Technologies for Fertilizers and Management Strategies of N-Fertilization in Coffee Cropping Systems to Reduce Ammonia Losses by Volatilization
Abstract
:1. Introduction
2. Results
2.1. Weather Conditions
2.2. Daily and Accumulated N-NH3 Losses
2.2.1. Fertilizers Applied in Three Split Applications
2.2.2. Fertilizers Applied in a Single Application
2.3. Summarizing Results of Ammonia Losses from N-Technologies
3. Discussion
Highlights of Economic View of N-Fertilizers Technologies
4. Materials and Methods
4.1. Characterization of the Experimental Area
4.2. Experimental Design
4.3. Characterization of the Fertilizers
4.4. Complementary Management of Soil Fertility
4.5. Quantification of N-NH3 Losses
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martinez, H.E.P.; Clemente, J.M.; Lacerda, J.S.; Neves, Y.P.; Pedrosa, A.W. Nutrição mineral do cafeeiro e qualidade da bebida. Rev. Ceres 2014, 61, 838–848. (In Portuguese) [Google Scholar] [CrossRef] [Green Version]
- Chagas, W.F.T.; Guelfi, D.R.; Caputo, A.L.C.; Souza, T.L.; Andrade, A.B.; Faquin, V. Ammonia volatilization from blends with stabilized and controlled-released urea in the coffee system. Cienc. Agrotecnol. 2016, 40, 497–509. [Google Scholar] [CrossRef] [Green Version]
- Cannavo, P.; Harmand, J.M.; Zeller, B.; Vaast, P.; Ramírez, J.E.; Dambrine, E. Low nitrogen use efficiency and high nitrate leaching in a highly fertilized Coffea arabica–Inga densiflora agroforestry system: A 15N labeled fertilizer study. Nutr. Cycl. Agroecosyst. 2013, 95, 377–394. [Google Scholar] [CrossRef]
- Salamanca-Jimenez, A.; Doane, T.A.; Horwath, W.R. Nitrogen use efficiency of coffee at the vegetative stage as influenced by fertilizer application method. Front. Plant Sci. 2017, 8, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dominghetti, A.W.; Silva, D.R.G.; Guimarães, R.J.; Caputo, A.L.C.; Spehar, C.R.; Faquin, V. Nitrogen loss by volatilization of nitrogen fertilizers applied to coffee orchard. Cienc. Agrotecnol. 2016, 40, 173–183. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.G.B.; Sequeira, C.H.; Sermarini, R.A.; Otto, R. Urease inhibitor NBPT on ammonia volatilization and crop productivity: A meta-analysis. Agron. J. 2017, 109, 1–13. [Google Scholar] [CrossRef]
- Martins, M.R.; Sarkis, L.F.; Sant’Anna, S.A.C.; Santos, C.A.; Araujo, K.E.; Santos, R.C.; Araújo, E.S.; Alves, B.J.R.; Jantalia, C.P.; Boddey, R.M.; et al. Optimizing the use of open chambers to measure ammonia volatilization in field plots amended with urea. Pedosphere 2021, 31, 243–254. [Google Scholar] [CrossRef]
- [USGS] United States Geological Survey. Nitrogen Statistics and Information. 2018. Available online: https://minerals.usgs.gov/minerals/pubs/commodity/nitrogen (accessed on 15 September 2022).
- Mogollón, J.M.; Lassaletta, L.; Beusen, A.H.W.; van Grinsven, H.J.M.; Westhoek, H.; Bouwman, A.F. Assessing future reactive nitrogen inputs into global croplands based on the shared socioeconomic pathways. Environ. Res. Lett. 2018, 13, 044008. [Google Scholar] [CrossRef]
- Heffer, P.; Prud’homme, M. Fertilizer Outlook 2016–2020. In Proceedings of the International Fertilizer Association (ed) 84th IFA Annual Conference, Moscow, Russia, 30 May–1 June 2016; pp. 1–5. [Google Scholar]
- [FAOSTAT] Food and Agricultural Organization of the United Nations. Fertilizer by Nutrients. 2021. Available online: http://www.fao.org/faostat/en/#data/RFN (accessed on 15 September 2022).
