ± 63 b | 15,080 ± 185 b | 18,496 ± 240 a | 0.815 ± 0.001 a | 4.46 ± 0.03 c |
Treatments | Average Fruit Weight Per Fruit (g) | Yield Per Plant (g) | Yield (t·hm−2) | WUE (kg·m−3) | |
---|---|---|---|---|---|
First Inflorescence | Second Inflorescence | ||||
CK | 135 ± 17 b | 112 ± 4 b | 990 ± 76 c | 44.5 ± 3.4 c | 31.2 ± 2.4 c |
BA3 | 150 ± 14 ab | 149 ± 4 a | 1196 ± 68 b | 53.8 ± 3.1 b | 37.8 ± 2.1 b |
VA3 | 173 ± 12 a | 155 ± 18 a | 1312 ± 63 a | 59.0 ± 2.8 a | 41.4 ± 2.0 a |
BA5 | 157 ± 23 ab | 148 ± 8 a | 1220 ± 77 ab | 54.9 ± 3.5 ab | 38.5 ± 2.4 ab |
VA5 | 169 ± 14 a | 141 ± 7 a | 1240 ± 48 ab | 55.8 ± 2.2 ab | 39.2 ± 1.5 ab |
Indices | Pn | Ci | Tr | Gs | Fv/Fm | Fv/Fo | ABS/CSm | TRo/CSm | ETo/CSm | DIo/CSm | Yield |
---|---|---|---|---|---|---|---|---|---|---|---|
Pn | 1 | ||||||||||
Ci | 0.960 | 1 | |||||||||
Tr | 0.918 | 0.936 | 1 | ||||||||
Gs | 0.660 | 0.759 | 0.696 | 1 | |||||||
Fv/Fm | 0.899 | 0.895 | 0.869 | 0.626 | 1 | ||||||
Fv/Fo | 0.939 | 0.975 | 0.932 | 0.663 | 0.911 | 1 | |||||
ABS/CSm | 0.950 | 0.947 | 0.903 | 0.635 | 0.829 | 0.949 | 1 | ||||
TRo/CSm | 0.962 | 0.964 | 0.925 | 0.661 | 0.857 | 0.961 | 0.969 | 1 | |||
ETo/CSm | 0.904 | 0.905 | 0.886 | 0.463 | 0.854 | 0.943 | 0.883 | 0.900 | 1 | ||
DIo/CSm | −0.775 | −0.816 | −0.871 | −0.608 | −0.795 | −0.860 | −0.729 | −0.774 | −0.859 | 1 | |
Yield | 0.876 | 0.826 | 0.775 | 0.485 | 0.725 | 0.821 | 0.843 | 0.817 | 0.800 | −0.686 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Zhang, J.; Wang, Q.; Chang, T.; Shaghaleh, H.; Hamoud, Y.A. Improvement of Photosynthesis by Biochar and Vermicompost to Enhance Tomato (Solanum lycopersicum L.) Yield under Greenhouse Conditions. Plants 2022, 11, 3214. https://doi.org/10.3390/plants11233214
Liu X, Zhang J, Wang Q, Chang T, Shaghaleh H, Hamoud YA. Improvement of Photosynthesis by Biochar and Vermicompost to Enhance Tomato (Solanum lycopersicum L.) Yield under Greenhouse Conditions. Plants. 2022; 11(23):3214. https://doi.org/10.3390/plants11233214
Chicago/Turabian StyleLiu, Xinna, Jie Zhang, Qian Wang, Tingting Chang, Hiba Shaghaleh, and Yousef Alhaj Hamoud. 2022. "Improvement of Photosynthesis by Biochar and Vermicompost to Enhance Tomato (Solanum lycopersicum L.) Yield under Greenhouse Conditions" Plants 11, no. 23: 3214. https://doi.org/10.3390/plants11233214
APA StyleLiu, X., Zhang, J., Wang, Q., Chang, T., Shaghaleh, H., & Hamoud, Y. A. (2022). Improvement of Photosynthesis by Biochar and Vermicompost to Enhance Tomato (Solanum lycopersicum L.) Yield under Greenhouse Conditions. Plants, 11(23), 3214. https://doi.org/10.3390/plants11233214