- Cantarella, H.; Otto, R.; Soares, J.; Silva, A.G.B. Agronomic efficiency of NBPT as a urease inhibitor: A review. J. Adv. Res. 2018, 13, 19–27. [Google Scholar] [CrossRef]
- Otto, R.; Cantarella, H.; Guelfi, D.; Carvalho, M.C.S. Nitrogênio na Sustentabilidade de Sistemas Agrícolas. Inf. Agron. 2021, 9, 1–21. (In Portuguese) [Google Scholar]
- Pan, B.; Lam, S.K.; Mosier, A.; Luo, Y.; Chen, D. Ammonia volatilization from synthetic fertilizers and its mitigation strategies: A global synthesis. Agric. Ecosyst. Environ. 2016, 232, 283–289. [Google Scholar] [CrossRef]
- Martins, M.R.; Sant’Anna, S.A.C.; Zaman, M.; Santos, R.C.; Monteiro, R.C.; Alves, B.J.R.; Jantalia, C.P.; Boddey, R.M.; Urquiaga, S. Strategies for the use of urease and nitrification inhibitors with urea: Impact on N2O and NH3 emissions, fertilizer-15N recovery and maize yield in a tropical soil. Agric. Ecosyst. Environ. 2017, 247, 54–62. [Google Scholar] [CrossRef]
- Guimarães, P.T.G.; Reis, T.H.P.; Guelfi, D.; Mattiello, E.M.; Montanari, M. Correção e adubação de solo em cafeeiros em produção—Cultivo de sequeiro. In Cafeicultura do Cerrado; Carvalho, G.R., Ferreira, A.D., Andrade, V.T., Botelho, C.E., Carvalho, J.P.F., Eds.; Epamig: Belo Horizonte, Brasil, 2021; pp. 141–172. (In Portuguese) [Google Scholar]
- Eurostat. Air Pollution Statistics-Emission Inventories. 2018. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Air_pollution_statistics_-_emission_inventories (accessed on 14 February 2021).
- IPCC. Climate Change 2014: Mitigation of Climate Change. In Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O.R., Pichs-Madruga, Y., Sokona, E., Farahani, S., Kadner, K., Seyboth, A., Adler, I., Baum, S., Brunner, P., Eickemeier, B., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; p. 1454. [Google Scholar]
- IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. 2019. Available online: https://www.ipcc.ch/report/2019-refinement-to-the2006-ipccguidelines-for-national-greenhouse-gas-inventories (accessed on 15 September 2022).
- Snyder, C.S. Enhanced nitrogen fertiliser technologies support the ‘4R’ concept to optimise crop production and minimise environmental losses. Soil Res. 2017, 55, 463–472. [Google Scholar] [CrossRef]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; Siro-tenko, O. Agriculture. In Climate change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC); Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 497–540. [Google Scholar]
- Dimkpa, C.; Fugice, J.; Singh, U.; Lewis, T.D. Development of fertilizers for enhanced nitrogen use efficiency—Trends and perspectives. Sci. Total Environ. 2020, 731, 139113. [Google Scholar] [CrossRef]
- Chien, S.H.; Prochnow, L.I.; Cantarella, H. Recent developments of fertilizer production and use to improve nutrient efficiency and minimize environmental impacts. Adv. Agron. 2009, 102, 267–322. [Google Scholar] [CrossRef]
- Azeem, B.; Kushaari, K.; Man, Z.B.; Basit, A.; Thanh, T.H. Review on materials & methods to produce controlled release coated urea fertilizer. J. Control. Release 2014, 181, 11–21. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Adhikari, R.; Casey, P.; Muster, T.; Gill, H.; Adhikari, B. Enhanced efficiency fertilisers: A review of formulation and nutrient release patterns. J. Sci. Food Agric. 2015, 95, 1131–1142. [Google Scholar] [CrossRef]
- Apostolopoulou, E. The Global Market for Slow-Release, Controlled-Release and Stabilized Fertilizers; International Fertilizer Association—IFA: Beijing, China, 2016; pp. 1–19. [Google Scholar]
- Guelfi, D. Fertilizantes nitrogenados estabilizados, de liberação lenta ou controlada. Inf. Agron. 2017, 157, 1–14. (In Portuguese) [Google Scholar]
- Adotey, N.; Kongchum, M.; Li, J.; Whitehurst, G.B.; Sucre, E.; Harrell, D.L. Ammonia volatilization of zinc sulfate-coated and NBPT-treated urea fertilizers. Agron. J. 2017, 109, 2918–2926. [Google Scholar] [CrossRef]
- Santos, C.F.; Aragão, O.O.S.; Silva, D.R.G.; Jesus, E.C.; Chagas, W.F.T.; Correia, O.S.; Moreira, F.M.S. Environmentally friendly urea produced from the association of N-(nbutyl) thiophosphoric triamide with biodegradable polymer coating obtained from a soybean processing byproduct. J. Clean. Prod. 2020, 276, 123014. [Google Scholar] [CrossRef]
- Santos, C.F.; Nunes, A.P.P.; Aragão, O.O.S.; Guelfi, D.; Souza, A.A.; Abreu, L.B.; Lima, A.D.C. Dual Functional Coatings for Urea to Reduce Ammonia Volatilization and Improve Nutrients Use Efficiency in a Brazilian Corn Crop System. J. Soil Sci. Plant Nutr. 2021, 21, 1591–1609. [Google Scholar] [CrossRef]
- Lawrencia, D.; Wong, S.K.; Low, D.Y.S.; Goh, B.H.; Goh, J.K.; Ruktanonchai, U.R.; Soottitantawat, A.; Lee, L.H.; Tang, S.Y. Controlled release fertilizers: A review on coating materials and mechanism of release. Plants 2021, 10, 238. [Google Scholar] [CrossRef] [PubMed]
- Andrade, A.B.; Guelfi, D.R.; Chagas, W.F.T.; Cancellier, E.D.; Souza, T.L.; Oliveira, L.S.S.; Faquin, V.; Du, C. Fertilizing maize croppings with blends of slow/controlled-release and conventional nitrogen fertilizers. J. Plant Nutr. Soil Sci. 2021, 184, 227–237. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, Z.; Hu, Y.; Schmidhalter, U.; Zhang, W.; Ruan, S.; Chen, X. Integrated assessment of agronomic, environmental and ecosystem economic benefits of blending use of controlled-release and common urea in wheat production. J. Clean. Prod. 2021, 287, 559–565. [Google Scholar] [CrossRef]
- DaMatta, F.M.; Ronchi, C.P.; Maestri, M.; Barros, R.S. Ecophysiology of coffee growth and production. Braz. J. Plant Physiol. 2007, 19, 485–510. [Google Scholar] [CrossRef] [Green Version]
- Instituto Nacional de Meteorologia do Brasil (INMET). Normal Climatológico (2015/2017); Instituto Nacional de Meteorologia do Brasil (INMET): Brasilia, Brazil, 2022; Home Page. Available online: https://portal.inmet.gov.br/ (accessed on 22 April 2022). (In Portuguese)
- Costa, M.C.G.; Vitti, G.C.; Cantarella, H. N-NH3 losses from nitrogen sources applied over unburned sugarcane straw. Rev. Bras. Cienc. Solo 2003, 27, 631–637. [Google Scholar] [CrossRef]
- Afshar, R.K.; Lin, R.; Assen, Y.M.; Chen, C. Agronomic effects of urease and nitrification inhibitors on ammonia volatilization and nitrogen utilization in a dryland farming system: Field and laboratory investigation. J. Clean. Prod. 2018, 172, 4130–4139. [Google Scholar] [CrossRef]
- Dawar, K.; Zaman, M.; Rowarth, J.S.; Blennerhassett, J.; Turnbull, M.H. Urea hydrolysis and lateral and vertical movement in the soil: Effects of urease inhibitor and irrigation. Biol. Fertil. Soils 2011, 47, 139–146. [Google Scholar] [CrossRef]
- Byrne, M.P.; Tobin, J.T.; Forrestal, P.J.; Danaher, M.; Nkwonta, C.G.; Richards, K.; Cummins, E.; Hogan, S.A.; O’Callaghan, T.F. Urease and Nitrification Inhibitors—As Mitigation Tools for Greenhouse Gas Emissions in Sustainable Dairy Systems: A Review. Sustainability 2020, 12, 6018. [Google Scholar] [CrossRef]
- Abalos, D.; Jeffery, S.; SanzCobena, A.; Guardia, G.; Vallejo, A. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency. Agric. Ecosyst. Environ. 2014, 189, 136–144. [Google Scholar] [CrossRef]
- Engel, R.E.; Towey, B.D.; Gravens, E. Degradation of the urease inhibitor NBPT as affected by soil pH. Soil Sci. Soc. Am. J. 2015, 79, 1674–1683. [Google Scholar] [CrossRef]
- Sha, Z.; Lv, T.; Staal, M.; Ma, X.; Wen, Z.; Li, Q.; Pasda, G.; Misselbrook, T.; Liu, X. Effect of combining urea fertilizer with P and K fertilizers on the efficacy of urease inhibitors under different storage conditions. J. Soils Sediments 2020, 20, 2130–2140. [Google Scholar] [CrossRef]
- Zaborska, W.; Krajewska, B.; Olech, Z. Heavy Metal Ions Inhibition of Jack Bean Urease: Potential for Rapid Contaminant Probing. J. Enzym. Inhib. Med. Chem. 2004, 19, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Kafarski, P.; Talma, M. Recent advances in design of new urease inhibitors: A review. J. Adv. Res. 2018, 13, 101–112. [Google Scholar] [CrossRef]
- Benini, S.; Rypniewski, W.R.; Wilson, K.S.; Mangani, S.; Ciurli, S. Molecular details of urease inhibition by boric acid: Insights into the catalytic mechanism. J. Am. Chem. Soc. 2004, 126, 3714–3715. [Google Scholar] [CrossRef]
- Svane, S.; Sigurdarson, J.J.; Finkenwirth, F.; Eitinger, T.; Karring, H. Inhibition of urease activity by different compounds provides insight into the modulation and association of bacterial nickel import and ureolysis. Sci. Rep. 2020, 10, 8503. [Google Scholar] [CrossRef]
- Cantarella, H. Nitrogênio. In Fertilidade do Solo; Novais, R.F., Alvarez, V.V.H., Barros, N.F., Fontes, R.L.F., Cantarutti, R.B., Neves, J.C.L., Eds.; Sociedade Brasileira de Ciência do Solo: Viçosa, Brasil, 2007; pp. 375–470. (In Portuguese) [Google Scholar]
- Wang, Q.; Zhou, F.; Shang, Z.; Ciais, P.; Winiwarter, W.; Jackson, R.B.; Tubiello, F.N.; Janssens-Maenhout, G.; Tian, H.; Cui, X.; et al. Data-driven estimates of global nitrous oxide emissions from croplands. Natl. Sci. Rev. 2020, 7, 441–452. [Google Scholar] [CrossRef] [Green Version]
- Souza, T.L.D.; Guelfi, D.R.; Silva, A.L.; Andrade, A.B.; Chagas, W.F.T.; Cancellier, E.L. Ammonia and carbon dioxide emissions by stabilized conventional nitrogen fertilizers and controlled release in corn crop. Cienc. Agrotecnol. 2017, 41, 494–510. [Google Scholar] [CrossRef] [Green Version]
- Tong, X.; He, X.; Duan, H.; Han, L.; Huang, G. Evaluation of Controlled Release Urea on the Dynamics of Nitrate, Ammonium, and Its Nitrogen Release in Black Soils of Northeast China. Int. J. Environ. Res. Public Health 2018, 15, 119–132. [Google Scholar] [CrossRef] [Green Version]
- Giroto, A.S.; Guimarães, G.G.F.; Ribeiro, C. A Novel, Simple Route to Produce Urea:Urea-Formaldehyde Composites for Controlled Release of Fertilizers. J. Polym. Environ. 2018, 26, 2448–2458. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, M.; Liu, Z.; Tian, X.; Zhang, S.; Zhao, C.; Lu, H. Modeling and Optimizing the Synthesis of Urea-formaldehyde Fertilizers and Analyses of Factors Afecting these Processes. Sci. Rep. 2018, 8, 4504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, J.; Fan, H.; Pang, B.; Zhang, J.; Li, Z.; Jiang, S.; Wu, J. Assessment of reactive nitrogen mitigation potential of different Nitrogen treatments under direct-seeded rice and wheat cropping system. Environ. Sci. Pollut. Res. 2018, 25, 20241–20254. [Google Scholar] [CrossRef] [PubMed]
- Naz, M.Y.; Sulaiman, S.A. Attributes of natural and synthetic materials pertaining to slow-release urea coating industry. Rev. Chem. Eng. 2017, 33, 293–308. [Google Scholar] [CrossRef]
- Ikeda, S.; Suzuki, K.; Kawahara, M.; Noshiro, M.; Takahashi, N. An Assessment of Urea-Formaldehyde Fertilizer on the Diversity of Bacterial Communities in Onion and Sugar Beet. Microbes Environ. 2014, 29, 231–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dantas, A.A.A.; Carvalho, L.G.; Ferreira, E. Climatic classification and tendencies in Lavras region, MG. Cienc. Agrotecnol. 2007, 31, 1862–1866. [Google Scholar] [CrossRef] [Green Version]
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Cunha, T.J.F.; Oliveira, J.B. Sistema Brasileiro de Classificação do Solo, 3rd ed.; Embrapa: Rio de Janeiro, Brasil, 2013; p. 353. (In Portuguese) [Google Scholar]
- Soil Survey Staff. Keys to Soil taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014; p. 353.
- Bouyoucos, G.J. A Recalibration of the Hydrometer Method for Making Mechanical Analysis of Soils. Agron. J. 1951, 43, 434–438. [Google Scholar] [CrossRef] [Green Version]
- Cancellier, E.L.; Silva, D.R.G.; Faquin, V.; Gonçalves, B.A.; Cancellier, L.L.; Spehar, C.R. Ammonia volatilization from enhanced-efficiency urea on no-till maize in brazilian cerrado with improved soil fertility. Cienc. Agrotecnol. 2016, 40, 133–144. [Google Scholar] [CrossRef] [Green Version]
- Guimarães, P.T.G.; Garcia, A.W.R.; Alvares, V.H.; Prezotti, L.C.; Viana, A.S.; Miguel, A.E.; Malavolta, E.; Corrêa, J.B.; Lopes, A.S.; Nogueira, F.D.; et al. Cafeeiro. In Recomendação Para o Uso de Corretivos e Fertilizantes Em Minas Gerais: 5a Aproximação; Ribeiro, A.C., Guimarães, P.T.G., Alvares, V.H., Eds.; Comissão de Fertilidade do Solo do Estado de Minas Gerais: Viçosa, Brasil, 1999; pp. 289–302. (In Portuguese) [Google Scholar]
- Lara-cabezas, A.R.; Trivelin, P.C.O.; Bendassolli, J.A.; Santana, D.G.; Gascho, G.J. Calibration of a semi-open static collector for determination of ammonia volatilization from nitrogen fertilizers. Commun. Soil Sci. Plant Anal. 1999, 30, 389–406. [Google Scholar] [CrossRef]
- Kjeldahl, J. Neue methode zur bestimmung des stickstoffs in organischen Körpern. Z. Für Anal. Chem. 1883, 22, 366–382. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, A.R.A.; Souza, G.B. Manual de Laboratórios: Solo, Água, Nutrição Vegetal, Nutrição Animal e Alimentos; Embrapa Pecuária Sudeste: São Carlos, Brasil, 2005; p. 313. (In Portuguese) [Google Scholar]
- Soares, J.R.; Cantarella, H.; Menegale, M.L.C. Ammonia volatilization losses from surface-applied urea with urease and nitrification inhibitors. Soil Biol. Biochem. 2012, 52, 82–89. [Google Scholar] [CrossRef]
- Minato, E.A.; Cassim, B.M.A.R.; Besen, M.R.; Mazzi, F.L.; Inoue, T.T.; Batista, M.A. Controlled-release nitrogen fertilizers: Characterization, ammonia volatilization, and effects on second-season corn. Rev. Bras. Cienc. Solo 2020, 44, 0190108. [Google Scholar] [CrossRef]
- Development Core Team R. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
Treatment | Split Fertilization | Parameters | MDL (kg) | |||
---|---|---|---|---|---|---|
α | b | k | R2 | |||
Maximum NH3 Loss | Day of the Maximum Loss | |||||
Prilled urea | 1 | 23.65 | 1.31 | 1.45 | 0.97 | 8.573 |
2 | 13.97 | 0.77 | 1.24 | 0.99 | 4.331 | |
3 | 30.78 | 1.70 | 0.59 | 0.99 | 4.540 | |
Ammonium nitrate | 1 | 0.26 | 6.70 | 0.27 | 0.94 | 0.018 |
2 | 0.21 | 4.89 | 0.64 | 0.95 | 0.034 | |
3 | 0.27 | 7.21 | 0.40 | 0.94 | 0.027 | |
Ammonium sulfate | 1 | 0.57 | 0.12 | 0.22 | 0.97 | 0.031 |
2 | 0.06 | 6.79 | 0.17 | 0.95 | 0.003 | |
3 | 0.31 | 6.54 | 0.08 | 0.98 | 0.006 | |
Urea + NBPT | 1 | 9.97 | 2.72 | 0.40 | 0.98 | 0.997 |
2 | 6.33 | 2.20 | 1.52 | 0.98 | 2.405 | |
3 | 22.32 | 2.78 | 0.73 | 0.98 | 4.073 | |
Urea dissolved in water | 1 | 7.19 | 0.89 | 1.80 | 0.96 | 3.236 |
2 | 2.45 | −7.19 | 0.23 | 0.94 | 0.141 | |
3 | 3.80 | 0.70 | 1.32 | 0.97 | 1.254 | |
Urea + adhesive + CaCO3 | 1 | 22.67 | 1.23 | 2.49 | 0.96 | 14.112 |
2 | 21.89 | 1.21 | 2.35 | 0.99 | 12.860 | |
3 | 30.41 | 1.05 | 0.56 | 0.98 | 4.257 | |
Urea + Cu + B | 1 | 3.46 | 5.32 | 0.40 | 0.98 | 0.346 |
2 | 2.04 | 1.29 | 2.22 | 0.98 | 1.132 | |
3 | 16.34 | 7.98 | 0.39 | 0.99 | 1.593 |
Treatment | Split Fertilization | Parameters | MDL | |||
---|---|---|---|---|---|---|
α | b | k | R2 | |||
Maximum NH3 Loss | Day of the Maximum Loss | (kg) | ||||
Prilled urea | 1 | 32.03 | 1.72 | 1.32 | 0.99 | 10.570 |
2 | 16.76 | 2.40 | 0.85 | 0.96 | 3.562 | |
3 | 22.28 | 1.97 | 1.46 | 0.98 | 8.132 | |
Ammonium nitrate | 1 | 0.48 | 9.68 | 0.22 | 0.94 | 0.026 |
2 | 0.51 | 24.80 | 0.07 | 0.81 | 0.009 | |
3 | 1.72 | 4.90 | 0.43 | 0.93 | 0.185 | |
Ammonium sulfate | 1 | 0.05 | 2.32 | 1.10 | 0.91 | 0.014 |
2 | 0.36 | 4.21 | 0.52 | 0.91 | 0.047 | |
3 | 1.65 | 8.37 | 0.33 | 0.97 | 0.136 | |
Urea + NBPT | 1 | 18.67 | 3.01 | 1.06 | 0.99 | 4.948 |
2 | 10.41 | 5.25 | 0.79 | 0.97 | 2.056 | |
3 | 17.32 | 4.73 | 0.59 | 0.98 | 2.555 | |
Urea dissolved in water | 1 | 5.66 | 1.69 | 0.90 | 0.99 | 1.274 |
2 | 4.77 | 1.45 | 2.74 | 0.94 | 3.267 | |
3 | 1.33 | 1.43 | 1.24 | 0.93 | 0.412 | |
Urea + adhesive + CaCO3 | 1 | 36.22 | 1.70 | 1.81 | 0.99 | 16.390 |
2 | 18.56 | 1.78 | 1.16 | 0.93 | 5.382 | |
3 | 34.12 | 2.10 | 1.09 | 0.98 | 9.298 | |
Urea + Cu + B | 1 | 20.27 | 3.54 | 1.31 | 0.98 | 6.638 |
2 | 15.29 | 2.84 | 0.73 | 0.95 | 2.790 | |
3 | 21.58 | 4.79 | 0.54 | 0.98 | 2.913 |
Treatment | Ammonia Loss (%) | Mean ** (%) | PCRDU ** (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Season 2015/2016 | Season 2016/2017 | |||||||||
1st | 2nd | 3rd | Mean | 1st | 2nd | 3rd | Mean | |||
Prilled urea | 24.2a | 14.0b | 31.6a | 23.2a | 32.3a | 17.3a | 23.1b | 24.2b | 23.7b | - |
Urea dissolved in water | 7.3b | 2.4c | 4.0d | 4.5d | 5.6c | 5.1b | 1.5c | 4.0e | 4.2d | 82.3 |
Ammonium sulfate | 0.6c | 0.1c | 0.3d | 0.3e | 0.6c | 0.4b | 1.9c | 0.9e | 0.6e | 97.5 |
Ammonium nitrate | 0.3c | 0.2c | 0.3d | 0.2e | 0.5c | 0.3b | 1.8c | 0.8e | 0.5e | 97.9 |
Urea + Cu + B | 3.5c | 2.0c | 16.7c | 7.4c | 20.7b | 15.8a | 22.8b | 19.7c | 13.5c | 43 |
Urea + adhesive + CaCO3 | 23.7a | 22.0a | 31.0a | 25.5a | 36.7a | 19.3a | 35.1a | 30.3a | 27.9a | −17.7 *** |
Urea + NBPT | 9.9b | 6.4c | 22.7b | 13.0b | 18.8b | 11.3a | 18.0b | 16.0d | 14.5c | 38.8 |
Mean | 9.9 | 6.7 | 15.2 | 10.6 | 16.4 | 9.9 | 14.9 | 13.7 | 12.1 | 56.9 |
Coefficient of Variation | 18 | 17.9 | 16.2 | 11.7 | 15.4 | 27.9 | 11.2 | 18.2 | 8.5 | - |
Treatment | Crop Season | Parameters | MDL | |||
---|---|---|---|---|---|---|
α | b | k | R2 | |||
Maximum NH3 Loss | Day of the Maximum Loss | (kg) | ||||
Urea + elastic resin | 2015/2016 | 5.67 | 35.94 | 0.10 | 0.99 | 0.425 |
Blend N-fertilizer | 4.29 | 24.71 | 0.06 | 0.94 | 0.193 | |
Urea-formaldehyde | 0.53 | 6.99 | 0.20 | 0.82 | 0.080 | |
Urea + polyurethane | 6.20 | 28.25 | 0.08 | 0.98 | 0.372 | |
Urea + elastic resin | 2016/2017 | 5.75 | 40.56 | 0.05 | 0.99 | 0.216 |
Blend N-fertilizer | 6.07 | 9.23 | 0.12 | 0.95 | 0.546 | |
Urea-formaldehyde | 0.42 | 8.88 | 0.14 | 0.90 | 0.044 | |
Urea + polyurethane | 3.80 | 31.10 | 0.08 | 0.99 | 0.228 |
Treatment | Crop Season | Mean of Two Crop Seasons ** | |||||
---|---|---|---|---|---|---|---|
Ammonia Loss (%) | |||||||
2015/2016 | 2016/2017 | ||||||
1st | 2nd | 3rd | 1st | 2nd | 3rd | (%) | |
Blend N-fertilizer | 4.59a | 6.46a | 5.53a | ||||
Urea + elastic resin | 5.71a | 5.91a | 5.81a | ||||
Urea-formaldehyde | 0.58b | 0.48c | 0.53b | ||||
Urea + polyurethane | 6.40a | 4.02b | 5.21a | ||||
Mean | 4.32 | 4.22 | 4.22 | ||||
Coefficient of Variation | 0.43 | 0.47 | 0.47 | ||||
Precipitation (mm) | 694 * | 455 * | 574 *** |
pH | K | P | Cu | B | Ca2+ | Mg2+ | Al3+ | CEC | OM | BS | Sand | Silt | Clay |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mg dm−3 | cmolc dm−3 | % | |||||||||||
4.6 | 92 | 16 | 1.5 | 0.3 | 1.7 | 0.4 | 0.7 | 11.4 | 2.4 | 30 | 18 | 24 | 58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freitas, T.; Bartelega, L.; Santos, C.; Dutra, M.P.; Sarkis, L.F.; Guimarães, R.J.; Dominghetti, A.W.; Zito, P.C.; Fernandes, T.J.; Guelfi, D. Technologies for Fertilizers and Management Strategies of N-Fertilization in Coffee Cropping Systems to Reduce Ammonia Losses by Volatilization. Plants 2022, 11, 3323. https://doi.org/10.3390/plants11233323
Freitas T, Bartelega L, Santos C, Dutra MP, Sarkis LF, Guimarães RJ, Dominghetti AW, Zito PC, Fernandes TJ, Guelfi D. Technologies for Fertilizers and Management Strategies of N-Fertilization in Coffee Cropping Systems to Reduce Ammonia Losses by Volatilization. Plants. 2022; 11(23):3323. https://doi.org/10.3390/plants11233323
Chicago/Turabian StyleFreitas, Tainah, Lucas Bartelega, César Santos, Mateus Portes Dutra, Leonardo Fernandes Sarkis, Rubens José Guimarães, Anderson William Dominghetti, Pauliana Cristina Zito, Tales Jesus Fernandes, and Douglas Guelfi. 2022. "Technologies for Fertilizers and Management Strategies of N-Fertilization in Coffee Cropping Systems to Reduce Ammonia Losses by Volatilization" Plants 11, no. 23: 3323. https://doi.org/10.3390/plants11233323
APA StyleFreitas, T., Bartelega, L., Santos, C., Dutra, M. P., Sarkis, L. F., Guimarães, R. J., Dominghetti, A. W., Zito, P. C., Fernandes, T. J., & Guelfi, D. (2022). Technologies for Fertilizers and Management Strategies of N-Fertilization in Coffee Cropping Systems to Reduce Ammonia Losses by Volatilization. Plants, 11(23), 3323. https://doi.org/10.3390/plants11233323